An Alternative Proof of an
Extension Theorem of T. Ohsawa

KrLAs DIEDERICH & GREGOR HERBORT

Introduction

In [DHOh; OhT; Oh2; Oh3], extension theorems for weighted square-integrable
holomorphic functions that are defined on intersections of lower-dimensional
affine subspaces with a pseudoconvex domaimere proved on the basis of
L?-estimates for thé@-operator. (See also [Oh2; De; Bou; Mv] for generaliza-
tions to holomorphic differential forms with values in certain vector bundles.)
They have proved to be useful in many applications, among them the behavior of
the Bergman kernel [DH2; McN; JP] and the construction of integral kernels for
the d-equation, [BonD].

It is therefore of interest to have proofs for such extension results that are as
elementary as possible. For the theorem of Ohsawa and Takegoshi (see [OhT]),
such new proofs have been given, for instance, in [Bs; McN; Siu] and also by
T. Ohsawa himself (oral communication). Our goal here is to give also an elemen-
tary proof for the refined extension theorem of Ohsawa [Oh3] that allows so-called
negligible weights in the extension. Our proof will be free of tools from Kahler
geometry.

Let us first clarify some notations and state the theorem.Let C" be an
arbitrary pseudoconvex domain@i'. For a plurisubharmonic functiog on D,
we denote by 2(D, ) the Hilbert space of holomorphic functionsir(D, ).

We also fix an affine linear subspagke c C" of codimensiork for which D’ =
D N H # (. Then the extension theorem of [Oh3] can be stated in the following
form.

0.1. THeorEM. Assume that there exists dna plurisubharmonic functio’v
such that
Cy = sup(V + 2k logdist(-, H)) < oo.
D

Then there exists a continuous linear extension operﬂtpr H?>(D', ¢ +V) —
H?(D, y) whose operator norm is bounded by
IE)|I? < Coe€.

The constan€,, depends only on the dimension and not on the choice afd D.
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In Section 1 we will reduce the proof to a simpler situation. Section 2 contains the
basic estimate that we use. The proof of Theorem 0.1 will be given in Section 3,
and Section 4 contains our application to the Bergman kernel.

1. Reduction Steps

Let D, D', ¢, andV be as in Theorem 0.1. At first we show that it is enough to
prove:

Any f € H(D', ¥+ V) admits a holomorphic extensighe H2(D, )
such that

1F15 < Cae N F 1S iy @)

Namely, suppose that we have shown this. &&tD, ) denote the (closed)
subspace of all functiong € H?(D, ) such thatg|D’ = 0, and denote by
n': H%(D,¥) — h?(D, ) the orthogonal projection. Then, for a functigne
H2(D', ¥ + V), we choose an extensiohe H2(D, v) and put

E)(f):=f—7'(f).
It is easy to check that this definition is independent of the choice of the exten-
sion f and hence is consistent. Also, it is elementary to showmfjanieﬁnes the
desired extension operator.

For the proof of (1), the following further reductions are possible.®etD —

R* be a strongly plurisubharmonic exhaustion functionand R* an unbounded
set such thaD, := {® < ¢} is strictly pseudoconvex with a smooth boundary for
allteT. LetD; =D, NH.

A routine argument based upon the Alaoglu—Bourbaki theorem on weak-

compactness of the unit ball in a normed space then justifies that it suffices to
show:

For eachr € T and f € H3(D], ¥ + V), there is an extensior; €
H?(D,, ¥) for f satisfying

1A%, < CaeVILf 1150 iy )
with a constanC, independent of and:.

Finally it obviously suffices to prove (2) under the additional assumption that
¥ andV are smooth. Namely, ob, one can choose decreasing sequeKges
and(V;), of smooth plurisubharmonic functions that convergé¢ tandV, respec-
tively. Then (2) applies withy, andV; instead ofyy andV. Hence the smoothness
assumption oy andV can be removed by applying the Alaoglu—Bourbaki theo-
rem once more.

2. A Basic Estimate for thed Operator

Let @ denote a smooth bounded domaindn with a defining function that is
normalized in such a way thii#r| = 10nd<2. Let ¢ be aC2-smooth function on
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Q. Letg €{0, ..., n —1}. The standard-operator onL(O (2, 9) has a closure,
also denoted b9. By 8;. L(O,Hl)(sz, @) —> L(O’q)(sz @) we denote the closure
of the formal adjoint of. The space

Fq(Q.¢) i= Cg ,,1(Q) N dom(3;)
consists of all0, ¢ + 1)-formsu € C(0 qﬂ)(Q) satisfying the Neumann condition
u_Jor=0 ono. 3)

This space is known to be denseliﬁ)!qm(sz, @)N dom(éj;) with respect to the
graph normu > |lufl, + [[0ull, + [18}ull, (see [Hor, p. 100]).
For a functionf e C?(Q) and a0, 1)-formu = > _1u;dz;, we write for short

n 2

9%f _
Le(z; = - : .
(23 1) j; 7205 (2)u;(2)ux(2)

2.1. LemMma (The a priori formula fol). LetQ andg be as before and lej e
C?(Q) be a positive function. Then far= uidz, + - - - + u,dz, € Fi(Q, ¢) we
have

(@) ll/moull? + /nd;ull?

(nﬁ — L)z u)e ¥ dr(z) + 2 Re(u | dn, oju),

WK

(b) in particular, if Q2 is pseudoconvex then
I/moull? + /nd;ul?

> /(n£¢ — L) (z;u)e ?di(z) + 2Re(u _| 9n, 5;‘u)q). (5)
Q

l

*‘”d)\+/ nL,(&;u)e ¥ do(?); 4)
Q2

ljl

Hered) denotes the Lebesgue measure dndhe area measure odg2.

Proof. The first formula is stated in [BoS]. For the reader’s convenience we in-
clude a proof here. It uses the same technique (based upon integration by parts)
as applied by Hérmander [Ho6r]. Similar computations have been carried out in
[McN; Bs; Siu]. First we recall the integral formula of Gauss:

ar
—fgvdx_ /f—d +/ a—fgda (6)
j Q Zj aQ 0%j

for functions £, g € CX(2). For 1< k < n, let§; denote the operator

d(e~*h)

Sch =e?————  for he CYQ).
07k



350 Kras DIEDERICH & GREGOR HERBORT

With this notation, fom = uidz1+ - - - + u,dz, € F1(2, ¢) we can write

Ou == bju;. ¥
j=1
We start by computing
”\/ﬁéguni / 7’)8 U; 5kl/lk€ “dx,
Jok=1

using integration by parts. From formula (6) ffr= e™%u; andg = néi(uy), we
obtain

— 0e ™ u;)——
/naj(”j)ak(uk)e wdl:/ n——"8c (uy) dn
Q Q 9z
a(nd
—/ e %u Mdk—i—/ —u,c?kukne Ydo
Q 9z o 0z
on — a($
_ / e, 2 5 ) di — / L CLCD)
Q 0z; o 9z;
+ Z1(j, k), (8)

where 5
r N
Ty(j. k) = f —u;Spugne ™ do.
o 9Z;

Now one has a commutator relation for e namely,

2]
oz 3z, | 9zx 97

Substituting this into the second member on the right-hand side of (8), we have
a(é a(é
—/ e’“’uﬂ?—( e(tte)) dr = —/ ef‘pujﬁ—( k(_uk)) di
Q Q

0z; 07;

02 0
:/e‘”ujn( L4 —(Sk—>ukd)\.
Q 07y 0Z; 07;

92 ad
2/87‘”77 ¢ ujug dr — /E_QUM_jBkﬂ dh.
Q 0z; 07 Q 07;

The second integral on the right side is again transformed by Gauss’ formula:

] ad ]
/e nu; 8k< uk)dk_—/ ni; — (e ‘P—uk>dk
Q 07; Q 0Zk 07;

=/e_¢n@8—1fkdk
Q 8Zk sz

an _Buk —y
Tl dr —TI5(j, k), 9
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where

;o or __duy e
(. k) = U do.
s 0z 9%

The complex conjugate of this is

R u: dug ) Quy
_ / oS =k d) = / et S gy 4 f L e i~ To(. ),
o 3z Q 0z 0z Q 0Zx ~ 9z

where 5 -
. r U _
I , k) = —Uu;—=e @ do.
2(7, k) /{;Q n 97k j aZ_,

If we substitute this into the computations carried out so far, we obtain

- m— o Oug
/naj(uj)ak(uk)e*dez_/ u,—”akuke*wwrf Sy Sk e g,
Q Q 0z

Q 8zk 07;
8%¢ ou; 8uk
+ ujuge ¥ di ~|—/ L e dn
/”az, oz, 0k Moz 0z,

+2a(j, k) —ZL2(j, k).

Next we want to sum this over all indicgsk € {1, . . ., n}. The Neumann con-
dition (3) at the level of0, 1)-forms reduces to

“ a
Y~ =0 onae; (10)
= 0z;
in particular,z;?zlll(j, ky=0forallk =1,...,n Hence we obtain
= on — _ uy
a*uzz—/ u»—Sue‘”dk—i—/ —e YdM
Iv/mogull? QZk g, D1 ZaZk 7,
8uj 8uk _
f 282, ujire d)»—i—/z P 31, e ?dxr
=Y " Ta(j. k). (1)
J.k

We now observe (see [Hor, p. 102]) that
_ 1 3uk ou;j 3uk _
8u 2 :/ < _— — j ) ‘/’d)\
I /ndul, o j;1 3z Z 37k 0Z;
This is substituted into (11) to yield
8uk 2

B2 + [l /75 |2 / M o gy 4 Ty T

= 0z;

n

82<p
=S Ty(j. k). (12
+/Qn Ek lazjazku,uke E 2,6, (12)
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where

Quy
T, = /Zujg&cuke ?dr and T3 _/ Zazk Mk o do..
<]

Finally, the proof of (a) will be complete if we show that the sum of the second
and third terms on the righl, andT3) is equal to

n 82
- wiige *dr + 2Re(u | dn, 3*u),,
/Q klaz,8Zk s « R

and that the last term (which we will dendfg) is equal to

n 32
Z / n r_ ujure ¥ do.
=1 a0 31_,- 8Zk
Letagainj, k € {1, . . ., n} be fixed. We transform the single terms that appear
in T». In the first step we write

on ——
—/ uj—nSkukewd)n
Q 8ZJ

an d

=-2 Re/ uJ—Skuke Ydr+ / u_j—_n(Skuke_"’ dr. (13)
Q "0z o 0%

The second term on the right side can be computed by the Gauss formula as fol-

lows:

0
/ u—? Sgure ?dr =
j
0 79

On due™)
L RHkE )

Zj o 7 Bz, 0Zx

32 du; 9
= —/ _ il ujure ¥ dr — ﬁ—_nuke_“’ dr
Q aZj azk azk Zj
ar In
+/ F % jure ? do. (14)
8Zk 0z; /
We now sum over alf, k = 1, ..., n. Again, the sum of the boundary integrals

vanishes because of (10) Likewise, we see that

ou; d
/ ﬁ—nuke_‘p d) = Ts.
jk=1 8Zk Zj

Summation of (13) over all, k thus yields (by means of (7))

n on____
— Z / uj—nSkuke_‘/’ di
=1 Q BZI

1>

- o — _ / 3
-2 Re | u,— S ure " dxr — _ wiuge ?dr—T
j,kzzl /;2 jBZj K Q; 8Zj 0z sk s

2

u_jukef‘” dr — Ts.

:2Re(uJ8n,5;u)¢—/Z
Q

% 32_,‘ 0zk
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In order to transform the ters, we need only recall the argument of [Hor,
p. 103]. It was shown there that (3) implies

" (am I

—_— Mk—_) = 0 on o2
0z; 07k 0z 07

k=1

for all fixed j. We multiply byu;ne=¢ and then sum over ajl Finally, integration
overas2 gives us

“ 9%r
Ts=—) I.(j, k)= ———ujure Y do.
5 jzk 2(j, k) MZ:l/aQ flazj P ujuge *d
The proof of the a priori formula fod is complete.

For the proof of (b) we need only observe that, for pseudocoféke bound-
ary integral on the right-hand side of (4) is nonnegativedf 71($2, ¢). Namely,
from (10) we see that, for any € 9<2, the vector(u1(¢), . . ., u,(¢)) belongs to
the holomorphic tangent spagg-> 9. Hencer, (¢; u(z)) > 0. O

3. Proof of the Theorem

We now give the proof of (2) under the assumption thandV are smooth and
the codimension off is k = 1. (The general case is settled by iterating the result
from codimension 1). After a suitable choice of coordinates, we may assume that

HZ{ZZ(Z/,Zn) | z, =0}

ThenV(z) + 2log|z,] < Cy on D,. There exists a number > 0 such that
(z/,0) € D’ wheneverz € D; and|z,| < &. Let x € C*°(R) be a function with
x(x) =1on(—o0,1/4]andx(x) = 0 on [34, co). For an arbitrary functiorf €
H?(D', ¥ + V), we define the following0, 1)-form:

- 2 2
o =125 )re 0] = (B ) s 0B am s

This form isd-closed and smooth ob, .
Let

T(f)
1=/ If(z/,O)IZ/ exp[-(¥ + V)(z', ez,)] dM(z,) dA(z"). (16)
D’ {1/2<z01 <Y

We look for smooth weight functionsandy > 0 such thaty +n3)e " < ¢€v—¢
and such that the quadratic formf, — £, tames these data and yields a basic
estimate of the form

|G, etp)y|?
<C'T(HIVn+ n35;u||$ forall (0,1)-formsu e dom(é;f). @7
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For an arbitrary number @ t < £ we put

9(2) = elz|? +109(1z,1? + 7) + ¥ (2) + V(2) (18)
and
w =V +log(|z,)? + €% — Cy — 4.

Thenwe havev < —3onD; if ¢ is chosen small enough. Moreoveris plurisub-
harmonic. The function

n = 2(—w + log(—w))

is plurisuperharmonic, and4w > n > 8 everywhere. By explicit computation
we obtain

1
—L, = 2(1— —>£w +2
w

We will prove that (17) is satisfied for these functionande.
It will suffice to check (17) for all0, 1)-formsu € F, := Fi(D;, ¢), since this
space is dense in do(r@j;) with respect to the graph norm

dw ® Jw an ® on
WOM o, +402%0
n

= (19)

w > llully + [10ully + 1105ull,.

(Note that, because of the smoothness assumptidntbe functiony := /n + 13
is bounded on each,.) We may furthermore restrict ourselves to forms in the
null spaceN . 1,(d) of 8 (for formsu L N 1(d), the estimate (17) is trivial).

Letu € Fi(D;, ¢) N No.1)(3). We can apply (5). Using (19), we can split the
mixed term(u _| a7, égu)w that appeared in (5). By the Cauchy—Schwarz inequal-
ity, we obtain:

—2|(u J 9, u)y| = =2/ In~¥20n, n¥?05u),|

v

—llu Y2012 — In¥20;ul?

1 — A%
> 2 | LaG@we ™ dr—In¥255ul. (20)
D,

Let Q denote the quadratic form defined by the coefficientgf — 3£,. Sub-
stituting (20) into (5), we have

I/Bul2 + /0 + n35ul2 > / 0z w)e™* di(a); (21)
D;
hence (withy = /n + 3),
0z wye™* di < lydul2 + yAull. 22)
D,

The formQ is even positive definite, since
2

£
—L
(62 + [z, [2)2 1

Thus, 0~%(z; u) is also meaningful. In combination with the Cauchy—Schwarz
inequality, we obtain

‘2.

3
Q > 87)£|Z‘2 + Eﬁw > 88£|Z\2 +
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|, op)y|* < (f 0 Yz ap)e® dk)( O(z;u)e™® dk)
D, D,

< 2( 0 Yziap)e™ dx)uwéuni + lyogull2)
D,
for all u € F;. On suppos) we even have
1 _
Q > 88£|Z|2 + 4_82 dZn dZn'
Substituting (15), we derive that

0 Nz ap)e ¥ di

Dy
4 ef‘/”V
< C// P21 RS ax
Dinle/2<lenl e} €2 lzal? + T
<C"? | |f(, 0)|2/ e~ VNG di(z,) M) = C" T (f).
D’ {e/2<|znl<e€}

where7,(f) is defined as in (16). This yields
[, ap)y|? < C*T(P)lydzull? (23)

for all formsu € F, N N0.1(d) and hence for any € dom(d;). By the Hahn—
Banach theorem combirled with the Riesz theorem, we obtain a solutien
L%(D,, ¢) of the equatiod(yu.) = o, such that

luell2 < C"To(f).
The functionu, is even smooth, and

ﬁs,r = X(lzn

g2

|2

)f(z/’ 0) — YU

is holomorphic onD,.
We estimate the norm of this function as follows:

I feellf <2 / | £, O)Pe™ dh + 2] yucl)3: (24)
DiNflznl<e}
we have(e? + |z,1%)te=VeC > 1/2 on D, if ¢ is small enough, so

1
-e—CV/ | (', 0)|%e Y da
DiN{|znl<e}

2
< / (& OV
= JDin(lzal<e) €2+ |z,1?

= / |f(Z/7 0)|2;e_(¢+v)(z’,ezn) da
Di{lzal<1} 1+ |z,)2

< JXf) = / |f(&, OPem VHIE ez g2,

{lzal<l
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Furthermore, since far < ¢2 we can estimate

V() +log(lz.? + 1) <w(@) +Cy +4 < —@ +4+ Cy,

the second term in (24) is dominated by some constant tifeg ( f), because
|W€|26—w =+ n3)e£|z\2+V+IOg(|Zn|2+r)|M£|26—<p
< C'Cre™(n+n*)e " HuePe™ < C"CreVue e,
whereC, = exp(maxp, |z|?) andC’, C” > 0 are unimportant constants.
We next show that, for any poitit’, 0) € D, N H, there exists a constaft =
C'(e, 7/, 1) such that, for all O< 7 < &2,

| fer (@ 0) = (& O)? = |yu(2'. 0)° < C(2'. .1) lucllZ. (25)

1
log(1+ £2/4r1)

Here we have used the fact that, is holomorphic or{|z,| < ¢/2}. It satisfies
on D, the upper estimate

|VusF
|Zn|2 +7
with a constantC(z, ¢) that does not depend an Let (z’, 0) € D, N H be arbi-

trary. Then, after shrinking if necessary, we find a radiys(z’) such that the
polydiscP(z') = A,_1(z/, p(z)) x A(0, &/2) is contained inD,. Let

yus(w) = Y Ap@)(w — (2, 0)”

ﬂENS

= 2 VY |y, 267 < C(t, &) ugl e, (26)

denote the Taylor expansionpi, about(z’, 0) on P(z’). Then, using the orthog-
onality of the monomialsw — (z’, 0))# in conjunction with (26), we have

2
lyu.(z’, O)|2/ lyue (w)]

L dnw) 5/ eI 45wy < ca, o)lus 2.
Py lwal?+ 1 Py lwnl?+ 1 ¢

From
1 * \N2n—2 82
————d\w) = C;p(z)*"?log( 1+ - |,
P 4z

(¢40] |wn|2 +7
with an unimportant constat* we obtain (25). We saw already thiaf. . ||i <
C'Cie(T.(f) + TX(f)) forall < £2, with a constant, that does~not depend
on anything but. After selecting a weak-convergent subsequencg ,); from
the f, ., we obtain by means of (25) an extensifire H2(D;,, ¥) of f. Finally we
let ¢ tend to zero. The,(f) — 3n/4||f||2D,yw+V andJ*(f) — n||]f||f)/’w+v.
After once more choosing a weakeonvergent subsequence from thewe will
gain the desired extensiohe H2(D,, ), satisfying (2). O

By checking all the steps in the foregoing proof, we see that we indeed obtain our
next result, which generalizes the case of codimension 1.



Alternative Proof of an Extension Theorem 357

3.2. THEOREM. Let D be a pseudoconvex domain@f and % a holomorphic
function such thaZ, = {h = 0} becomes d-codimensional complex submani-
fold of D. Assume that a plurisubharmonic functignexists onD for which

Cy = sup(V + 2loglh|) < oo.
D

Then there exists a constafit > 0 such that, for all plurisubharmonic functions
Y on D, one can find a bounded linear extension operan’x;}frh: H?(D N Zy,

Vv + V) — H?(D,y) whose operator norm can be estimated|I:E/1‘,f’h||2 <
C,eCvr, with a constantC, that does not depend on anything but the dimension.

4. An Application to the Bergman Kernel

We want to give an application of the Ohsawa extension theorem to the Bergman
kernel of a class of pseudoconvex domains witfi’asmooth boundary—an ap-
plication covering all domains that are regular in the sense of [DF].

Let 2 cc C" be a pseudoconvex domain. For a plurisubharmonic funetion
on Q, we denote byK, , the Bergman kernel for the Hilbert spaf (2, u) of
all holomorphic functiong’ such tbagf9|f|2e*“ d\ < oco. As usual we puKqg =
Kgq o. Furthermore, we defin®(2) as the family of all functions that are con-
tinuous onQ and plurisubharmonic of. Let 8o denote the boundary distance
function on<2.

If now H is an affine linear subspace of codimenstatinat meets2, and if u
is a plurisubharmonic function af2 satisfying

u(z) + 2klogdist(z, DN H) <0
on 2, then from Theorem 0.1 we obtain, for alle Q N H,
KQ(w) > CnKQﬂH,u(w)- (27)

Our result on the Bergman kernel is as follows.

4.1. THEOREM. Assume thai2 e C? and that each poing € 9Q is a peak point
for P(Q). Letz® € 9Q be a point such that the Levi form é&2 hasp < n —1
positive eigenvalues af. Then, for the Bergman kernel ©f, we have

lim S8q(w)" 2Ko(w) = co. (28)

Qaw—z0

REMARKs. (a) In (28), the approach ab € Q towardz° is not required to be
nontangential.

(b) By work of Sibony [Si], it is known that the hypothesis concerning the
plurisubharmonic peak functions is satisfied witens regular in the sense of
[DF].

(c) Stronger quantitative estimates have been obtained for the large class of do-
mains of finite type. See, for example, [DHOh] or [Cat] and the references given
in those papers.



358 Kras DIEDERICH & GREGOR HERBORT

(d) An extremely large Levi degeneracy gebf the boundary is not an obsta-
cle for (28) to hold. One should note that Sibony [Si] found pseudoconvex regular
domains inC? such thate has a positive Hausdorff measure of dimension 3.

Before giving a proof of the theorem, we summarize some facts about plurisub-
harmonic peak functions. In [Si, Thm. 2.1], the following is proved.

4.2. LEemma. AssumethaG cc C" is pseudoconvex, with@'-smooth bound-
ary, such that each pointt € 3G is a peak point forP(G). If u € C%3G), then
the function

i(z) :=sup{v(z) | veP(G), v <uondG}

is also an element oP(G); moreoverji | 3G = u.

Let nowG be as in the lemma, and I (z) := |z — q|?for ¢ € 3G andz e C".
Then we have our next lemma.

4.3. Lemma. The functiong), := :c?q, whereg € 3G, have the following prop-
erties

(@ v, < —d, onG;

(b) 1¥p — ¥yl < 2diam(G) - |p — ¢| for p, q € 9G.

Proof. (a) is a consequence of the maximum principle. Let us prove (b)¢ Eor
G, we have

V() +2Rell —p,p—q) =~ —ql*+2Relf — p, p—q)
=—l¢ —pPP—Ip—ql* < —d,(©).

Hencez — v,(z) + 2Rez — p, p — q) is a candidate for the supremum that
definesy,, and therefore

Ve(2) = Yp(2) + 2Rz — p, p — q)| = ¥ (2) + 2diam(G) - [p —q|.
Since the roles op andg can be interchanged, the claim now follows. O

Proof of Theorem 4.1Choose open neighborhoodscc V for z°, a smoothly

bounded pseudoconvex doman cc C”, and a linear subspadg of C" of

dimensionp + 1 such that the following hold.

(i) bnvcaenvVandaDNV =9dQNV.

(i) Foreach; € 92NV, the intersectioD, := (¢ + E) N D is strongly pseudo-
convex and has @2-smooth boundary.

(iii) There is a numbe > 0 such that the eigenvalues of the Levi formodf;
are bounded from below bywhenever; € 92 N V.

(iv) For any pointw € @ N W, there existaw* € 92 NV with w € D, . and
lw — w*| = da(w).

By the localization lemma for the Bergman kernel (see e.g. [Ohl]) we have,
with a constant that depends only ol andW,

Ko > CKgny = CKpny = CKp
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onQNW. Letw € Q N'W be an arbitrary point, and let* be a boundary point
according to (iv). Then, using Lemma 4.3(a) we can apply formula (27) to the
function

u:=—m-—p—71log(—vy*)
and obtain (with a new constaqat)
Kp(w) = C'Kpy..u(w).
But in [DHM] it is shown that (with a constant that depends onlyAon
Kpj. () = Cilw — w*| 77726 > C" 50 (w) ™" =2 [y (w)| =77
Lemma 4.3(b) implies that, forall € Q N W,
Y )] < [Yow)] + [w* = 2% < C(1Y.0w)] + Sa(w) + Jw —2°%)
and, consequently,
1
(1Y 0(w)| + 8o (w) + |w — Z0)n=r~1
From this the theorem follows. O

Saw)P 2 Kq(w) = C
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