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0. Introduction

Poincaré invented homoclinic orbits, conjectured their existence in the planar
three-body problem, and despaired of understanding their complexity. Research
by Birkhoff, Cartwright and Littlewood, and Levinson revealed that near transverse
homoclinic points there are robust periodic points. A pinnacle of this line of re-
search, and the basis for much of modern dynamical theory, is Smale’s “horseshoe”
theorem [22]. For a diffeomorphismf of a manifold of any dimension, it states
that every neighborhood of a transverse homoclinic point meets a structurally sta-
ble, hyperbolic compact invariant setK on which some iteratef k is topologically
conjugate to the shift map on the Cantor set 2Z .

Similar results have been obtained under weakenings of the transversality as-
sumption, including work by Burns and Weiss [6], Churchill and Rod [7], Collins
[8], Gavrilov and Šilnikov [13; 14], Guckenheimer and Holmes [15], Mischaikow
[18], Mischaikow and Mrozek [19], Newhouse [20], and Rayskin [21].

Among many important consequences is the existence of hyperbolic periodic
orbits inK of all periodskn, n ≥ 1. Note, however, thatk is not specified in the
horseshoe theorem, and in most cases there is no way to estimate it (but see [19]).
Collins [8] has shown that a differentiably transverse homoclinic point implies the
existence of periodic points of all sufficiently high minimum periods; estimating
such periods, however, requires detailed knowledge of the associated homoclinic
tangle.

Although the horseshoe theorem guarantees infinitely many periodic orbits, it
is insufficient for the existence of a second fixed point. For example, the toral dif-
feomorphism induced by the matrix

[ 2 1
1 1

]
has only one fixed point, even though

transverse homoclinic points are dense.
It turns out that, for diffeomorphisms of the plane, even a nontransverse homo-

clinic point implies a second fixed point; in fact, there is a block of fixed points
having index+1. But the proof of this (Hirsch [17]), based on Brouwer’s plane
translation theorem, gives no indication of the location of such a block.

In this paper we consider a saddle fixed pointp for an orientation-preserving
homeomorphismf of a surfaceX (definitions will be given in Section 1). Letp ′
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be a homoclinic point associated top, that is, a point different fromp where the
stable and unstable curvesWs(p),Wu(p) meet; no transversality or even cross-
ing of these curves is assumed. Suppose3 = Js ∪ Ju is a homoclinic loop atp,
whereJs andJu are arcs inWs(p) andWu(p) respectively, having common end-
pointsp, p ′. Assume there is a closed 2-cell, with interiorV, whose boundary is
the union of two arcs inWs(p) andWu(p) with endpointsp andp ′ in common
but otherwise disjoint; such a 2-cell always exists whenX is simply connected.

Our main result, stated more precisely in Theorem 1.2, is this:

If 3 is a Jordan curve bounding an open2-cell V, then there existsρ ∈
{1,2} such that the fixed point index off n in V is ρ for all n 6= 0, and
ρ depends only on the geometry ofV.

An immediate consequence is that, for everyn ≥ 2, every map sufficiently close
to f n has a block of fixed points inV of indexρ.

Theorem 1.5 is a similar result for homoclinic loops that are homotopically triv-
ial, but not necessarily Jordan curves.

The main theorem is stated in Section 1, and several applications are derived.
Section 2 contains the proof of the main theorem.

1. The Main Result and Applications

We useZ,N, andN+ to denote the integers, natural numbers, and positive natural
numbers. All maps are assumed to be continuous;≈ denotes homeomorphism.

For any mapg, the mapsgn (n ≥ 1) are defined recursively byg1 = g and
gn+1(x) = g(gn(x)) providedgn(x) is in the domain ofg. ByX we denote a con-
nected, oriented surface with metricd,andf : X→ X is an orientation-preserving
injective map. We callf a diffeomorphism whenf andf −1 areC1 (continuously
differentiable).

The orbit of x is the setγ (x) = {f i(x) : i ∈ Z}. The fixed point set off is
denoted by Fix(f ). We callq ∈ Fix(f ) smoothif it belongs to a coordinate chart
in which f is represented by aC1 map; such a chart issmoothfor q. If f is C1,

then of course all fixed points are smooth. But in many constructions some fixed
points of a nonsmooth map are smooth, as when a diffeomorphism of the plane is
extended to the 2-sphere.

Let q ∈Fix(f ) be smooth. We callq simpleif 1 is not an eigenvalue of the lin-
ear operatordfq, hyperbolicif no eigenvalue lies on the unit circleS1⊂ C, asink
if eigenvalues are insideS1, a sourceif they are outside, andelliptic if the eigen-
values are onS1 but different from 1.

A fixed pointp is asaddleif (a) it is not in the boundary ofX, (b) there is a
chart atp in which f is locally represented as a linear map

[
µ 0
0 λ

]
, and (c) either

µ > 1> λ > 0,makingp adirect saddle, orµ < −1< λ < 0, defining atwisted
saddle. Such a chart isdiagonalizing. By the Hartman–Grobman linearization
theorem (Hartman [16]), forp to be a saddle it is sufficient that there be a smooth
chart atp in whichdfp has eigenvaluesµ, λ as just described.
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An n-periodicpoint for f means a fixed pointz for f n, n ≥ 1. Whenn is the
minimum period,γ (z) is ann-orbit. An n-periodic point is simple, hyperbolic,
and so forth when it has the corresponding property as a fixed point forf n.

Thestable curveWs = Ws(p) of a saddle fixed pointp is the connected com-
ponent ofp in the set ofx for which there is a convergent sequencexk → p in
X with x0 = x andf(xk) = xk+1. Theunstable curveWu atp is defined as the
stable curve forf −1. Note thatWs andWu are mapped homeomorphically onto
themselves byf. Owing to the linearization assumption, there are bijective maps
ζu, ζs : R→ Ws taking 0 top, calledparameterizationsof Wu,Ws, respectively.
The images of [0,∞) and(−∞,0] are the fourbranchesatp.

A homoclinic pointfor p is any pointp ′ ∈Ws ∩ Wu \ {p}, in which case the
homoclinic loop3 defined byp ′ is the closed path formed by the two arcsJs ⊂
Ws andJu ⊂ Wu having common endpointsp andp ′. There corresponds an ele-
ment [3] of the fundamental group ofX at p, determined by first traversing3
from p to p ′ in Ju and then fromp ′ to p in Js. If [3] is the unit element then3
is aninessential homoclinic loop.The loop3 is simpleif Ju ∩ Js = {p, p ′ }, in
which case3 is homeomorphic to the unit circle. Every homoclinic loop contains
a simple homoclinic loop.

Suppose3 is a simple homoclinic loop inX bounding a closed 2-cellD ⊂ X.
The corresponding open 2-cellV = D \ ∂D is a homoclinic cell.We callV a
positivecell if some diagonalizing chart takesp to the origin 0∈R2 and a neigh-
borhood ofp in D onto a neighborhood of 0 in the first quadrant. In the contrary
case,D is a negativecell: there is a diagonalizing chart taking a neighborhood
of p in D onto a neighborhood of the origin in the complement of the open first
quadrant (see Figure 1). Thus, when seen through a diagonalizing chart, a positive
cell appears convex nearp while a negative region appears concave.

Figure 1 Homoclinic cells: (a) positive, (b) negative

Let U ⊂ X be an open set such thatU ∩ Fix(f ) is compact. Thefixed point
index off in U is denoted byI(f, U) ∈ Z; if it is nonzero, there exists a fixed
point inU (Dold [9]). WhenU is a coordinate chart identified with an open set in
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R2, we can calculateI(f, U) as follows. LetM ⊂ U be a compact surface with
boundary whose interior contains Fix(f ) ∩ U. ThenI(f, U) is the degree of the
map

∂M → S1, x 7→ x − f(x)
‖x − f(x)‖ ,

where∂M andS1 inherit their orientations fromR2. If ∂M is replaced by any
oriented Jordan curve0 on whichf has no fixed points, then the same formula
defines theindex off along0.

LetB ⊂ X be ablockof fixed points; that is,B is compact and relatively open in
Fix(f ). There exists an open neighborhoodU0 ⊂ X such thatB = Fix(f ) ∩U0.

The number
Ind(f, B) = Ind

(
f
∣∣
U0

)∈Z,

called theindex off atB, is independent of the choice ofU0. Whenp is an iso-
lated fixed point we set Ind(f, {p}) = I(f, p), called theindex off atp. A direct
saddle has index−1. Twisted saddles, sources, sinks, and elliptic fixed points have
index+1.

The following assumptions are in force throughout the rest of this article.

Hypothesis 1.1.

(i) f : X ≈ X is an orientation-preserving homeomorphism of a surfaceX.

(ii) p ∈X \ ∂X is a direct saddle fixed point forf.
(iii) V ⊂ X is an open 2-cell bounded by a simple homoclinic loop3 atp.

To V we assign the number

ρ = ρ(V ) =
{

1 if V is a positive region,

2 if V is a negative region.

For eachn∈N+ we define an open setVn ⊂ V,
Vn = Vn(f ) = {x ∈V : f i(x)∈V, i = 1, . . . , n−1}.

Thus, Fix(f n) ∩Vn is the union of then-periodic orbits inV.
The following theorem is our fundamental result.

Theorem 1.2. Under Hypothesis1.1,Fix(f n) ∩Vn is a block of fixed points for
f n of indexρ(V ) for all n ≥ 1.

Before giving the proof of Theorem 1.2 in Section 2, we present several conse-
quences. Hypothesis 1.1 is always assumed.

Homeomorphisms of the Sphere

Assume thatg : S2 ≈ S2 is an orientation-preserving homeomorphism having a
simple homoclinic loop3 at a direct saddle.

Theorem 1.3. The fixed point index ofg in one of the two complementary com-
ponents of3 is 1, and the index in the other is2.
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Proof. This follows from Theorem 1.2, because one complementary component
of 3 has positive type and the other has negative type.

The persistence of blocks having nonzero index implies the following.

Corollary 1.4. Every mapS2 → S2 sufficiently close tog has at least three
fixed points.

A homoclinic loop constrains fixed point indices. Suppose, for example, that there
are exactly three fixed points: a direct saddle and two other fixed points with re-
spective indices 5 and−2. Then the saddle does not admit a homoclinic point.

Inessential Homoclinic Loops and Nielsen Classes

Fixed pointsa, b are in the sameNielsen classprovided they are endpoints of a
path that is homotopic to its composition withf, keeping endpoints fixed. Equiv-
alently,f is covered by a map in a universal covering space having fixed points
overa andb.

WhenX is compact, every Nielsen class is a block of fixed points, and the
Nielsen numberof f is the number of Nielsen classes having nonzero index. This
number, a homotopy invariant off, is a lower bound for the number of fixed points
for any map homotopic tof.

Theorem 1.5. Assume Hypothesis1.1, and letp belong to an inessential homo-
clinic loop. Then its Nielsen class contains a block of positive index, and such a
block must contain a fixed pointq 6= p. When the Nielsen class ofp is finite,q
can be chosen with positive index.

Thus, in the presence of an inessential homoclinic loop, the number of fixed
points exceeds the Nielsen number. Theorem1.10 is asimilar result for Lef-
schetz numbers.

Corollary 1.6. If a direct saddlep is the only member of its Nielsen class, then
p does not belong to an inessential homoclinic loop.

Proof of Theorem 1.5.We assume thatX is not simply connected, otherwise
using Theorem 1.2. SinceX is orientable, there is a universal covering space
π : R2→ X.

Choosep̃ ∈ π−1(p), and letf̃ : R2 → R2 be the unique lift off with a fixed
point atp̃. Thenp̃ is a direct saddle for̃f .

Let 0 be a null homotopic homoclinic loop atp. There is a unique homoclinic
loop 0̃ ⊂ R2 for f̃ that containsp̃ and projects onto0 underπ. Let 3̃ ⊂ 0̃ be
a simple homoclinic loop at̃p. There is a unique open 2-cellV ⊂ R2 bounded
by 3, andV̄ is a closed 2-cell. Applying Theorem 1.2, we choose a blockL ⊂
Fix(f̃ ) ∩V such that

Ind(f̃ , L) = σ ∈ {1,2}.
Notice thatπ(L) lies in the Nielsen class ofp.
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Every fixed pointz̃ ∈ π−1(p) has index−1, sincef̃ in a neighborhood of̃z is
conjugate tof in a neighborhood ofπ(z). BecauseV̄ is compact,π−1(p) ∩V is
finite. ThereforeL \ π−1(p) is nonempty, for otherwiseL would be a nonempty
finite subset ofπ−1(p) and thus have negative index.

It follows that π(L \ π−1(p)) is a nonempty subset of Fix(f ) disjoint from
p that is contained in the Nielsen class ofp. Suppose this class is finite; then
L \ π−1(p) is finite. LetL ∩ π−1(p) have cardinalityν, 1≤ ν <∞. Then

Ind(f̃ , L \ π−1(p)) = Ind(f̃ , L)− Ind(f̃ , L ∩ (π−1(p)))

= Ind(f̃ , L)− ν Ind(f, p)

= σ + ν ≥ 2.

Hence there exists̃q ∈L \ π−1(p) with 0< Ind(f̃ , q̃) = Ind(f, π(q̃)), andπ(q̃)
is in the Nielsen class ofp. This completes the proof of Theorem 1.5.

Periodic Orbits in a Homoclinic Cell

The following theorem can be used to demonstrate the existence of infinitely many
periodic orbits in situtations where the horseshoe theorem may not apply.

Theorem 1.7. Let r ∈ N be such that every2k-orbit (0 ≤ k ≤ r) in the homo-
clinic cell V is hyperbolic. Then, either:

(a) V contains an attracting or repelling2k-orbit for somek ∈ {0, . . . , r}; or else
(b) V contains a twisted saddle orbit of cardinality2k for everyk = 0, . . . , r.

Proof. Suppose (a) does not hold. Fixn = 2k (0 ≤ k ≤ r)and letB ⊂ Fix
(
f n
∣∣
Vn

)
be a block having indexρ ∈ {1,2} (Theorem 1.2). Then someq ∈ B has index
1 for f n. Since (a) is ruled out,q is not a source or sink forf n. The only other
possibility for a hyperbolic, index-1 fixed point forf n is a twisted saddle. This
implies thatn is the minimal period forq; thus, (b) holds.

Corollary 1.8. Assume that every periodic orbit inV whose cardinality is a
power of 2 is a saddle. ThenV contains a twisted saddle orbit of cardinality2k

for everyk ∈N.

Corollary 1.9. If f isC1 and if 0< Detdfx < 1 in a dense subset ofV and if
all periodic points inV are hyperbolic, thenV contains either a periodic attractor
or an orbit of cardinality2k for everyk ∈N.

It is interesting to compare these results to a theorem of Franks [10]. Specialized
to an orientation-preserving diffeomorphism of the 2-sphere, it states:

If all periodic points are hyperbolic, and if at most one orbit whose car-
dinality is a power of2 is repelling or attracting, then there are infinitely
many periodic orbits.
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Corollary 1.8 makes no assumptions on orbits outside the homoclinic cellV, but
it does not allow any attractors or repellors of cardinality 2k in V. It gives sharper
information than the conclusion of Franks’s theorem on the periods and locations
of periodic orbits.

It is not trivial to construct diffeomorphisms of the disk or sphere, all of whose
periodic orbits are saddles. However, examples are known that even have the
Kupka–Smale property: stable and unstable curves of periodic points have only
transverse intersections (Bowen and Franks [3]; Franks and Young [11]). Gam-
baudo and colleagues [12] have constructed real analytic Kupka–Smale examples
on the disk.

Lefschetz Numbers

Let #Q denote the cardinality of a setQ.
Suppose that the surfaceX is a compact surface and thath : X→ X is continu-

ous. TheLefschetz numberLef(h), defined as the alternating sum of the traces of
the induced endomorphisms of the singular homology groupsHi(X), i = 0,1,2,
is equal to Ind(h,X). Lefschetz proved that, when the fixed point set is finite,
Lef(h) is the sum of the fixed point indices. When every fixed point has index+1,
−1, or 0, this gives the useful estimate

#(Fix(f )) ≥ |Lef(h)|.
The following results show that, when fixed points are simple, homoclinic cells
entail the existence of more fixed points than are counted by the Lefschetz number.

Theorem 1.10. AssumeX is a compact surface,Fix(f ) is finite, and every fixed
point has index+1, −1, or 0. If f admits a homoclinic cell, then

#(Fix(f )) ≥ |Lef(f )+ 1− ρ| + 1+ ρ ≥ |Lef(f )| + 2.

Proof. For any open setA ⊂ X, summing indices over fixed pointsz∈A yields

|Ind(f,A)| =
∣∣∣∣∑
z

Ind(f, z)

∣∣∣∣ ≤∑
z

|Ind(f, z)|

≤ #(Fix(f ) ∩ A).
Applying this to a homoclinic cellV, from Theorem 1.2 we have

#(Fix(f ) ∩ V̄ ) = 1+ #(Fix(f ) ∩V ) ≥ 1+ |Ind(f, V )|
= 1+ ρ,

because Ind(f, V ) = ρ. Also,

#(Fix(f ) ∩ (X \ V̄ )) ≥ |Ind(f,X \ V̄ )|
= |Ind(f,X)− (Ind(f, p)+ Ind(f, V ))|
= |Lef(f )+1− ρ|,
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because Ind(f, p) = −1. Therefore,

#(Fix(f )) = #(Fix(f ) ∩ V̄ )+ #(Fix(f ) ∩ (X \ V̄ ))
≥ (1+ ρ)+ |Lef(f )+1− ρ|
≥ |Lef(f )| + 2.

Corollary 1.11. AssumeX is a compact surface,Fix(f ) is finite, and every
fixed point has index+1, −1, or 0. If #(Fix(f )) ≤ |Lef(f )| + 1, then there are
no homoclinic cells.

2. Fixed Point Indices and Retractions

This section contains the proofs of Theorems 1.2 and 1.5. Hypothesis 1.1 contin-
ues to hold. LetD ⊂ X denote the closure of the homoclinic cellV. ThenD is a
compact 2-cell whose boundary is the simple homoclinic loop3.

A retractionof a spaceY onto a subsetY0 ⊂ Y is a mapY → Y0 fixing every
point inY0.

Lemma 2.1. Assume we are givenn ∈ N+ and a mapg : D → D with the fol-
lowing properties:

(i) g coincides withf n on a neighborhood ofp in D; and
(ii) Fix (g) = K ∪ {p}, whereK ⊂ V is compact.

ThenInd(g,K) = ρ(V ).
Proof. Fix a coordinate chart in whichp is the origin andf n is represented by a
linear map

T(x, y) = (λx, µy), 0< λ < 1< µ.

We identify points nearp with their images inR2 under this chart.
Consider the case thatV is a positive homoclinic cell(ρ = 1). Then there is a

compact disk neighborhoodN ⊂ R2 centered at the origin and meetingD in only
one of the four closed quadrants; to fix ideas, we assume it is the first quadrantQI .

We takeN so small thatg coincides withT in N ∩D, N ∩K = ∅, andN ∪D is
a 2-cell.

Choose a retractions : N → N ∩ QI . We compute the fixed point index
Ind(T B s, N ). Let ε > 0 be so small that the diskDε of radiusε lies in N.
LetS1

ε denote the circle boundingDε. SinceT B s has the unique fixed point 0, the
index equals the degree of the map

u : S1
ε → S1, z 7→ z− T B s(z)

‖z− T B s(z)‖ .
The retractions sends any pointz ∈ N \QI to the unique points(z) ∈ ∂QI such
thatz ands(z) are the endpoints of line segment having slope 1; ands is the iden-
tity on N ∩ QI . A simple computation shows thatu takes no values in the first
quadrant of the unit circle and thus has degree 0. Thus Ind(T B s, N ) = 0.
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Now consider the maph : N ∪D→ D ⊂ N ∪D defined to beT B s in N and
g in D; this definition is consistent becauses is a retraction andg coincides with
T in N ∩D. Clearly

Fix(h) = {p} ∪K ⊂ Int(N ∪D).
Therefore,

Lef(h) = Ind(h, Int(N ∪D)) = Ind(h, p)+ Ind(h,K).

The Lefschetz number is 1 becauseN ∪D is a compact 2-cell, and

Ind(h, Int(N ∪D)) = Ind(T B s, N ) = 0.

Hence
1= Ind(h,K) = Ind(g,K)

as required.
WhenV is a negative homoclinic cell, we can assume thatN ∩D excludesthe

interior of the first quadrant. The retractions : N → N \ IntQI is defined by send-
ing z ∈N ∩QI to the unique point of∂QI such thatz andr(z) are the endpoints
of line segment having slope 1;r is the identity onN \QI . The degree ofu in this
case is−1. Defineh as before. An argument similar to the preceding shows that

1= Ind(h,K) = Ind(h, {p})+ Ind(h,K) = −1+ Ind(g,K).

Let Ju ⊂ Wu(p) andJs ⊂ Ws(p) denote the two compact arcs whose union is3;
these arcs meet at their common endpoints, which arep and the homoclinic point
p ′ 6= p, but nowhere else.

Our next goal is the following.

Proposition 2.2. There is a retraction

r : f(D) ∪D→ D

such that
r(f(D) \D) ⊂ Js. (1)

Proof. We first prove

Ju ∩ clos(f(D) \D) = {p, p ′ } (2)

or, equivalently,
Ju ∩ clos(f(V ) \D) = {p, p ′ }.

Suppose (2) is false, so that there exists

b ∈ Ju \ {p, p ′ } ∩ clos(f(V ) \D).
Thenb = lim i→∞ f(ai) for some sequenceai ∈V \f −1D, andb = f(a) by con-
tinuity. We claim thatf maps a relatively open neighborhoodNa ⊂ D of a onto
a relatively open neighborhoodf(Na) ⊂ f(D) of f(a). This is becausef maps
the interior ofD onto the interior off(D). The assumption thatp is a direct sad-
dle implies thatf preserves orientation, andf −1

∣∣
Ju

preserves orientation inJu.
From this it follows thatNa andf(Na) abutJu from the same side. Consequently,
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f(Na) contains a relatively open neighborhoodNb ⊂ D of b. For sufficiently
largei we haveai ∈ f −1Nb, and thusai ∈ f −1D; this contradiction completes the
proof of (2).

From equation (2) we see that

clos(f(D) \D) ∩D ⊂ Js. (3)

Note also that
f(D) ∪D = clos(f(D) \D) ∪D,

clos(f(D) \D) ∩D = clos(f(D) \D) ∩ ∂D ⊂ Js.
By Tietze’s extension theorem, there is a retraction

r0 : clos(f(D) \D) ∪ Js → Js;
r0 agrees with the identity map ofD on the intersection of their domains, which
by (3) isJs. Thusr0 and the identity map ofD fit together to give the desired re-
tractionr.

From now on,r : f(D) ∪D→ D denotes a retraction as in Proposition 2.2.

Lemma 2.3. Let n ∈ N. For everyq ∈ Fix(f n) ∩ Vn, there is a neighborhood
U ⊂ Vn of q such thatf n

∣∣
U
= (r B f )n∣∣

U
.

Proof. The definition ofVn implies thatf j(q)∈Vn ⊂ V for all j ∈N. Therefore,
q has a neighborhoodU such thatf i(U) ⊂ Vn for i = 0, . . . , n. Assume induc-
tively that 0≤ i < n andf i

∣∣
U
= (r B f )i∣∣

U
; the casei = 0 is trivial. Forx ∈U

we have(r Bf )i(x) = f i(x), and bothf i(x) andf i+1(x) are inV becausex ∈Vn.
Hence

(r B f )i+1(x) = (r B f )(f i(x)) = r(f i+1(x)) = f i+1(x),

becauser andf coincide onV. This completes the induction.

Lemma 2.4. Fix
((
r B f ∣∣

D

)n) = {p} ∪ (Fix(f n) ∩Vn) for all n ≥ 1.

Proof. Let x ∈D \{p} ben-periodic forr Bf. We first showx /∈ Js. We know that
Js is invariant underf, andr

∣∣
Js

is the identity becauseJs ⊂ D. Thusr B f ∣∣
Js

co-
incides withf

∣∣
Js
, whose only periodic point isp. The foregoing implies that no

point on the orbitx underr B f lies inJs. Thus no pointy in this orbit maps out-
sideD underf, for otherwise(r Bf )(y)∈ Js by equation (1). This provesγ (x) ⊂
D, and by induction we know that(r B f )kx = f kx for all k. SinceJu \ p con-
tains no periodic points forf, the conclusion follows.

Proof of Theorem 1.2

The setB = Fix(f n) ∩Vn is open in Fix(f n) becauseVn is open. We prove that
B is compact by showing it is closed inD. SinceB̄ ∩ ∂D ⊂ {p}, it suffices to
prove thatp is not a limit point ofB. Clearlyp /∈B, andp (being a saddle) has a
neighborhood in which the only point of periodn is p. ThereforeB is a block.
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To prove Ind(f n, B) = ρ, let r : f(D)∪D→ D be a retraction as in Proposi-
tion 2.2. Lemmas 2.4 and 2.3 show that Ind(f n, B) = Ind

((
r B f ∣∣

V

)n
, B
)
. Now

apply Lemma 2.1 tog = (r Bf ∣∣
D

)n
to conclude that Ind

((
r Bf ∣∣

V

)n
, B
) = ρ.
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