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0. Introduction

Let H be the space of Dirichlet series with square summable coefficigras
means that the function has the form

f&) = am™, (0.2)
n=1

with Zj":l|a,,|2 < 4o00. By the Cauchy—Schwarz inequality, the functions in
‘H are all holomorphic on the half-plarig,, = {s € C : %is > %}. The coeffi-
cients{a,}, can be retrieved from the holomorphic functigts), so that]|f||§_[ =
Yoo lan |2 defines a Hilbert space norm @h We consider the following problem.

For which analytic mapping®: Cy/» — Cy» is the composition oper-
ator Co(f) = f o ® a bounded linear operator oK.?

In this paper, a complete answer to this question is found. In the process, we
encounter the spade of functions f, which in some (possibly remote) half-plane
Cyp ={s€C:NRs > 0} (@ €R) admit representation by a convergent Dirich-
let series (0.1). Itis, in a sense, a space of germs of holomorphic functions. Itis
important to note that if a Dirichlet series convergestnthen it converges ab-
solutely and uniformly orC 5, providedy > 6 + 1 (see e.qg. [3]). In terms of the
coefficients, f € D means that, grows at most polynomially in the index vari-
ablen. We shall use the notatiddi, to denote the right half-plan€,, = {s € C:
s > 0}, although strictly speaking we probably ought to keep the notation con-
sistent and writeC instead. Throughout the paper, the temaif-planewill be
used in the restricted sense of a half-plane of the @péor somed € R.

It should be mentioned that, by the closed graph theorem, every composition
operatolCq : H — H is automatically bounded.

1. Results

The first question that arises naturally in connection with this problem is: For
what functions® analytic in some half-plan€, and mapping it intaCy,, does
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the composition operatdt, map the spacgl into D? This question is answered
by the following theorem.

THEOREM A (6 € R). An analytic functiond: Cy — Cy/» generates a compo-
sition operatorCq : ‘H — D if and only if it has the form

D(s) = cos + ¢(s),
whereco e NU {0} and g € D.

The next theorem answers the original question posed in Section 0.

THEOREM B. An analytic function®: Cy» — Cy/» defines a bounded compo-
sition operatorCq : ‘H — H if and only if:

(a) itis of the form
O(s) = cos + ¢(s),

whereco e NU {0} and ¢ € D; and

(b) @ has an analytic extension ©, , also denoted by, such that
(i) #(C;) cCiif 0 < co, and
(i) ®(Cy) C (Cl/g if co=0.

Theorem B is a Dirichlet series analog of the classical Littlewood subordination
principle [6]. Indeed, in cas@ fixes the point+-co, which happens precisely
when 0 < c¢g, the composition operatdty, is a contraction ori{. The proof of
Theorem A is given in Section 3. The proof of Theorem B is divided into pieces,
supplied in Sections 4, 5, 6, and 7. An important ingredient is the notion of a ver-
tical limit function, defined in Section 2.

The nonnegative integep, which appears both in Theorem A and in Theo-
rem B, contains much information about the mapping funcoWe call thiscq
the characteristicof ®.

2. Background Material

A characteris a multiplicative mapping from the set of positive integérs=
{1,2,3, ...} to the unit circleT, that is, a functiony : N — T with the property
x(mn) = x(m)x(n) for everym,n € N. The characters constitute a group, de-
noted byZE, with respect to pointwise multiplication. The gro@pis in fact the
dual group to the multiplicative group of positive ration@ls. If we equipQ..
with the discrete topology then the dual groBfpecomes compact, and as such it
has a unique Haar measyref total mass 1in [3] it was shown how to identif\E
with T*°, the Cartesian product of countably many copies of the unit circle. In the
process, the Haar measuyreorresponds to the product measurelth obtained
from the normalized arclength measure®nWhenever in the sequel we speak
of “almost surely” regarding characters, it is with respect to the Haar measure
We shall need the notion of\eertical limit function[3]. Given a characteg
and a Dirichlet serieg’ € D with series expansion (0.1), we consider the function
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fx($) =D anx(mn”,
n=1

which is inD; moreover, iff isin#H thenf, is also in#{. It was shown in [3] that
all these functiong,, are precisely the normal limits of the vertical translates of
£, justifying the terminology. IfC, is a half-plane where the Dirichlet serigés)
is a bounded holomorphic function, then @li(s) are bounded there, too. More-
over, the supremum norm is the same for all of them, because frori, amg can
retrieve the originalf by applying the same limit process in reverse.

An important fact is the following result, due to H. Bohr (see [3]): If a function
f € D with series expansion (0.1) has an analytic extension to a bounded func-
tion on a half-planéC,, then the Dirichlet series (0.1) converges uniformly on all
slightly smaller half-plane€; with 9 > 6.

3. Representation of® by a Dirichlet Series
For the proof of Theorem A, we shall need this simple and well-known lemma.

LEmma 3.1. Letm be a positive integer, and lef(s) = > 2 a,n™* be a
Dirichlet series from the clasP, starting from the index:. Thenm*f(s) — a,,
uniformly asiis — +o0.

We are now able to prove the necessity part of Theorem A. Supposgdkdat D
for every f € H. In particular k~®® e D for all k € N. Denote the corresponding
series by

o0
OO = " pPn, (3.1)
n=N(k)

whereN (k) € Nis the index of the first nonzero coefficient. Multiplying the equal-
ity (3.1) by N(k)* and applying Lemma 3.1, we arrive at

exp(s log N(k) — ®(s)logk) — by,  as s — +oo, (3.2)

with uniform convergence. Here, “log” stands for natural logarithm. Observe that
the function ofs in the exponent on the left-hand side is holomorphi€in(the
half-plane appearing in the formulation of Theorem A), so it m@ps$nto a con-
nected domain. Moreover, it maps any half-pl@hecontained inC, into a con-
nected domain as well. On the other hand, it follows from (3.2) thaty feith
sufficiently large real part, the values.oiog N(k) — @ (s) logk are contained in

the setlU (k) + 2rwiZ, whereZ is the set of all integers and(k) is an arbitrarily
small open neighborhood of the point Ibﬁ()k) (here “log” stands for the principal
branch of the logarithm). Hence, there must exist an intggerch that

slogN(k) — @(s)logk — logbyy),, + 2mig  as s — +oc. (3.3)
Dividing the both parts of (3.3) bylogk (for k > 1), we have

im D(s) _ log N (k)
Rs—>+oo  § logk

)



316 JULIA GORDON & HAKAN HEDENMALM

with uniform convergence (by Lemma 3.1). It follows that the real number
log N (k)
o= logk
does not depend an We can look at this relation from the other sid€(k) =
k¢ is an integer for all positive integeks

The following result is indubitably known. However, we have not been able to
find a suitable reference.

LemmMma 3.2. Areal number such that:© is an integer for all positive integers
is itself a nonnegative integer.

Proof. In the case: < 0 the statement is obvious: on the one harfd—~ 0 as
n — 4o00; on the other, it must be an integer for all Hencen® = 0 for suffi-
ciently largen, which is impossible.

The case > 0 can be reduced to a similar situation by means of taking finite
differences. We recall the definition of tffiest differenceof a sequencex, }5° ; as
the sequenciA x, }°2 , whereAx, = x,41— x,. The differences of higher orders
are then defined inductively.

Let k be the least integer that is c. We consider the sequen¢g, }°° ;, v, =
A¥x,, with x,, = n¢. We observe that, = O(n°~*) asn — oo, and we consider
a series of the forny(r) = Z;’.‘;O a;1“~/ that is absolutely convergent for> 1.
The difference operationf(r) = f(t +1) — f(¢) carries it into a series of the
same kind, but starting fromh = 1, as

C+D =t =1(A+1) =1 =+ C(‘—z_l)ffz 4o, 1
with absolute convergence on the indicated interval. It followsiraiplications
of the operatiomA to f(¢) results in a series starting frofn= k, which proves
the observation.

Hence,y, — 0 asn — oo unlessc equals the integek. Since the numbers,
are integers, we must then haye= 0 for sufficiently large:, sayn > N. On the
other hand, the sequenfg,}°2 , is the restriction to the sét of a functiony(z),
which is holomorphic orC\]—o0, 0] and grows no faster than a power|of as
|z| — oo. If such a function vanishes on the $&0 [N, 4+-o0[, it must be identi-
cally zero. Hence, = 0, and since the kernel af* consists of those sequences
that are polynomials in of degreek — 1 or less, the original sequeneg = n¢ is
a polynomial of degree at mokt— 1. This is possible only it < k — 1, which
contradicts the definition df. Hencec = k € N, as desired.

The case: = O is trivial. O

From the lemma we conclude that € N U {0}. We shall now consider more
closely the functiorp(s) = ©(s) — cos. We claim thaip belongs taD.
Multiplying (3.1) by k<o*, we obtain

m=k“0
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Dropping the superscript, we can write this relationship as

. 1\° - 2\ ~
k_(p(s):bo-i-bl(l-f- m) +b2<1+ m) +---=bo+h(s), (3.4)

where the notation; stands for the shifted coefficients, = b':.

‘.. ;- Combining
ko,
(3.4) with (3.3), we obtain '

—@(s)logk = logbg + log(L+ h(s)/bo) + 2mig

on a half-plane where the principal branch of the logarithm defines a holomorphic
function, which is assured {:(s)| < |bo| there. The Dirichlet series

[o¢]
Z bf,f)m’s

m=k€0
is in D, so that (by Lemma 3.1) the functidris) defined by (3.4) tends to 0 uni-
formly asdis — +oo. Expanding logl + z) in a Taylor series around= 0 with
z = h(s)/bg, we have

e -1 n—1
—p(s)logk = =D

n=1

bo"h(s)" +logbo + 27ig,

with convergence fas with |/ (s)| < |bol.

Let us open the brackets in every expression” and rearrange the terms,
which is allowed in the half-plane of absolute convergende ef. It follows that
@(s) is a series of the form

3 00 ) nm —s n, .
(P(S) - Z Z ﬁﬂl,...,nq (1+ kCO> ‘e <1+ kco> ,

q=0 ny,...,ng=1

which converges absolutely in some half-plane. In other war@s), is a conver-
gent Dirichlet series over the multiplicative semigro&ipk <°) generated by the
set{l+ j/k°};cn. Note thatp(s) does not depend dn and that it is a Dirich-
let series oveS (k<) for everyk € N. The following lemma now completes the
proof of the assertion that(s) belongs to the clasB.

LeEMMA 3.3 (co € NU{0}). The intersection ofS(k¢°) over allk € N consists
only of positive integers.

Hence a Dirichlet series over the intersection ok °) is an ordinary Dirichlet
series.

Proof of Lemma 3.3Suppose that a numberlies in the intersection of(2¢°0)
and&(390). As an element o6 (2°0), o admits a representation by a fraction with
denominator2¢)” for somen € N. Similarly, « is a fraction with denominator
(3°0)™ for somem € N. Sincecg is a nonnegative integer, this is possible only if
« is an integer. O
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It now follows that® has the form® (s) = cos + ¢(s), wherecg € N U {0} and
¢ € D. This completes the necessity part of Theorem A.

We turn to the sufficiency part, and suppose thas a holomorphic mapping
Cy — Cy/; of the form

o0
®(s) = cgs + chnﬂ,
n=1

whereco € N U {0} and the serieg(s) = Y .-, c,n* converges in some half-
plane. A series irD, the space of convergent Dirichlet series, actually converges
absolutely in the half-plane one unit to the right of the half-plane of convergence;
in particular, this applies tp. We shall show that the compositigho ® belongs

to D for every functionf e H. Fork =1,2,3, ..., we expand

00
k=) = fcosg—9(s) — g—cos—c1 exp<—(log By c,,nf)
n=2

o0
= ko~ [ Texp(—(logk)c,n ™). (3.5)
n=2
The relationship (3.5) holds in the half-plane of absolute convergence of the
seriesp(s). Let us take an elemenft(s) = Y ;- ark ™, f € H. We want to plug
the Dirichlet series expansion for every®®, obtained by opening the brackets
in the product in (3.5), intgf o« ®(s) and so derive a Dirichlet series for the com-
position f o ® by rearrangement of the terms. To justify this operation, we need
to check that the series formally obtained this way converges absolutely in some
half-plane. That is, we need to prove the absolute convergence of the Dirichlet
series obtained by expanding

Zakk d(s) __ Zakk cos—c1 1_[<1+ i %?gk)jn_j“). (3.6)
n=2 Jj=1 ’

The absolute convergence of the Dirichlet series expanded from (3.6) follows from
the convergence of

R(cos+cr) |cn||0gk) —jﬂts)
Zla e 11_[< Y LelZon,

j=1

(o] 00 \
= —coRs—Ner L =5
=) larlk k
k=1 n=2
0 o0
=D _laeote exp(IOQ kD len |n—f“~*). 3.7)
k=1 =2

The expressio}_ o ,|c,|n~" is uniformly bounded in some half-planes C,

(® € R). Inthe case of characteristig = 1, 2, 3, . . ., the absolute convergence of
the right-hand side of (3.7) i@, follows, provided? is positive and sufficiently
large.
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In case of characteristig = 0, we need to check thatc; > % Once this has
been done, by Lemma 3.1 it follows that

o0

Zlcnhffﬂ” —- 0 asfs — +oo,

n=2
with uniform convergence. Hence, in some sufficiently remote half-planehe
inequality

o0 2] 2]
> laglk= exp(longcnm—’“S) < > laglk V2
k=1 n=2 k=1

holds with some > 0, and the convergence of the right-hand part of (3.7) follows.
We turn to the assertidiic; > % The function®: Cy — Cy/, has the expan-

sion®(s) = @(s) = >, c,n*, and by Lemma 3.1;; equals the limit ofb (s)

asfts — +oo. Henceficy, > % almost what we want to prove. @ is constant,

then®(s) = ¢, andMfcy, > % If ® is not constant then there is a first index=

2,3 4, ... such that the coefficient, is different than ©call this indexn. Then,

for large positive values oRs,

P(s) = @(s) =c1+cyN "+ O(N +D7™). (3.8)

In a sufficiently remote half-plan@;, the error term is negligible compared with
the second termy N ¥, so that the image of ; under® is a slightly perturbed
(punctured) disk centeredat In particular, sinceb mapsC into Cy,», the point
c1 must be an interior point iCy/5.

The proof of Theorem A is now complete. O

4. Mapping Properties

We shall need to extend the notatignto the class of functions of the forif(s) =
¢s + g, wherec is a real-valued constant agds a Dirichlet series irD. For such
functions, f, (s) will mean

fx(s) =cs+ gx(s)-
It should be pointed out that we cannot interpfgtas a vertical limit function of
f in this case.

Let ® be a holomorphic functio€y — Cy/2 (8 € R) of the form®(s) =
cos + ¢(s), whereco e NU {0} andg € D. Forn =1, 2,3, .. ., the functionn—®
is a product of two elements @?:

n=2®) = peosy el 4.1
so that we have
(™) () = (1), (7).
Sincen™%* = (n°°)~%, we have

(™) = x(m)°n,
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and sincep € D, we also have
() (s) = n™ 4

in the half-plane of uniform convergence for the Dirichlet segiég). This leads
to the identity
(™) (5) = x(n)on= ") (4.2)

We shall need the following relation between the mapping properti®saofdd,, .

ProposiTION 4.1 (0, 9 € R). Supposeb: Cy, — Cy is a holomorphic mapping
of the form® (s) = cos + ¢(s) for somecg e NU {0} and¢ € D. Then, for each
x € E, &, extends to a holomorphic mappidg, : Cy — Cy.

Proof. Fort e R, the vertical translate ob (s) by 7 units is
D (s +it) = icot + cos + (s + it),
which mapsC, to C,. The function
D,(s) = D(s +it) —icot = cos + (s + it)

also mapsCy to C,, and these function®, form a normal family. The various
normal limits of®,(s) ast tends to infinity are the function®, (s). As such, the
functions®, mapCy to Cy U {oo}. By the open mapping property of holomor-
phic functions, the only way that a point at the boundar ¢f(as a subset of the
Riemann sphere) could appear in the image is if the funetioris constant. But

this is excluded automatically ify = 1, 2,3, ..., and ifcg = O then this is pos-
sible only if @ is constant itself, in which case the constant value belon@sto
The assertion follows. O

PRrOPOSITION 4.2 (0, 9 € R). Supposeb: Cy — C, is a holomorphic mapping
of the form®(s) = cos + ¢(s) for someco e NU {0} and ¢ € D. Then, ifg is
constant, that constant value lies in the closed half—plﬁ@ecog; if the function
¢ is nonconstant then it extends to a holomorphic mapgingy — Cy_q.
Moreover, for every’ € R with 6’ > 6, the harmonic functioM¢ is bounded
from above orC,/, and if ¢ is nonconstant thep mapsCy to Cy _.,¢ for some
¥ = '(0') > 9. In all these statements we may replacby any of its vertical
limit functionsy, , x € E.

Proof. By assumptionR® (s) = cois +Re(s) > ¢ fors € Cy, sothathe(s) >
¥ —coMNs fors € Cy. As g € D, the functiony is bounded in some sufficiently re-
mote half-plane, which together with this estimate from belovihgnshows that
27 is bounded throughout,. By the maximum modulus principle, the supre-
mum of the modulus of 2 is at most 20°~?  which leads tdig(s) > & — cf
throughoutCy. If ¢ is nonconstant then we also obtain strict inequality, by the
open mapping property of holomorphic maps.

We need to show that mapsCy to Cy/_.,¢ for somey’ > ¥, provided that
@ is nonconstant and that > 6; an application of the foregoing arguments then
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extends the statementgg. It suffices to show that the supremum norm of ®n
Cy is strictly less than2?—? . We can use the well-known fact that, for a bounded
holomorphic functionF in C,, the associated function

Mp(t) =sup{|F(s)|:s€C,}, 6 <t < +o0, (4.3)

is decreasing and logarithmically convex (see [7, Thm. 12.8]). We apply this to
the functionF(s) = 27, which tends to the constant value’® asfs —

+00, Wherec is the first coefficient in the series expansiai) = Y o2 c,n ™.

Since the functiorp is assumed to be nonconstant, it has an expansion analogous
to (3.8):

o(s) =c1+cyN~* 4+ O(N+1D™™) asfs - +o0 (4.4)

forsomeN = 2,3 4, ..., wherecy # 0. Because of the terayy N —*, the image
of a remote half-plane underis a slightly perturbed disk centeredat so that
the function 2¢ there assumes values larger in modulus thai{:2 It follows that
Mp(r) cannot be constant. Because Mg (¢) is convex, it must drop off imme-
diately to the right of = 0: M (1) < M(9) < 2¢°°~? forall ¢ > 6.

It remains to see that the functiodty is bounded from above oy if 6’ >
6. We know that the function? is in D and is a bounded holomorphic function
on Cy. By Bohr’s theorem (see Section 2), the Dirichlet series corresponding to
2-¢ converges uniformly oit, for eachd’ > 6. If R were not bounded from
above onC,/, we could find a sequende, },, of points inC,: such that 2 tends
to 0 along the sequence. Singé&) — c1 uniformly ashts — +o0, the sequence
must haveéiis, bounded ag — +o0. As we form vertical translates of 2, we
find that one of them, sag2~%),, has a zero on the interva’| +oc[ along the
real line. But we know from before that there are no such zeros.

That we may replace by ¢, (x € E) in the statement follows from Proposi-
tion 4.1, applied to the functiop in place of®, except to see thaty, is bounded
from above orCy if 6’ > 6. But this is easy: As 2’ is bounded away from 0 on
Cy/, the same holds true for its vertical limit functions?2, whence the desired
conclusion follows. O

We should clarify the connection between the composition operéipendCo .

ProprosiTION 4.3 (6 € R). Supposeb: Cy — Cy» is a holomorphic mapping
of the form® (s) = cos + ¢(s) for someco e NU {0} andg € D. Then, forf e
‘H and x € E, the following relation holds

(f o @)y (5) = fyeo 0o Py(s), seCy. (4.5)

Proof. By Proposition 4.1,&, mapsCy to Cy». Since f € H implies that

fyeo € H, the right-hand side of (4.5) makes sense as a holomorphic function
on Cy. Turning to the left-hand side, we expatrfdin a Dirichlet seriesf(s) =

Y o 1a,n~*, which converges absolutely @,,, so that

fod(s) = Zann"b“), s €Cy. (4.6)
n=1
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Forn = 1,2, 3, ..., the supremum norm of functiom™®*® on Cy is bounded
by n~Y2. In view of Proposition 4.2, we can improve this assertion to the follow-
ing: Ford’ > 6, the supremum norm of the functiarmm®® on C, is bounded
by n~Y2-¢ for somes = £(#’) > 0. We spell out the details as follows. For
characteristieg = 0, ¢ is nonconstant and so the proposition applies to yield the
desired result; for characteristig = 1, 2, 3, . . ., we use the fact thai®(s) =
codls + Nep(s) = cofs — cob + 3.

It follows that the norm sum

00
-

E lanllln™ " llaec,)

n=1

converges, where the norm with the subscript is the uniform norr@ onLet
fa(s) = fozlann*s be a partial sum, and note that, by (4.2),

N
(fy o @)y (s) =Y anx(n)On= W = (fiy)ye0 0 Dy(s), s5€C.
n=1

The partial sum functiongy o ® converge uniformly tof c ® onCy/. Since the
operation of taking vertical limits is continuous with respect to the uniform norm,
we have that

(f 0 @)y (s) =Y anx(m)®n~W = fre0 0 dy(s), seCy.
n=1

Since the numbet’ (8’ > 6) is arbitrary, the assertion follows. O

5. Almost Sure Analyticity
Here, we shall obtain the following partial result.

ProposiTION 5.1.  If the holomorphic functio® : Cy/» — Cy/» has the property
that it induces a bounded composition operafar: H — #, then almost every
(with respect toy ) function®, has an analytic extension ©, .

Proof. By Theorem A,® has the form® (s) = cos + ¢(s), whereco € N U {0}
andp € D. Foreactwh =1,2,3,...,n*isin?H, sothatCe(n*) = n= % is
in #, because of the assumption. It follows thiat®), is holomorphic inC.;
almost surely iny [3, Thm. 5.1]. By (4.2), we have

n= ) = ()™ ®) , (s) (5.1)

in the half-plane of uniform convergence for the Dirichlet segie$he right-hand
side of (5.1) provides an analytic extension of the functiofix(s) to C.. for al-
most every character. Since a countable union of null sets is a null set, it follows
that, almost surely iry, the functions:=®x® (n = 1, 2,3,...) are all analytic

in C,. Fix a charactery with this property and consider the functions®x®

for all n € N. The only possible singularities i@, of the function®, (s) are at
the zeros of the function®x = x(n)~°(n=?),. Letsg € C, and letm,(so, x)
stand for the multiplicity of the zero a§ that the analytic extension of the function
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n~®x develops (ifm,(so, x) = O then there is no zero). We calculate that, in the
half-plane of absolute convergence for the Dirichlet sepi@3,

(n7<l>x(s))/ )

The left-hand part of (5.2) is a meromorphic functiorn with at most simple
poles, so the relationship (5.2) provides such a meromorphic continuation of the
function @’ (s) to C.... Let p(so, x) = lim_,(s — s0) P’ (s) be the residue of

@’ (s) ats = so. The residue of the left-hand side of (5.2) at the point so
equals the multiplicityn,,(so, x), an integer. Therefore, foreagh= 2,3 4, .. .,

the numbep (sq, x) logn is an integer, which is possible onlyaf(sg, x) = 0, in

which casen ,(so, x) = 0 for all n. The proof of the proposition is completel]

6. The Necessity

In this section we shall demonstrate the following claim:

If a function®: C4/» — Cy/» generates a continuous composition op-
erator Co: H — H, so that®(s) = cos + ¢(s) with ¢cg € N U {0}
and ¢ € D, then (a)if ¢o = 0then® extends to a holomorphic map-
ping C. — Cyo; and (b) if co > 0 then® extends to a holomorphic
mappingC, — C,.

Proof. We assume thab: Cy,» — Cy/» generates a continuous composition op-
eratorCe: H — H and let f € H. In view of (4.5), for everyx € E we have
that

(f 0 ®),(5) = fyeo o Dy(s), s€Cy (6.1)

Sincef o ® € H, Theorem 4.1 in [3] shows that, almost surelyin(f o ®), ex-
tends holomorphically t6& ., . Also, by Proposition 5.1, extends analytically
to C; almost surely iny. Moreover, for characteristico = 1,2, 3,..., fyo IS
almost surely holomorphically extendabledq because the transformatign—
x°° is measure-preserving (the pre-image of a set has the same mass as the set
itself). However, for characteristicy = 0 we havef,«o = f, and all we know
about this function is that it is holomorphic @,».

We first consider the case of characterisgie= 1, 2, 3, . . . and lety € E belong
to the set of full measure with the properties thab ®),, ,, and f,<o all extend
analytically toC_,.. We wish to prove tha®, mapsC. to C, for then Proposition
4.1, applied toD, in place of®, guarantees thab also map< .. to C. (after all,
® is a vertical limit function of®, ). The imaged,(C,) of C under®, is acon-
nected open subset @f, because the holomorphic mappifig is nonconstant.
Let @ consist of all points € C.;. for which ®,(s) € C4; it is an open subset of
C. Since®, mapsCy,, to Cy5, it follows that 2 contains the half-plan€y,,.
Let Qg be the connectivity component &f that contain<C,,,. Then, by analytic
continuation, (6.1) holds for all € Q¢. If € is not all of C,. then the same goes
for ¢, and we can find a boundary poiste 92 with sg € C .. By wiggling the
point slightly, we can make sure thé@t (so) # O, so thatd, is conformal near
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so. The point®, (so) lies on the imaginary axi&C.., and (6.1) (which is valid for
s € Qo) shows thatf,« has an analytic extension across a small segment of the
imaginary axis nea®, (sq). This extension is given byf o &), o cp;l, where the
mappingd);l refers to the inverse to the conformal map ttkgt defines from a
neighborhood ofg to a neighborhood o®, (so). In conclusion, if®, does not
mapC; to C,, then £, <« necessarily extends holomorphically across a small seg-
ment of the imaginary axis.

We shall see that there is a functigre 7 such that, almost surely jn f, does
not extend analytically to any region larger th@n (in other words, the imagi-
nary axis is a natural boundary for the functigy); hence, the same can be said
for the functionf,«o. This means that, for many (in fact, almost all) characjers
considered herefj,«o hasaC . as a natural boundary, which forcég to mapC.,
to C,, as claimed.

We turn to the remaining case of characterisgic= 0, where the relation (6.1)
simplifies a bit as follows:

(f o CD)X(S) = f o <D)((S)v NS (Cl/2~ (62)

Let x € E belong to the set of full measure with the properties {tfat ¢), and
@, both extend analytically t& . We wish to prove tha®, mapsC.. to Cy, for
then Proposition 4.1, applied t, in place of®, guarantees thak also map<
to Cy/2. As before, let2 be the open set of all pointse C,. for which &, (s) €
Cy/2. Sinced, mapsCy,, to Cy/2, 2 contains the half-plan€y,,. Let ¢ be the
connectivity component a2 that containsCy/,. Then, by analytic continuation,
(6.2) holds for alls € Q2. If Q2 is not all of C,. then the same goes ftxy, and we
can find a boundary point € 3Q2¢ with 5o € C,. By wiggling the point slightly,
we can make sure that’ (so) # 0, so that®, is conformal neaso. The point
®,(s0) liesonthe vertical in@Cy,,, and (6.2), valid fos € Q¢, shows thatf has
an analytic extension across a small segment of thedlw,. In conclusion, if
@, does not may . to Cy/», then f necessarily extends holomorphically across
a small segment of the vertical lird,».

We shall see that there is a functigre H that does not extend holomorphically
to any region larger tha@y/». This forces®, to mapC, to Cy/», as claimed.

Let us consider the function

f) =) app,
p

where the summation runs over the primeand
1
ap = —.
V/plogp
Clearly, f € H. The vertical limit functions off are

F() = apx(p)p™.
p

wherex(p), p =2,35,7,11, . .., are to be thought of as independent uniformly
distributed stochastic variables @nso they have mean value 0 and variance 1. By
a theorem of H. Helson (see [3, Thm. 4.4]), the Dirichlet sefiggs) converges
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on C;, so thatf,(s) is holomorphic onC, almost surely inx. The stochastic
variablef, (s) has variancg_ ,|a,|*p~>"*, which diverges fofis < 0; hence, by

the central limit theorem [2] (applicable because of the regular behavior of each
term|a,|?p~2"), the quantity

Zp:pSN apx(p)p~’
> penlay 2p 2

tends to the unit Gaussian distribution in the complex plan& as> +oo for
Ns < 0, so thath a,x(p)p~* diverges almost surely. It follows that the ab-
scissa of convergence fgf, is almost surely the lin&s = 0. The derivative of

the functionf, is
fi(s) = Zx(p)p” vz,

Wintner [8] and Kahane [4; 5, Chap. 1V] have studied random Dirichlet series of
this type.

ProposiTION 6.1 (Wintner, Kahane). Let g, be the Dirichlet series

gx(s) =Y x(p)p~* 2
P

(a) For a dense set of characteys the linedis = % is both abscissa of conver-
gence and natural boundary for the serigs

(b) For almost all characterg, the linefs = 0is both abscissa of convergence
and natural boundary for the serigs .

The actual statements by Wintner and Kahane do not fully cover this case—mainly
because they use the two-point &et—1} in place of the unit circlé as the basis
for the probability statements—but the proofs easily modify to include our state-
ment of the proposition. Wintner does not prove part (a) as stated here; rather, he
claims the assertion holds feome nonemptset of characters. Kahane’s proof of
(a) invokes the Baire category theorem.

We now show thatf does not extend beyorfd,,,. It follows from the rela-
tion f, = —g, that the functionf, has the same two properties (a) and (b) of
Proposition 6.1 as does the functigp. The final touches of the proof run as fol-
lows. For adense setgf f, hasCy/, as its maximal domain of holomorphy (i.e.,
it hasdCy,, as natural boundary), so this is true in particular for a single charac-
ter xo. We then let the functiory,, play the role off in the argument treating
the case:o = 0. Moreover, for almost al, f, hasC.. as its maximal domain of
holomorphy.

The claim is proved. O

7. The Sufficiency

In this section, we show that the necessary condition formulated in the previous
section is also sufficient. That is:
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If ®(s) = cos + ¢(s) (Wherecg € NU {0} and ¢ € D) extends holo-
morphically to a mapping; — C.. if ¢o € Nandto a mapping, —
Cy)2 if cg = 0O, then the composition operatdt, defines a bounded
operatorH — H.

Proof. Let us introduce two real parametérs;, with 0 < &, n < +o00. We shall
introduce concepts for the variakiiebearing in mind that we can always plug in
n in place ofé. Consider the conformal transformatign: C, — D given by
s—§

Ye(s) sTe
and note thatys (§) = 0. We denote by 2(C, &) the image of the usual Hardy
spaceH 2(D) on the unit disc under this transformation. The space itself does not
depend on the actual value of the paramétén fact, it coincides with the space
H?(C,) encountered in [3]), but as we pull back the norm fréhi(D) we get
different—though equivalent—norms. To be more explicit, the norm in the space
H?(C4, &) is defined by the relation

-1
||f||Hi2(C+,E) =|fo l/fg ||H2(]D>),

which we may write as

I .0 = /R |FGn)2 die (0),

where; (¢) is the image of the normalized arc length measure on the circle under
the transformationy, :
§_1

We first consider the case of characteristic=1, 2, 3,.... Then® mapsC
to C,., so that the holomorphic functio#, o @ o wgl mapsD into itself. By a
version of Littlewood’s subordination principle [9, Thm. 10.4.4] we have, for a
holomorphic mapping: D — D,

1+ |w(0)|

F < ——|F , FeH?*D). 7.1
Il O60||HZ(]D)_1_|w(0)||| | 2wy (D) (7.0)

dig(t) = dt.

If we apply (7.1) to themapping functiony, c ® o l/fgl, we obtain the norm esti-
mate

L+ [y 0 @ 0 ¥ (0)]
1= [y, 0 @ oy O

_ 1+ [y, (D(8))]
1— [y (®(8))]
For larges, ® (&) is close tacpé, and if we choose = coé then

Veos (P(5)) > 0 asé§ — oo,

2 2
<
”f © CI)||Hi2(C+,§) —= ”f”HIZ((CJrf)

1 e,y fEHACLE). (7.2)



Composition Operators on the Space of Dirichlet Series 327

from which it follows that
L et (PED]
1= [Yee (P&
We now let f stand for a finite Dirichlet series,

N
f(s) = Zann“
n=1

with N € N, and observe thaf is bounded inC, and is hence an element of
Hiz((C+, &) foreacht (0 < & < +00). By (4.1) we have that, for =1,2,3,. . .,
n~—® € D and hencef o ® € D, too, by forming finite linear combinations. More-
over, asf is bounded orC, and® mapsC, to C., we obtain thatf - ® is a
bounded holomorphic function db, , just asf is (in fact, f is bounded on every
half-planeCy, 6 € R). In other words, botty and f - ® belong toM, the multi-
plier space of{, and in particular t& itself. Forg € M, Carlson’s theorem (see
[3]) states that, for alb (0 < 0 < +00),

as & — +oo. (7.3)

1 T
E/ lg(o +in?dt — |lg,|IZ, asT — +oo, (7.4)
-T

wherebyg,(s) = g(o + s) is a horizontal translate @f. If g(s) =Y o2 b,n"*,

then
o
lgall3, = n 2 |bal?,
n=1

which increases tq}g||§_L aso decreases to.@ne deduces also from (7.4) that,
forallo (0 < o < +00),

Igo 2, ¢ = /|g(a +i)2dre(t) = llgoll5, as& — +oo,  (7.5)
! ’ R

basically, the reason is that the probability measuréecomes more and more
spread out evenly on the real lineias> +o0, just as the normalized (probability)
Lebesgue measure on the intervall], T] does asT — +oo. A rigorous argu-
ment can be based on the integral identity

%- 1 _ 4%- /+OO T

TE2H+12 7w Jy (24 T2)2
where we use the notation for the characteristic function of the sét Applying
(7.2) to the functiond,(s) = ® (o + s) in place of®(s) and using; = cp&, we
arrive at

L_rm()dT,

: L+ Yoot (@0 + )]
1o @elineo = Ty @ + o) 1Y e conr

(7.6)

The limit calculation (7.3) is valid fob, as well, so that

14 [Yeoe (P +0))
1= [Weee (PG +0))l

asé — +oo.
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Now leté — +oo in (7.6), and observe by (7.4) that the norm b &, in

H?(C,, &) approacheg f o ||, and that the norm of in H?(C , co€) tends

to || fll= (f is already a horizontal translate of a functiont). We find that
If o @6l < IfI3, 0<o <+oo;

by lettingo — 0, we obtain

I o @15, < I£113- (7.7)
Approximation of general elements # by finite Dirichlet series extends the in-
equality (7.7) to allf € H, which completes the proof in the case of characteristic
C0=1,2,3,....

In the remaining case of characteristic= 0, the proof is quite similar. By as-
sumption,® mapsC_ to Cy/». Let Sy, be the mappingy/2(s) = s — % We again
consider the spacB?(C, &) as well as a relative, the spat&?(Cy,2, &), which
we obtain as the image &2(C ., £) under the mapping — f o S1/2; the space
Hiz((Cl/z, &) is supplied with the induced norm. The functigpo Si/o0 ® o wg‘l
mapsD to D, so by (7.1) andsome rewriting of norms we have, for evefye
H?A(Cy2, 1),
1+w%o&po¢ow?mnwmz
L= [y 0 Syze oy Q)] G

1+ Yy 0 Sy20®E), . 5
= (AT
119y 0 Sy20 @) i (Cy2m
Let c; be the first coefficient in the series expansion

oo
(s) =) e
n=1

we know from Section 3 thatc; > % By Lemma 3.1® (&) — c¢1 asé — +oo,
so that

14 1Yy 0 Syz0 @@ 1+ 3l
1—yyoSy20 @@ 1— |Yy(cr— D
By [3, Thm. 4.11], for every functiorf € H we have an estimate

2
<
1f o @Wee, g <

(7.8)

as & — 4o0.

T+1
/ |f(o +it)2dt < C|| fllx,

wheres > 1, 7 € R, andC is an absolute constant. By letting— 1 and mak-

ing a small calculation, we see that the functifns an element oHiZ((Cl/z, n)
and that

I k2 cyyom = LIS llae,  f €H, (7.9)

for some constant () that only depends on. If, as before, we replacé with
®, (0 < 0 < +00) and then apply (7.5), from (7.8) we obtain, letting> +oo,

1+ Yy (c1— )|

2 2
If o @l < 11y
T e At
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in the limit asoc — 0,

1+ Yy (ci— D)l

o d2, < 2 . 7.10
17 @lh = 1y e b Mheyan (7-10)

Sincec; is an interior point irCy,2, the fraction represents a bounded expression.
The desired result now follows from (7.9) arilQ). If one would like to improve
the estimate of the norm of the composition operétgr it is possible to use the
freedom of choice ofj; actually, with only minor modifications, we can obtain
(7.10) forcomplexn € C, which allows us to picly = ¢1 — % in which case the
composition norm bound in7(10) attains the minimum value 1. This, however,
does not mean that the norm of the composition opedfor{ — H is 1, be-
cause we still must take into account the constamp in (7.9). O

REMARK. It follows from the proof of Theorem B that, for characteristic=
1,2, 3 ..., the composition mappings: H — H is contractive. This is not so
for ¢o = 0. If, for instance,® is constant (say(s) = c¢1), then the norm of
Ce: H — H equals the norm of the point evaluation functionatatwhich is
expressed by the square roomg + MNecyp). The zeta functior (s) is real-valued
on 11, +oo[ with values in ]J1 +oo[, and it has a pole at 1.
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