Classification Theorem for a Class of
Flat Connections and Representations
of Kéhler Groups
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1. Introduction

11

Let M be a compact Kéhler manifold. For a matrix Lie groGp the represen-
tation variety M of the fundamental group1(M) is defined as the quotient
Hom(ry(M), G)//G. HereG acts on the set Holir1(M), G) by pointwise con-
jugation: (gf)(s) = gf(s)g”% s € m(M). A study of geometric properties

of Mg is of interest because of the relation to the problem of classifying Kéhler
groups (aproblem posed by J.-P. Serre inthe 1950s). For a simply connected nilpo-
tent Lie groupG, every element of\ is uniquely determined by @& harmonic
nilpotent matrix 1-formw on M such that A w represents 0 in the corresponding

de Rham cohomology group. This follows, for example, from a theorem on for-
mality of a compact Kahler manifold [DGMS]. The main result of our paper gives,

in particular, a similar description for elements.bf; with a simply connected
solvable Lie groups. Our arguments are straightforward and based on cohomol-
ogy techniques only. As a consequence of the main theorem we obtain several
results on the structure of Kéhler groups. We now proceed to a formulation of the
results.

It is well known thatM g, ) is equivalently characterized as moduli spaces
of flat bundles oveM with structure group GL(C). In this paper we consider a
family of C°-trivial complex flat vector bundles ovéf. Every bundle from this
family is determined by a flat connection on the trivial buntle< C”, that is, by
a matrix-valued 1-fornm on M satisfying

do—w Ao =0. (12)

Moreover, we assume that tki@, 1)-componentv, of w is an upper triangular
matrix form. Denote this class of connections.y.

ReMArk 1.1. Connections fromA’ determine (by iterated path integration) all
representations af;(M) into simply connected complex solvable Lie groups.
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(Here, according to Lie’s theorem, we think of every such group as a subgroup of
a complex Lie group of upper triangular matrices.)

Let 7,,(C) denote the complex Lie group of upper triangular matrices in(@Gl.
Then the grou > (M, T,,(C)) acts byd-gauge transforms on the st :

de(@) = g lag — g7%dg, g€ C™(M, T,(C)), acA. (1.2)

Denote the corresponding quotient setdly (We regard3! as the set of-gauge
equivalent classes of connections froff).) In this paper we study the structure
of B!. Also, our result gives a characterization of the subseVtf, , ) consist-
ing of conjugate classes of representations determined by eleme#is of

LetU/§ be a class of flat vector bundles overof complex rank: whose ele-
ments are direct sums of topologically trivial flat vector bundles of complex rank 1
with unitary structure group. Note that eveEye U/} can be represented by a
unitary diagonal cocycléc;;}; jer defined on an open coverifg; }ic;. All defi-
nitions formulated herein depend not on the choice of such a cocycle but only on
its cohomology class.

A family {n;};c; of matrix-valuedp-forms satisfying

nj =c;mic; onU;NY; (1.3)

is, by definition, ap-form with values in the bundle Ernd’). We say that such a
form is nilpotentif every n; takes its values in the Lie algebra of the Lie group
of upper triangular unipotent matrices. Since ERdl € U, there exists a nat-
ural flat Hermitian metric on End:). As usual, one can use the metric to con-
struct ad-Laplacian on the space of EG#)-valued forms. In what follows,
harmonic forms are determined by this Laplacian. DenotHbyEnd(E)) the
finite-dimensional complex vector space of EARJ-valued harmonic 1-forms,
and denote by ?(End(E)) the de Rham cohomology group of Hiig)-valued
d-closed 2-forms. Further, consider the Bg(End(E)) C Hb(End(E)) of har-
monic formsn that satisfy the following conditions:

(i) the (0, 1)-component, of n is nilpotent;

(i) n A nrepresents 0 il ?(End(E)).

Observe thakl {(End(E)) is a complex affine subvariety bf}l(End(E)) defined

by homogeneous quadratic equations.

Let Aut}(E) be the group of triangular flat automorphismsmfElements of
Aut}(E) are, by definition, locally constant sections of EAJ satisfying (1.3)
with n; € T,(C) (i € I). Clearly, Auff(E) is a complex solvable Lie group. It
acts by conjugation on the space of EAJ-valued forms and commutes with the
Laplacian. In particular, it acts dAg(End(E)). Consider the quotient sét: :=
Ho(End(E))/Aut’.(E), and denote bys" the disjoint unior1_|Ee% S;. (Note
that, according to Green—Lazarsfeld theorem [GL], if the dimension of the image
of the Albanese mapping af > 2 then the sef ;. with the genericE consists of
a single point.)

THEOREM 1.2. Thereis aone-to-one correspondence between thi$arsdS”.
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Using Theorem 1.2 for the case of flat connections corresponding to unipotent rep-
resentations of1(M), one can give alternative proofs of some results due for ex-
ample to Campana (for references see [ABQ) and Benson and Gordon [BG].

In the following section we describe the 1-1 correspondence in more detail.

1.2

We now formulate several geometrical applications of Theorem 1.2. They describe
some properties of the s84(M) of representations of;(M) into GL,(C) gen-
erated by connections frod’,.

Let 7 denote the Lie group of upper triangularx22 matrices with unitary
elements on the diagonal. Further, denoteSkyM ) a class of homomorphisms
p: m(M) — T} whose diagonal elemengs; satisfy p;; = exp(5;;) for some
pi € Hom(zi(M), C), i =1, 2. (For example, ifH?(M, Z) is torsion-free then
each element of Hoiw1(M), T5') belongs taS5 (M).) Inwhat follows, f : M1 —
M is a complex surjective mapping of compact Kéhler manifolds@hd;” de-
note the first and second (resp.) commutant groups of a gsoup

THEOREM 1.3. Assume that for any € S5 (M) there is ar’ € S5 (M) such that
T = t’ o f,. Then, for anyp € S,(M,), there existeo’ € S,(M3) such thatp =

p'o fi

REMARK 1.4. A result similar to Theorem 1.3 is also valid in the case of repre-
sentations generated by connections frdfmwith nilpotent(0, 1)-components.

In this case it suffices to assume thfanduces an isomorphism éf;(M,, R) and
Hi(M,, R); see [Br]. This assumption holds, for example fifis a smoothing

of the Albanese map,, of a compact Kéhler manifold/ (hereM; and M, are
desingularizations o#f anda, (M) C Alb(M), respectively). Then the analog
of Theorem 1.3 implies the following (see e.g. [ABCKT, Prop. 3.33]).

THEOREM (Campana). The mappingf induces an isomorphism of the de Rham
fundamental groups a¥/; and M.

Let us now introduce the clas$s of compact Kahler manifoldgs for which
Unzl S,(M) separates the elementsmfiM).

THEOREM 1.5. Assume thadM; € S and f induces an isomorphism of;(M7)/
m1(M1)” and (M) /m1(M3)”. Then f, imbedsri(M;) as a subgroup of finite
index inmy(M>).

In a forthcoming paper we will demonstrate the following application of Theo-
rem1.2.

THEOREM. Assume thaM € S satisfies

(i) m2(M)=0and
(i) dimc M > 3 rank(ry (M) /i (M)").
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Then

(@) dimg M = rank(ry(M)/m(M)") and

(b) m(M) isisomorphic to a lattice in a Lie grou@ that is a semidirect product
of C" and R? determined by a unitary representati®3* — U,,(C).

Here2m + 2k = rank(mry(M)/my(M)") and2m = rank(zy(M) /71 (M)').

This gives, in particular, a classification of compact solvmanifolds admitting a
Kéhler structure.

At the end of the paper we will show that the results just formulated hold also
for the class of manifolds dominated by a compact K&hler manifold.

2. Theorem 1.2: Main Steps toward the Proof

21

The proof of Theorem 1.2 follows from the results formulated in this section. In
order to formulate the first of them, recall that any flat connecti@m a topologi-
cally trivial complex vector bundl@/ x C" (over a compact Kahler manifoldf )
determines a system of ODEs

df = wf, fe€C™(M,GL,(C)), (2.1)

with  satisfying(1.1) (the condition of local solvability). Conversely, for a family
{fi}ier Oflocal solutions of (2.1) defined on an open covefitig, <, , the flat struc-
ture onM x C" is determined by the locally constant cocyflg = f;fj}i jes-
Furthermore, we can rewrite (2.1) in the equivalent form

wherew; and w; are a(l, 0)-form and a(0, 1)-form (respectively) andv =

w1+ wz. As follows from (1.1), thesystem (2.2)—(2.3) is locally solvable. Note
that the local solvability of each of these equations separately is equivalent to the
fulfillment of one of the corresponding conditions:

w1 — w1 Awp =0, (2.4)
50)2—0)2/\602 =0. (2.5)
Ouir first result is related to the following.

Complement ProblenGivenw, satisfying (2.5), findv; for which the
system (2.2)—(2.3) is locally solvable.

THEOREM 2.1. Suppose thab, is a triangular (0, 1) -form satisfying2.5). Then
there exists a triangularl, 0)-form w1 such thatw = w1 + w, € A'; that is,w
satisfieq1.1). In addition, there exists &,(C)-valuedd-gauge transform sending
o to a triangular1-formn = n1 + n, such that
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diag(n2) = —71.
Herediag(¢) is the diagonal ofg, and ¢ denotes the complex conjugatedf

2.2

Let E be a flat vector bundle oved of complex rank: represented via a locally
constant cocycléc;; };, j<; defined on an open coveril; };c;. Denote by EndE)

the vector bundle of linear endomorphismskf According to (1.3), the opera-
torsd and A are well-defined on the set of matrix-valued 1-forms with values in
End(E). In particular, it makes sense to consider 1-forms satisfying an equation
similar to(1.1). Letk be a linearC *°-automorphism of determined by a family
{hi}ier, hi € C*(U;, GL,(C)), satisfying

hj = Ci;l]’l,‘C,‘j onU; N Uj

Then ad-gauge transformatios’ defined on the set of matrix-valued 1-foreas
with values in EndE) is given by a formula similar to (1.2),

dF (@) = h*ah — hdh.

Clearly, df preserves the class of 1-forms satisfying an @&ndvalued equa-
tion (L.1). Let nowE € U} andh belong to Auf (E), the group of triangular
C>-automorphisms of. Thend? preserves also the class of B -valued 1-
forms with nilpotent(0, 1)-components. Sincg is a direct sum of topologically
trivial vector bundles/ x C, the group Aut, (E) is isomorphic taC* (M, T,(C)).
In what follows we identify these two groups.

We now proceed to describe the correspondence map from Theorem 1.2. De-
note by &, the class of connections frotd’, such that the diagonals of their
(0, 1)-components are equal i

PrOPOSITION 2.2.  (1)For everyd-closed(0, 1)-form ¢ there is an invertible di-
agonal matrix-valued function,, such thatd,,(£y) = &y wherev is the har-
monic component in the Hodge decompositionyof

(2) For every diagonal harmoni¢0, 1)-form ¢ there exist a vector bundIg,,
overM and an injective mapping, of £, to the set ofEnd(E)-valuedl-forms
such that
(a) Ey eUy;
(b) Ty ody =d}v oty foreveryg e C*(M, T,(C)); and
(c) =y (Ey) consists of forms with nilpoteri0, 1)-components satisfyin@.1).

The proof of the proposition (in Section 5) will also show that every element of
Uy coincides with some,, .

According to Proposition 2.2, the moduli spaggof flat connections frond’,
is isomorphic to a similar moduli space of forms frag(&y ).

ProposITION 2.3. For everyn € t,(£y), there is a transforming with g €
Aut’_(Ey) such that
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dyr(n) =+ 72,
wheredn; = 0 and 7, is ad-closed nilpotent antiholomorphic form.

This result implies thaf; can be decomposed into the sam- 9k, wherea is

its harmonic component in the Hodge decomposition. Observe)thatda be-
long to the space{}I(End(Ew)) of d-harmonic forms described in Section 1.1
(see also Proposition 3.7). Moreover, condit{ari) together with theé)d-lemma
(see Lemma 3.8) implies that [+ 772, o + 7j2] represents 0 in the de Rham co-
homology groupH?(M, End(E,)). The converse of the latter statement is also
true. Namely, letr be an EndE ) -valuedd-harmonic(l, 0)-form and letd be a
d-harmonic nilpotent EngE ) -valued(0, 1)-form.

PROPOSITION 2.4. Let [@ + 6, + 6] represent zero inH?(M, End(Ey)).
Then there exists a uniquep to a flat additive summandectioni such that
(o + 0h) + 6 satisfieq1.1).

Finally, to complete Theorem 1.2 we must prove the following uniqueness result.

ProposITION 2.5. Letey, f1 and ey, B2 beEnd(Ey)-valued (1, 0)- and (O, 1)-
forms, respectively. Suppose that

(a) o1+ az and By + B2 belong tory (£,) and ared-gauge equivalent, and that
(b) a», B, ared-closed nilpotent forms.

Then thel-gauge equivalence is defined by a flat automorphisiyof

In other wordsjj; + 772 in Proposition 2.3 is unique up to conjugation by flat au-
tomorphisms. We now summarize the foregoing results.

The spaceB3) is isomorphic to the disjoint union of moduli spacég/
C>(M, T,(C)) with diagonal harmoni¢0, 1)-forms+. Further, the mapping,
defines an isomorphism betwegg/C > (M, T,,(C)) andzy, (£,)/Aut, (Ey). The
latter, in turn, is isomorphicthw = Hg(End(E\,,))/Aut}(Ew). This completes
the description of the correspondence of Theorem 1.2.

REMARK 2.6. It was proved by Goldman and Millson [GM] and independently
by Simpson [S] that the representation varieties of Kahler groups have at worst
guadratic singularities at reductive representations. Theorem 1.2 shows that this
“guadratic law” is also of global nature if we restrict ourselves to some naturally
determined subsets d#( g, c)-

3. Auxiliary Results

31

Let D be one of the operatots 9, or 3. If g c gl,(C) is the Lie algebra of a Lie
groupG c GL,(C) then we denote byl 5 (g) the space of locally integrable-
connections in the principle bundM x G over M defined by
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Df = of, feC®M,G) (3.1)

with a g-valued differential formw. The condition of integrabilty of a connec-
tion is
Dw—wAw=0.

Let Bp(g) denote the moduli space dfp (g), that is, the set obD-gauge equiv-
alent classes of connections frofp (g). Further, we introduce the cla3s (G)
of isomorphicG-topologically trivial vector bundles wit-trivial cocycles{c;;}
(this means that the principl@-bundle constructed by this cocycle is topologi-
cally trivial and D¢;; = 0 for allZ, j). In particular,{c;;} is holomorphic forD =
d, locally constant foiD = d, and antiholomorphic fop = 9.

Then there is a bijection

ip: Bp(g) = Vp(G)

defined in the following way (see e.g. [O, Sec. 5, 6] for details). {L&};.; be
an open covering a# and letf; € C*(U;, G) be a solution of (3.1) o;. If we
sete;; = f,7Uf;, then{c;;} is a D-trivial cocycle and so determines an element of
Vp(G). The construction is independent of the choice of the element of an equiv-
alence class iy (g) and thus it correctly defines the required mappingFor
anw € Ap(g) we let [w] € Bp(g) denote itsD-gauge equivalence class.

Because each locally constant cocycle is holomorphic and antiholomorphic si-
multaneously, the identity mapping induces natural mappings

h:Vi(G) = V;(G) and h: Vi(G) — Vy(G). (3.2)

Namely, ifE is the sheaf of locally constant sections of a vector busdie),; (G)
then vector bundleg(E) and i (E) are determined by sheavEs®c Oy, and
E @c Oy, respectively.

It is worth noting that the moduli space of isomorphic vector bundles with lo-
cally constantG-cocycles (flat bundles) is isomorphic to the quotigvtt; =
Hom(r1(M), G)/G of the space of representationsmf M) in G, by the action
of G given by conjugation (see e.g. [KN, Chap. 2, Sec. 9]).

ProposITION 3.1.  Letws € A;5(gl,(C)). Thenthe following statements are equiv-
alent

(i) there exists @l ,(C)-valued(l, 0)-form w; such thatw = w1 + w, belongs
to Ad(gln((c))»
(i) there exists an elemete V,;(GL,(C)) such that

h(E) = i5([@2]).

Proof. LetTIg1: EXM) ® gl,.(C) — £%1(M) ® gl,,(C) be the projection from

the space of matrix-valued 1-forms definedMronto the space ab, 1)-forms in-

duced by the type decomposition. Cleaflls s mapsA,(gl,.(C)) in A;5(gl,(C))

and commutes with the actions of the corresponding gauge groups. Denote by
Mo1: Ba(gl,(C)) — B;(gl,(C)) the mapping induced bylg;. Then the re-
quired statement follows from the commutativity of the diagram
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Ba(glh(C) —25 Bj(gl,(C))

idl l,-é (3.3)

Va(GLL(C)) — V;3(GL,(C)). m

3.2

Hereafter we denote by the category of vector bundles equipped with one of the

following structures:C*°, holomorphic, antiholomorphic, or flat. £ € V then

E denotes the sheaf of its local sections determining the structute of
LetnowE, E;, E, belong toV.

DerFINITION 3.2. The elemenE is said to be amxtensiorof E;, by E; if the
sequence
0O— E, — E — E, — 0 (3.4)

is exact. Extensiong of E, by E; andF of F, by F; areisomorphidn V if there
exists a commutative diagram

O— Ef —FE — E, — 0

jll Jl jzl (3.5)

0O— Fph, — F — F, — 0,

wherejy, j, j» are isomorphisms of the correspondivighundles. In the case of
j1=id andj, = id, these extensions are calledquivalent.

Let E be an extension af, by E;. Then (3.4) induces the exact sequence
0 — Hom(E,, E;) — Hom(E,, E) — HOm(E,, E;) — O

(here all bundles have thevsame structurEgandE ;). This sequence, inturn, in-
duces the exact sequence&afch cohomology groups of the corresponding sheaves

0 — HOYM,Hom(E,, E1)) — HOM,Hom(E,, E)) —>

HOM, Hom(E, E2)) ——> HYM, Hom(Ep, Ep)) —> ---
Let I € Ho%(M, Hom(E, E»)) be the identity section. Then it is well known that
8(I) uniguely determines the class of extension&eby E; equivalent toE.

ProrosiTioN 3.3 [A, Prop. 2]. The equivalence classes of extensiong pby
E; are in one-to-one correspondence with the elemenis'oM, Hom(E,, Ey)),
and the trivial extension corresponds to the trivial element.

REmARK 3.4. It follows directly from Definition 3.2 that i£; € Vp(GLy, (C))
(i =1 2) thenE € Vp(G), where the structure grou@ consists of elements of

the form
Al *k
0 A

with A; € GL, (C), i =1, 2.
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LetnowE andF be isomorphic extensions é%, by E; andF, by Fi, respectively.
Letk; be the rank of£; (i = 1, 2), and letG be the Lie group from Remark 3.4.
Consider principle bundleB; and F; with the structure grou corresponding
to E andF. Then our next proposition follows immediately from the definitions.

ProrosiTION 3.5. Any isomorphism : E — F determined by3.5)induces an
isomorphismjs of G-bundlesEs and F. Moreover, restriction ofj; to a fibre
is determined as left multiplication by an elementof

Consider now an extensiofi of E, by E; in the category of flat bundles. (So
structure grou of E is now defined as in Remark 3.4.) In this case, the natural
mappings:: V,(G) — V;(G) andh: V;(G) — V;(G)—see (3.2)—determine
extensiong:(E) of h(Ey) by h(E1) andh(E) of h(E») by h(E1). According to
Proposition 3.3 and the Dolbeault theorem, the former extension is defined by an
element of the group/ (M, Hom(E» ®c Oy, E1 ®c Oy)), and each element of

this group is given by a-closed(0, 1)-form with values in HonE,, E1). The

latter extension is defined in the same way irelosed(1, 0)-form with values

in Hom(E», Eq).

The elements of the cohomology groups that appeared here can be described as
follows. Letn € HY(M, Hom(E,, E;)) be an element defining the extensiBn
LetI1 1 andIly o be the natural projections from the space of 1-forms onto spaces
of (0,1)- and (1, 0)-forms, respectively. By the same symbols we denote map-
pings of the corresponding cohomology groups inducetlipy andIl; o. Hence

o1(n) € HY(M, HOM(E2 ®¢c Oy, E1 @c Oy)),
Iy 0(n) € HY(M, Hom(E; ®¢ Oy, E1 ®c Oy)).

ProposITION 3.6. The classes of extensions equivalent (@) and 2 (E) are
uniquely defined byl 1(n) and 11, o(n), respectively.

Proof. In the case ofi(E), the result follows directly from de Rham'’s and Dol-
beault’s theorems applied to the second column of the commutative diagram

HO(M, Hom(E 2, E»)) LN HYM, Hom(E, E1))

HO(M, HOM(E» ®¢ Oy, E2 ®¢ Oy)) ——s HYM, HOm(E» ®c Oy, E1 ®c Op)).
The case ofi(E) is similar. O

3.3

In this section we collect several facts on the cl&i#sof bundles with connected
solvable complex Lie groups as structure groups.
(@) The classSB is closed under tensor products and duality; thattis,and
E ® D belong toSB together withE and D.
(b) Every elemeni € SB can be thought of as a vector bundle with structure
group7,(C) (for somen).
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Actually, according to the Lie theorem, for any connected solvable subgsoup
of GL,(C) there exists a matri8 € GL,(C) such thatB~*GB is imbedded as a
subgroup in the grouf,(C). Moreover, letE have one of the structures: holo-
morphic, antiholomorphic, or flat. Then the foregoing transform generates an iso-
morphism ofE preserving this structure.
(c) EveryE € SBis the result of successive extensions of bundles with triangular
structure groups by means of rank-1 vector bundles.
Indeed, for the action df;,(C) on C”" there exists a 1-dimensional invariant sub-
space such thdt,_;(C) acts on the factor space. TherefaFayith structure group
T,(C) is an extension of the bundlg,_; by the bundleE;; hereE; has structure
groupT;(C) (i =1lorn —1).
Let
{O)=FEoCcEiCE,C---CE, 1CE,=E
and
O)=FpcFiCF,Cc---CF,1.CF,=F
be isomorphic flags of bundles with triangular structure groups. According to
Proposition 3.5, this isomorphism is defined (in corresponding local coordinates
on E andF) by triangular matrices.
Let now

Gr*E = E;/E;_1

i=1
be the associated graded vector bundle with cocycle defined as the diagonal of the
cocycle ofE.

(d) The bundleE is isomorphic to Gt E in the category o” *°-bundles.

By Proposition 3.3, every vector bundieover M with structure groud;,(C) is
defined byE,, E,_1, and an elemertf 1(M, Hom(E,,_1, E1)). Butthe latter group
is trivial in the category o *°-bundles, because Hqi&,,_1, E;) is a fine sheaf.
As a corollary we have the following statement.
(e) Every bundleE € Vp (T,,(C)) is T,,(C)-isomorphic to the direct sum of topo-
logically trivial vector bundleg/ x C.
(f) The clasq,., Vp(T,(C)) is closed under tensor products and duality.

3.4

In this section we recall some facts of Hodge theory.

Let E be a flat vector bundle with structure grolup(C) over a compact Kéh-
ler manifold M. Then the operator of differentiatiahis well-defined on the set
E(E) of E-valued forms and determines a connectionfboompatible with the
complex structure and the flat Hermitian metricnLet Z"(E) be the space of
d-closedE-valued(p, g)-forms. As usual, one defines the cohomology groups
of E by

HPU(E) := Z]Y(E)/(dEE) N 2 (E)),

HPUE) == {ne&MI(E), A =0}, Hy ={nel(E), Agn =0},
whereA ; denotes the-Laplacian onE.
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Let H"(M, E) denote th&Cech cohomology of the sheBfof locally constant
sections ofE.

ProrosiTioN 3.7 (Hodge Decomposition).

H'(M,E) = EB HP9E) = @ HP4E), HPA(E) = HDP(E*).

ptq=r ptrq=r

The proof follows from Kahler’s identities for the connecti@nSee, for example,
[ABCKT, p. 104], which give the identities between Laplacians

Ay =2Ay = 273,
whereA; andAj ared- andd-Laplacians orE.
These identities and the Dolbeault theorem give also the isomorphisms
H™4(E) = HY'(E) = HU(M, Q}; ®c E),
whereQ}, is the sheaf of germs of holomorphieforms onM.

Arguing as in the proof of the lemma in [GH, Chap. 1, Sec. 2] and applying the
very same identities, we obtain the following.

LEMMA 3.8 (39-Lemma). Let E be a flat bundle with structure grougg, (C).
Suppose thab is a d-closedE-valued(p, ¢q)-form that isd- or 9-exact. Then
there exists ark-valued(p — 1, ¢ — 1)-form « such that

® = 39(k).

3.5

In this section we collect several facts on relations between equations of type (2.1)
and vector bundles Ho(k 1, E>).
We begin with the equation

df = w1f — fwa, (3.6)

wherew, w; satisfy(1.1). Theright side can be written a4 ® w1 — 0, ® 1) f,
where f is now thought of ag?-vector. The mapping; in the following propo-
sition is defined as in Section 3.1.

ProposiTION 3.9. i;(1® w1 — w) ® 1) is a flat vector bundle isomorphic to
Hom(i;(w2), ia(@1)).

Proof. Let{U;};c; be an open covering @f, and letf;; € C*(U;, GL,(C)) be a
solution onU; of equation (2.1) witho = w; (k =1, 2). Then

d((f5) 71 ® fu) = —o5(f3) 7 ® fu + (f2) @ wifu
= (1@ w1 — o, ®D((f3) 71 ® fu).

This means that equation (3.6) is locally solvable and defines a flat vector bundle
with cocycle
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()7 @ fi) ™ ((f3) 7 ® fip)} = {(chi)) " ® cay).

Here{cy;; := f,;lfkj} is a cocycle determining flat vector bundléw;), k =1, 2.
Moreover,{(cgij)*l} is a cocycle determining conjugate vector bun@lgw-))*
(see [GH, Chap. 0]). This implies that1® «; — w5 ® 1) is a flat vector bundle
isomorphic to(iy (w2))* ® (iz(w1)). But the latter is isomorphic to Ho@y (w2),
iq(®1)). U

Let nown be a vector-valuedp, ¢)-form on M satisfying

0 = Moa(®) A7, 3.7)
wherew satisfieg1.1) ando 1 is the natural projection frori'(M ) onto£%X(M).
Let us check thay is ad-closedi, (w)-valued(p, ¢)-form. Clearly,n is a sec-
tion of i;(w) that isC*-isomorphic to the vector bundi® x C” (for somen).
Furthermore, in flat coordinates of(w) determined by flat connectian, the
sectionn is given by the family

i = £ nhier
Here f; is a local solution o/; of equation (2.1) with the formv. From the defi-
nition of f; it follows that
IS ™M) = —(f;  Moa(@) An+ f; {(Moa(@) An) =0.

Thereforey; is 9-closed.

Applying the same arguments in reverse order, one deduces thal-etased
is(w)-valued(p, g)-form given by a family{n, };c,; defines a global form on M,
equal tof;n; on U;, satisfying (3.7). In the same way, we can also examine the
equation

on = My o(w) Ay (3.8)

and prove thay is ad-closedi, (w)-valued(p, g)-form. Herelly o: EX(M) —
£19(M) is the natural projection.
Finally, let us consider the equations

01 = Moy(@1) A+ (=D A Toa(w2), (3.9)

0y = My o(w1) A Y + (=P My ATl o(w2), (3.10)

with matrix ( p, ¢)-formsn andy,. They can be written in equivalent forms as
I = (1® Moa(@1) — Moa(wh) ®D A,
I = (1® My o(w1) — Myo(wy) @D A Y,

wheren andyr are thought of agector (p, ¢)-forms.
Together, the results proved above for such equations yield the following.

ProposiTion 3.10. There exists a one-to-one correspondence between solutions
of equationg3.9) (or (3.10))with w; satisfying condition(1.1) i = 1, 2) and o-
closed(d-closed, respective)y p, ¢)-forms with values itHom(i; (w>), iy (w1)).
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4. Proof of Theorem 2.1

The proof is based on Lemmas 4.1 and 4.2. To formulate the first of these results,
let T denote the subgroup of elemedts 7,,(C) such that all of its diagonal ele-
ments belong td/;(C) := {z; |z] = 1}. One considers a clags, of flat vector
bundlesF with the structure grouff* satisfying

h(F) is isomorphic to Gt a(F) in the category of
antiholomorphic vector bundles with structure gragC). (4.2)

LetUd = ,-,U,. Clearly,i is closed under tensor products and duality.

As explained in Section 3.3(c), any bundfes U/, is a result of successive ex-
tensions of flat bundles; with structure grouff’* by flat bundlesF’ of complex
rank 1 with structure group1(C) (i =1, ..., n), so thatF = F,. From property
(4.1) it follows thath (F)) is the trivial extension of (F;_1) by h(F’). Hence, the
short exact sequence of sheaves of germs of antiholomogpfaems (p > 0)
with values in the corresponding bundles

0 — QP((F)) —2> QP(h(F)) — QP(h(Fi_)) —> 0  (4.2)
is split.

For a flat vector bundl& we IetQ%,(F) denote the space @f-valuedd-closed
antiholomorphic 1-forms. The space defines a subgrejg f)] of HX(M, F).
Here F is the sheaf of locally constant sections #f Further, letIlg:
HYM,F) — HYM, Oy ®c F) be the mapping induced by the projection send-
ing a 1-form to its(0, 1)-component.

LEmMA 4.1. Let F eUd. Then the following statements hold

(@) Mo1: [QL(F)] — HYM, Oy ®c F) is a surjection and
(b) every holomorphid -valuedg-form« is d-closed.

In addition, ifa is 0-exact therw = 0.

Proof. We will prove the lemma by induction on the dimensioof a fibre of F.

(d) In casei = 1, the structure group of?; is Uy(C). Then, according to
the Hodge decomposition (see Section 3.4), there exists an isomorghism
HYM, Oy ®c F1) — [QY(F1)] such thatllo;o f = id.

Assume now that statement (a) holdsfor 1 > 1; we will prove it fori. The
definition of extensions of bundles leads to the following commutative diagram:

HYM, Oy ®c F') —> HYM, Oy @cF) —> HYM,Oy @cFi 1) —> H*M, Oy ®cF')

HOJA HO.J HO.J

HY(M,Fy HYMF) 5 HYM,F) = H2(M, F'y.

By de Rham’'s and Dolbeault’s theorems, each of the elements of these cohomology
groups is represented by &nvalued form. Letr be aF;-valueda-closed(0, 1)-
form representing an element &f'(M, Oy ®c F;) = Héo’l(M, F;). According
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to the above diagram and the inductive hypothesis, there exist$-gsectiong of
F;_1 such that

K(a) +3(g) € QL (Fi_9).

Becausef; is a trivial extension in the category 6f*-bundles, we can find a
C*°-sectiory of F; such thak (1) = g. Thenw := «(« — 9t) is ad-closed 1-form
and thus th&l, 1)-form

o i=d(a — dt) = o — 1)
can be considered as &h-valued one. Sinck(a’) represents 0 imial’l(M, F)=
HY(M, QY (h(F}))), and since the mapping
i HY(M, QYR (F')) — HY (M, Qh(F)))
is an injection (by (4.2)), we can deduce that
[a'] = 0e HY(M, QY(F)).

Hencex' is ad-closedd-exact(1, 1)-form with values in a flat vector bundle with
structure grou/1(C). Then, according to thédo-lemma of Section 3.4, there
exists aC*-sections of F’ such that

99(s) = a'.

We now set
B =a — 3t — d(A(s)).

Theng is ad-closed(0, 1)-form such that
[8] = [«] € HY(M, Oy ®c F)) and dp =0.

Therefore 8 represents an elemeftof [Qé(Fi)] such thatl‘lo,l(B) = [«]. The
proof of part (a) is complete.

(b) We again make use of induction énLet w; be aF;-valued holomorphic
g-form. In case = 1, the Hodge identity for Laplacians (see Section 3.4) acquires
the form

Ag(w1) = 2A5(w1) =0,

and from this it follows thatiw; = 0. In addition, if w; iS 9-exact then itsi-
harmonicity impliesw; = 0.

Assume now that statement (b) holds for 1 > 1, we will prove it fori. By
the induction hypothesis we hawéx (w;)) = 0. But d(x (w;)) = k(dw;) and so
dw; can be regarded asdaclosedF-valued holomorphigg + 1)-form.

Itis clear, as well, that

[do;] = [0w;] € HITYO(M, F') = HTPY(M, Oy @c F').
Now, on account of (4.2), the mapping

A HINM, Oy @c F') — HIY M, Oy @c F))
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is an injection. On the other hand([dw;]) = 0 and hencedw;,] = 0 in
HtY (M, Oy ®c F'). Taking into account the aforementioned identity for La-
placians in the 1-dimensional case, we can deducedthais ad-harmonicFi-
valued form. Since it i9-exact, we havlw; = dw; = 0.

It remains to prove that if; is, in addition, a3-exact form, then it equals 0.
But in this casex(w;) is ad-exactF;_;-valued holomorphic form; consequently,
k (w;) = 0 by the induction hypothesis. Heneg can be regarded aski-valued
holomorphic form. Moreover, according to the equality

HYM, Oy ®c F;) = HU(M, Oy ®c F') & HU(M, Oy ®c Fi_1)

(see (4.2))w; is 0-exact. Thereforay; is a F-valuedd-exact holomorphic form
and thus it equals 0, as we have already shown at the first step of the induciion.

Let us now suppose thab is a triangulax0, 1)-form of the classd;(z,,) (see Sec-
tion 3.1 for the definition of this class). Hergdenotes the Lie algebra @f(C).

LemmMma 4.2. The following conditions are equivalent

(i) for w,, Theorem 2.1 holds
(ii) there exists &*-topologically trivial flat vector bundlg” € ¢/ such that

h(F) = iz(w2) (€ V5(T,(C))).

Proof.
(i) = (ii) According to Theorem 2.1, there exists a formn& A,(¢,) with the
canonical decompositiom = n1 + 1, such that

[w2] = [n2] € B;(t,) and diadny) = —71.

Since diagn) = n1—71is (v/—1-R)"-valued, the formy defines a unique element
of B,(t}). Herer! is the Lie algebra of *, which clearly consists of elememtse
T,(C) with diag(A) € (+/—1- R)". Therefore, the flat bundlg (1) has structure
groupT,” (see Section 3.1).

Now we make use of the identities

h(ia(m) = ig(n) € Va(T(C)),  h(ia(n) = iz(w2) € V53(T,(C))

(see Proposition 3.1 for details). But is a diagonal matrix form, and thus the
first identity implies that: (i, (1)) is isomorphic to Gr i (iy(n)) in the category
of antiholomorphic vector bundles with structure graC). Thereforei, ()
belongs to the clas¥ of flat vector bundles with structure groufg and is
T,,(C)-topologically trivial by the definition of the clasg, (7,,(C)). Moreover,
every T,(C)-topologically trivial vector bundle with structure groufj' is 7,"-
topologically trivial. Bearing in mind the second identity, we deduce now that
i4s(n) can be taken as the bundfeof statement (ii).

(if) = (i) Let F be the vector bundle of statement (ii). According to the results
of Section 3.1, there exists a forfne A ,(z¥) with the canonical decomposition
0 = 61+ 0, such that

ij(0) =F.
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In particular, we have diag;) = —diag(6,). Moreover, as established in the first
part of the proof, the equalities

iy(01) = h(ia(0)) = h(F) = h(Gr* F) = h(iq(diag®))) = iy(diag61))

hold in the clas3’; (T,,(C)). This implies the existence of&agauge transform,
with a triangular matrix functiorg such that

9 (61) = diag(61).
Then, fory := d,(0) we have
ia(f) =iq(0) = F,

and the first componen#; of the canonical decompositioh = 1 + 2 equals
9,(01), (i.e., is a diagonall, 0)-form). Moreover,

iq(diag(y)) = iq(diag®))

in the category of flat vector bundles with the diagonal matrix structure group.
This implies the existence of&gauge transformi, with a diagonal matrix func-
tion i such that

I (diagr2)) = —¥1.
Putting now

n=dy()

we have defined g,-valued 1-form such that digg,) = —71. Son satisfies the
conditions of Theorem 2.1.

It remains to define a triangular form with the second component, in its
canonical decomposition satisfying= d,(w) for someT,(C)-valued function
g. To accomplish this, we note that

i5(02) = h(F) = i5(w2)

and thereforeé,,(ez) = w, for someT,(C)-valued functionp. If we setw =
d,(0), thenw satisfies conditioifl.1) becaus® € A,(¢;). Moreover,d, () =1
whereq = hgp~>~ O

PrOOF OF THEOREM 2.1. Letw; € Aj(t,). According to Lemma 4.2, we must
find aT-topologically trivial flat vector bundlé” € ¢/ such that

h(F) = i3(w2) € V5(T,(C)).

We will prove this by induction on the rank of the holomorphic vector bundle
i5(w2). This bundle is a result of successive extensions of holomorphic vector
bundlesV; € V;(T;(C)) by rank-1 holomorphic vector bundlé& € V5(C*), i =
1,...,n—1(see Section 3.3). In particuldj(w,) is an extension of,_; by V"1,

We begin with the observation that every rank-1 holomorphic vector bundle
V;(C*) is determined by an equatiéff = «f, with a 1-form satisfying the con-
dition dx = 0. Moreover, aj-gauge transforn, in this case has the form

o o—g g, geC®(M,C*).
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Now we are in a position to prove the result for the 1-dimensional casé/ bed
« be as before. Sinc# is a compact Kahler manifold, there exists a functien
C*>(M) such thaty = « — dr is a harmonic form and, in particular,dsclosed.
It is clear thatd, (y) = «, whereg = exp(—r). Let us consider now the locally
solvable equation
df =y —=»)f.
It follows thatd,(y — ¥) = o + k, wheres = —y + g~13g. Hence, we obtain
hia(y —y)) =i5(k) = V.
Buty — y € v/—1- R and thereforé,(y — y) € V;(U1(C)). It remains to set
Fi=is(y —7).

Let us assume that the result holds for rank1, we will prove it forn. Toward
this end, leti;(w,) be an extension of, _; by V=1 According to the induction
hypothesis, there exist bundl&s_, € V,(t%_,) NU and F" e V,;(Ui(C)) such
that

h(Fy1) =V, and h(F"™H = V"
From this it follows that the sheave®,, @c F,_1 and Oy ®c F"~! determine
V,._1 and V"L respectively (see Section 3.1). By Proposition 3.3 there exists
an element of HY(M, Oy ®c Hom(F,_1, F"~1)) that determines/,. Since
the flat bundle HortF,_1, F"~1) is isomorphic to(F,_1)* ® F"~* and thus be-
longs tol/, we can apply Lemma 4.1. By the lemma there exists an elefhent
[QLY(Hom(F,_1, F*~1)] € HY(M, Hom(F,_1, F"~1)) such that

IMp1(B) =6 and Iyo(B) =0.
Moreover, s defines an extensioR, of F,_; by F"~1 by Proposition 3.3. From
these two statements and Proposition 3.6, we conclude that
h(F,) =V, and h(F,) =h(F1) ®h(F".

But F,_1 € U by the induction hypothesis and so the latter direct sum equals
n—1
D rFE" @ h(F) = Grh(F,).
k=1
ThusF;, belongs td/. FurthermoreF; is an extension of the bundlg,_; by the
bundle F"~% and by the induction hypothesis these two bundlesZgre- and
T;'-topologically trivial, respectively. Hencé, is T,*-topologically trivial and so
the proof is complete. O

REMARK 4.3.  Ifin Theorem 2.1the form is nilpotent, then it i$-gauge equiv-
alent to an antiholomorphic nilpotent form.

5. Proof of Theorem 1.2
In order to prove the theorem we must prove propositions of Section 2.

PROOF OF ProOPOSITION 2.2. (1) Lety be a diagonad-closed(0, 1)-form on M.
According to the Hodge decomposition,
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v =¥ +3f, (5.1)

wherev is a diagonal harmonic, 1)-form. Puth, := exp(f). Then we have
dp,(w) € 51/; foranyw e &y.

(2) Lety be a diagonal harmoni@®, 1)-form on a compact Kéhler manifold
M (which, in particular, isi-closed antiholomorphic). Then we determine a flat
vector bundleEy, overM asEy = iz(y — V). As follows from arguments used
in the proof of Theorem 2.1, € Ug; that s, it is a direct sum of rank-1 topo-
logically trivial flat vector bundles with structure grodf(C). Moreover, each
element o/ coincides withiy (y — ) for some diagonal harmoni@, 1)-form
Y. This proves part (a).

Let noww € &y; that is, it has a triangulaO, 1)-componentw, such that
diag(w2) = ¥ and satisfiegl.1). Further, define the mapping, by

Ty (@) =0 — (f — ). (5.2)

The latter form can be thought of as a 1-form with values in the flat vector bun-
dle End E) whose(0, 1)-component is nilpotent. In fact, I€t;};c; be a family
of invertible diagonal matrix functions defined on an open covefliig;c; and
satisfying

dgi= (W —¥)g, i€l

Then, in a flat coordinate system on K@), the formy (w) is given by the
family {6; := g7ty (0)gi}ic1- Clearly, the(0, 1)-component of; is nilpotent and
hencery (w) is, by definition, an En¢E,)-valued form with a nilpotent0, 1)-
component. Simple calculation—based on the identities

do—wAw=0
and . . .
dy —v)=W —-PY)AW —-y¥)=0
and the diagonality of; andy—yields
do; —0; N6; =0, iel.

This proves part (c).

Let h € C®°(WM, T,(C)). Then h determines an element from the group
Autl_(Ey) of triangular automorphisms of, given by the family{n; :=
g7 thgi}ics. Substituting these expressions in the definition ofdrgauge trans-
form dfv and taking into account diagonality ef and, we obtainty, o d; =
dfv o t,. This proves part (b).

To finish the proof of the proposition, observe that the mappindefined on
&y by (5.2) is injective; it has the inverse defined on the set of(Epdl-valued
1-forms with nilpotent(0, 1)-components satisfyin(..1). O

ProOF oF ProposITION 2.3.  In proving the proposition we make use of the rela-
tion between elements 6§, with a diagonal harmoni@®, 1)-form and End E;)-
valued locally solvable equations with nilpot&@t 1)-components (see Proposi-
tion 2.2).
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Letw € &, and lety := 7y, (w) be an EndE,)-valued differential 1-form with
a nilpotent(0, 1)-component satisfying the analog(@fl). Asfollows from The-
orem 2.1 can be reduced by#&gauge transformd, with g € C*°(M, T,,(C)) to
aformw’ € &, with the type decomposition; + ), such thaw), — diagw}) €
Ey. Set now

i1 = 1y (0} + diagwy)) and 7z = 1y (wh — diagw))).

Then clearlyr, (0] + %) = 711+ 72 (type decomposition). According to Propo-
sition 2.2(2)(b),d§W(n) = 1y (') = 71+ 72, whereg is now thought of as an
element of Aul (Ey). It remains to prove thais; = 0 and thatj, is ad-closed
antiholomorphic 1-form.

By definition, the(0, 1)-form 7, satisfies the EncEy)-valued equatiorfl.1).
This implies immediately thaj, is antiholomorphic and (owing to the Hodge de-
composition; see Section 3.4jclosed. Next we prove that is 9-closed. To ac-
complish this we observe that conditidfisl) forformsw; +w’, andw’, — diag(w?)
include, in particular, the following identities:

0y = W) A 0y + 0y A @] — dwh; (5.3)
d(—diagw}))) = (—diagw})) A w) + w) A (—diagwy)) — dwh.  (5.4)

Then, subtracting the second equation from the first we obtain
d(w} + diagw))) = (@) + diagw))) A wh + wh A (@) + diagwy)).  (5.5)

Consider now the flat vector bundlg := iy (w), — diag(w_’z)). From (5.5) it
follows thatw} + diag(w}) is an End F)-valued holomorphic 1-form (see Sec-
tion 3.5). SinceF belongs to the cladg, which is closed with respect to tensor
products and duality, Lemma 4.1(b) implies in this case thiat diag(w)) is a
d-closed EndF)-valued form. But by the definition, Erid) is antiholomorphi-
cally isomorphic to EndGr* F), which in turn coincides with Endt) (see the
proof of Proposition 2.2). This shows tha{ + diag(w5) (regarded now as an
End(E,)-valued 1-form) isd-closed. It remains to note that the latter form coin-
cides withs;. The proof of Proposition 2.3 is complete. O

Let now{#.} and{7,} be the harmonic components in the Hodge decomposition
of End(Ey)-valued f_orm971 andi», respectively. Then the End)-valued con-
dition (1.1) and theé)a-lemma of Section 3.4 yield

[{a:), ()] =0, i=12
[{i1}, {7i2}] represents O irH?(M, End(Ey)).

PrOOF OF ProPOSITION 2.5.  Letes, B1 be End Ey)-valued(l, 0)-forms, and let
a2, B2 be End Ey)-valuedd-closed nilpotent0, 1)-forms. Recall thak,, is a di-
rect sum of rank-1 topologically trivial flat vector bundles with unitary structure
group. Suppose that
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dgE"’(ozl—i-az) = B1+ B2 (5.6)

for someC *°-automorphisnyg of Ey, and thate; + o> and 81 + B> belong to
Tw(gw).

We have to prove thag is flat. According to Propositions 2.2 and 2.3, there
exist triangular0, 1) -forms#; andé, such that:

(i) Ty (61— V) = @z andzy (62 — ) = Ba;
(i) diag®;) = ¢ fori =1, 2; and
(i) 6; —diag®;) e &y fori =1, 2.
If we now identify the group o€ *-automorphisms ofy, with C*°(M, GL,(C))
(as in the case of triangular automorphisms), then—arguing as in the proof of
Proposition 2.2—we obtainy, o d, = dfw o 7. In particular, (5.6) implies

g = 018 — 028.

Butthis is a special case of equation (3.9). Applying Proposition 3.10, we conclude
thatg is a holomorphic section of flat vector bundie= Hom(id (62 —diag(6>)),

iq(01 — diag61))). This vector bundle belongs to the cldgs and therefore

is d-closed by Lemma 4.1(b). Since by definitidhis antiholomorphically iso-
morphic to EndEy), the automorphisng of E, is 9-closed. Applying now the
Hodge decomposition of Section 3.4, we deduce ghiatlocally constant—that

is, flat. O

PROOF OF ProPOSITION 2.4. Leta be a holomorphic Endty,)-valued form and
@ an antiholomorphic nilpotent one, and let the 2-fotnH} 6, o + 6] represent 0
in H2(M, End(E,)). We have to prove that there exists a sectionnique up to
an additive flat summand, such that the equation

df =(@+6+0dh)f

is locally solvable. To accomplish this, we first remark thatlemma of Sec-
tion 3.4 implies that

aAO+O0Aa=[a+06,a+06],

since the form on the right represents OHf (M, End(E,)). Applying the 33-
lemma to the left-hand side and taking into account the holomorphicity ofe
obtain

da —aAO —0 Aa=doP (5.7)

for someC°-section P of End(Ey). Since by assumptiodd — 6 A 6 = O,
arguments similar to those of Proposition 2.2 show that there exists a triangular
(0, 1)-form n defined onM such that) — diag(n7) satisfieq1.1),diag(n) = v, and

7y (n — diag(7)) = 6. Then, in the global’*-coordinates on End,,) (chosen

as in the proof of Proposition 2.2), (5.7) can be written as

da’ —nAa —a' An=0B+diagn) A B+ B Adiaghn)
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(see Section 3.5). Hete:= g *a’g; onU;, 3P := g *Bg; onU;, and{g;}ics is a
family of invertible diagonal matrix functions satisfyialg; = (y — v¥)g; onU;.

Consider now the flat vector bundie:= i, (n — diag(n)) of the clasg/. If we
think of « as an EndF')-valued(l, 0)-form (F is C*-trivial), then the left-hand
side of the previous expression determinesitifferential. But the right-hand
side shows thada is ad-exact EndF)-valued form. The proof of the theorem
will be complete if we find aC*°-section of End(F) such thate + 04 is a
holomorphic EndF)-valued form. Actually, lef f;};c; be a family of triangular
invertible C *°-functions determined on the open cover{idg};c; (the same cov-
ering as for{g; };c; previously) and satisfyindf; = (n — diag(n)) f;, i € I. Then
the holomorphicity otx + 94 is equivalent to the equation

W +y)=@ +y)An+nA@ +y),

wherey = f,-ahffl onU;. The latter equation, in turn, determines the EEg)-
valued equation

a+P)=@+P)AO0+0 A (a+7). (5.8)

Herey = g;'yg; onU;.
Clearly,d(g;*f;) = 0 and therefore

7 =g fihf g

on U;. But {g*fihf, "gi}ic; determines a sectioh of End(E,), soy = dh.
Equation (5.8) is one of the conditions of local solvability containe@.ify. Ob-
serve thatl.1) in ourcase is equivalent to the fulfillment of (5.8) together with the
identity

(a 4+ 0h) A (a + 0h) =0, (5.9)

sinced(« + 9h) = 0 by assumptions of the proposition.

To check this identity, we first note that E(i,) is antiholomorphically iso-
morphic to EndF). This isomorphism is given locally by conjugations by matrix
functionsf,flg,- (i € I') and so it commutes with the operator Therefore, it suf-
fices to prove an identity similar to (5.9) far+ ok. Herea is thought of as an
End(F)-valued section (image of by the previous isomorphism). Furthermore,
sincex A « = 0 we have

(o + dh) A (@ + dh) = d(hor — ath + hdh). (5.10)

This implies that the En@) -valued holomorphic 1-formy + ok is d-exact. Ap-
plying Lemma 4.1(b) to this form, one concludes that the identity (5.9) holds. The
uniqueness part of the proposition follows from the fact that there is a unique (up
to a flat additive summand) secti@ansuch thatx + 9k is End(F)-valued holo-
morphic (see Lemma 4.1(b)).

Thus it remains to find the secti@grsuch thatx + oA is a holomorphic En¢F) -
valued 1-form. We do this by a procedure reducingithdimensional statement
to the(n — 1)-dimensional one; hereis the dimension of a fibre of Erid’).
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We begin with the following remark. Since E(#) € I/ it can be regarded as
an extension of a rank-1 flat vector bundfe with unitary structure group by a
flat vector bundleF,,_; € U. In other words, the following sequence of flat vector
bundles ' '

0 — F,4 —> End(F) 2> F, — 0
is exact. We can analogously represgnt; as an extension of a rank-1 flat vector
bundle with unitary structure group by a flat vector bunlle, € U/, and so on.
In particular,Fy is a vector bundle ovevl with null-dimensional fibre. In the next
part of the proof we let the same lettérs denote the corresponding mappings
induced byi, j on the space of differential forms.

Let us consider now thg;-valuedd-exact(l, 1)-form j(da) = d(j(«)). Since
da = 0, we haveda = do and hence(dw) is ad-exactF;-valued 1-form. The
d3-lemma implies then that

3(j(@)) = 99(g)
for g € C*°(F;). Because En@F) is a trivial extension off; by F,_; in the cat-
egory of C*°-bundles, there exists an Effd)-valued C*°-sectionk; such that
Jk1) = g.
If we put nowa; ;= a — dky, then
dar=0a =0 and 3(j(a1)) = j(da1) = j(da — k1) = O.

It follows from the second identity thatx; can be regarded as &)_;-valued
form. Since EndF) = F, & F,_1 in the class of antiholomorphic vector bundles,
the mapping B _

i: HY(M, QY(F,_1) - HYM, QYEnd(F)))
is an injection. Furthermore, tlieexactness of« implies that

i([0a1]) = 0 HY(M, Q*(End(F)))

and so pa1] = 0 € HY(M, QY(F,_1)). From this it follows thaBa; is an F,_s-
valuedd-exact form. .
Starting with theF;, _;-valued formda; and proceeding in the same way, we can
now find aC *°-sectionk, such that, for
oy = a1 — 0k, = a — dky — 0k,

das is an F,_,-valuedd-exact(, 1)-form. Continuing in this fashion, we obtain
aftern steps the fo[mu,, ‘= a,_1 — dk,_1 such thaba, is an Fy-valuedd-exact
1, 0)-form; that is,0a, = 0. If we now set

h = —i;k[,

thena + 9k equals the holomorphic Erid')-valued 1-formw,,. O

REMark 5.1.  If the forma of Proposition 2.4 is, in addition, triangular, then the
sectionz can also be chosen as triangular.
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In fact, letz, be the Lie algebra of the Lie grouf,(C) of upper triangular
matrices. The vector spaeg is invariant with respect to the linear operators
(ANT® A: M,(C) - M,(C) with A € T,(C). Hence there exists a subbundle
T € U of the bundle EndF) in the proof of Proposition 2.4 with a fibre isomor-
phic toz,. In fact, the latter bundle is defined by a cocycle of the form

(/)™ ® ciji cij € T(C)}
(see Section 3.5). Since the foonisz,-valued and’ e U, it follows thata is aT -
valued(l, 0)-form. We can now apply the arguments of the proof of Theorem 2.4

to « but with T instead of EndF’). In this way, we obtain the required sectibn
but in this case with values ify,(C).

6. Proof of Theorems 1.3 and 1.5

Proor oF THEOREM 1.3. LetV,(M) be a class of flat vector bundles over
whose elements are constructed by homomorphism s ). According to the
assumptions, for ang € V,(M;) there exists ar € Vo(M,) such thatf*F = E.
Moreover, every such bundis, by definition, determined by GE = E1 @ E

and an element off (M1, Hom(E,, E;)). Here E1, E, are topologically trivial
rank-1 flat vector bundles with unitary structure group. Then the conditions of the
theorem imply the following.

STATEMENT. For every topologically trivial rankt flat vector bundleV; over
M, with unitary structure group, there exists a topologically trivial flat vec-
tor bundleV, over M, with unitary structure group such thagt*Vv, = V; and
FH(HY M2, V2)) = H{(My, V1).

Let nowp: m(M;) — GL,(C) be a homomorphism of the claSs(M1). Then,
according to Theorem 1.2, we have thais uniquely defined by the End’)-
valued harmoni¢l, 0)-form & and a harmonic nilpoter(©, 1)-form n satisfying

[a + 1, a + 5] represents 0 itH?(My, End(E")). HereE' is a direct sum of topo-
logically trivial rank-1 flat vector bundles with unitary structure group. Further-
more, from the Statement it follows that there exist a flat vector bufititerer M,

that is isomorphic to a direct sum of topologically trivial rank-1 flat vector bundles
with unitary structure group and an E¢fd')-valued harmonicl, 0)-form o’ and

a harmonic nilpotent0, 1)-form n’ such that

[YENd(F") = End(E"), f*@)=a, [f*)=n.

In addition, assume thatr[, '] represents 0 inH2(M,, End(F’)). The fore-
going conditions imply also that[, «’] = [n’,n’] = 0 and hence the triple
(End(F"), @', n’) determines a representatiphe S,(M,). Then the uniqueness
part of Theorem 1.2 (see Proposition 2.4) yietds: p’ o f..

Thus it remains to prove tha&{, '] represents 0 ifH%(M», End(F’)). Note
that f*([a’, n']) = [a, n] represents 0 itH (M, End(E’)). The required state-
ment is then a consequence of the following general result.
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Let f: N — M be a surjective mapping of compact Kahler manifolds, and let
E be a flat vector bundle ove with unitary structure group.

ProposITION 6.1. Leta € EYY(E) be ad-closedE-valued form. If f*() €
ELY( f*E) is d-exact, thenw is alsod-exact.

Proof. Consider the flat vector bundjé‘E over N and thed-exact formf*(«) €
ELY(f*E). Because this bundle has unitary structure group i a compact
Kahler manifold, there exists dane C*°(f*E) such thatf*(«) = ddh. Let

Ny Bom

be the Stein factorization of (here the fibres op; are connected ang, is a fi-
nite analytic covering). For a pointe M, consider an open neighborhodd of
x such thatt |y, is the trivial flat vector bundle. Thefi*E is trivial over f ~X(U,)
and, for any fibreV of f over a point ofU,, the restrictionny := f*(a)|y = O.
This implies that:|y is locally constant. (To prove this fact in the case of singu-
lar V, one must pull back to its desingularization.) Then there exists a section
of p%E such thatpio = 99k’ on nonsingular part of.

Consider now the average bfover points of regular fibres gf,

h'(y) Y. H@. yem.

zep;'(y)

T #p, )

Clearly 1" is a bounded section af, smooth at regular values ¢f;, and so
a = 39h” outside of a proper analytic subsetMf. Moreover, according to as-
sumptions of the propositio, is locally 39-exact. Further, boundedness/df
together with regularity of the operaté implies thath” can be extended tbf
as aC*°-section ofE satisfyinga = 39h”. This shows that is d-exact. O

The proof of Theorem 1.3 is complete. O

ProoF oF THEOREM 1.5. Letr: my(My) — T, be arepresentation of the class
S5 (M,). Clearly Ker(t) containsr1(M;)” and sor determines a homomorphism
711 m(Mq)/m(M1)"” — T,'. Furthermore, according to the assumptions of the
theorem, there exists a homomorphisg w1(M3)/m1(M2)" — T4 such that

71 = 177 o f, Whose diagonal elements have the logarithm. Obviously, we can ex-
tend z, to a homomorphism’: w1(M2) — T4 of the classS} (M) satisfying

t = 1’ o f,. Thus, the conditions of Theorem 1.3 are fulfilled. According to this
theorem, for any representatipn 71(M1) — GL,(C) of the classS,(M;) there
exists a representatiqii : 71(M,) — GL,(C) such thato = p’ o f,. The latter,

in particular, shows that Kgi belongs to the kernel of every matrix representa-
tion of the classS,,(M1), n > 1. But by the assumption of the theorem,(M)
belongs to the clasS. Therefore Ker, = {e} and f, is an injective homomor-
phism. Finally, from the Stein factorization ¢f one obtains thaf, (1(M1)) is a
subgroup of a finite index iny(M>). OJ
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7. Concluding Remarks

All results of this paper hold true also for the class of manifolds dominated by a
compact Kahler. We recall the following definition.

DEeFINITION 7.1. A manifold M is said to bedominatedby a compact Kahler
manifold NV if there exists a complex surjective mappifig N — M.

Let M be a manifold dominated by a compact Kéhler manifold N N M,
and letE be a flat vector bundle oved with unitary structure group. The proof
of the following is similar to that of Proposition 6.1.

PROPOSITION 7.2.  (a)Leta € E%1(E) be anE-valuedd-closed(0, 1)-form. Then
there exists a *°-sectionk of E such thaiw — 94 is d-closed.

(b) Let the E-valued (1, 1)-form 8 satisfyd8 = 0 and 8 = 9y for someE-
valued (0, 1)-form y. Then there exists af-valued functiong such thatg =
00g.

Using this result and applying the very same arguments, one can prove the valid-
ity of the results of this paper for the class of manifolds dominated by compact
Kahler ones.

In [BO] we describe the de Rham 1-cohomolddy, (M, G) of a compact Kah-
ler manifold M with values in a solvable complex linear algebraic graupf a
special class. The result obtained is similar to Theorem 1.2.
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