
The Composition Operators
on the Space of Dirichlet Series

with Square Summable Coefficients

Jul ia Gord on & Håkan Hedenmal m

0. Introduction

LetH be the space of Dirichlet series with square summable coefficients;f ∈H
means that the function has the form

f(s) =
∞∑
n=1

ann
−s , (0.1)

with
∑∞

n=1|an|2 < +∞. By the Cauchy–Schwarz inequality, the functions in
H are all holomorphic on the half-planeC1/2 = { s ∈ C : <s > 1

2 }. The coeffi-
cients{an}n can be retrieved from the holomorphic functionf(s), so that‖f ‖2H =∑∞

n=1|an|2 defines a Hilbert space norm onH. We consider the following problem.

For which analytic mappings8:C1/2→ C1/2 is the composition oper-
ator C8(f ) = f B8 a bounded linear operator onH?

In this paper, a complete answer to this question is found. In the process, we
encounter the spaceD of functionsf,which in some (possibly remote) half-plane
Cθ = { s ∈ C : <s > θ } (θ ∈ R) admit representation by a convergent Dirich-
let series (0.1). It is, in a sense, a space of germs of holomorphic functions. It is
important to note that if a Dirichlet series converges onCθ then it converges ab-
solutely and uniformly onCϑ , providedϑ > θ + 1 (see e.g. [3]). In terms of the
coefficients,f ∈ D means thatan grows at most polynomially in the index vari-
ablen. We shall use the notationC+ to denote the right half-plane,C+ = { s ∈C :
<s > 0 }, although strictly speaking we probably ought to keep the notation con-
sistent and writeC0 instead. Throughout the paper, the termhalf-planewill be
used in the restricted sense of a half-plane of the typeCθ for someθ ∈R.

It should be mentioned that, by the closed graph theorem, every composition
operatorC8 : H→ H is automatically bounded.

1. Results

The first question that arises naturally in connection with this problem is: For
what functions8 analytic in some half-planeCθ and mapping it intoC1/2 does
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the composition operatorC8 map the spaceH intoD? This question is answered
by the following theorem.

Theorem A (θ ∈R). An analytic function8 : Cθ → C1/2 generates a compo-
sition operatorC8 : H→ D if and only if it has the form

8(s) = c0s + ϕ(s),
wherec0 ∈N ∪ {0} andϕ ∈D.
The next theorem answers the original question posed in Section 0.

Theorem B. An analytic function8 : C1/2 → C1/2 defines a bounded compo-
sition operatorC8 : H→ H if and only if:

(a) it is of the form
8(s) = c0s + ϕ(s),

wherec0 ∈N ∪ {0} andϕ ∈D; and
(b) 8 has an analytic extension toC+, also denoted by8, such that

(i) 8(C+) ⊂ C+ if 0< c0, and
(ii) 8(C+) ⊂ C1/2 if c0 = 0.

Theorem B is a Dirichlet series analog of the classical Littlewood subordination
principle [6]. Indeed, in case8 fixes the point+∞, which happens precisely
when 0< c0, the composition operatorC8 is a contraction onH. The proof of
Theorem A is given in Section 3. The proof of Theorem B is divided into pieces,
supplied in Sections 4, 5, 6, and 7. An important ingredient is the notion of a ver-
tical limit function, defined in Section 2.

The nonnegative integerc0, which appears both in Theorem A and in Theo-
rem B, contains much information about the mapping function8. We call thisc0

thecharacteristicof 8.

2. Background Material

A character is a multiplicative mapping from the set of positive integersN =
{1,2,3, . . . } to the unit circleT, that is, a functionχ : N→ T with the property
χ(mn) = χ(m)χ(n) for everym, n ∈ N. The characters constitute a group, de-
noted by4, with respect to pointwise multiplication. The group4 is in fact the
dual group to the multiplicative group of positive rationalsQ+. If we equipQ+
with the discrete topology then the dual group4 becomes compact, and as such it
has a unique Haar measureρ of total mass 1. In [3] it was shown how to identify4
with T∞, the Cartesian product of countably many copies of the unit circle. In the
process, the Haar measureρ corresponds to the product measure onT∞ obtained
from the normalized arclength measure onT. Whenever in the sequel we speak
of “almost surely” regarding characters, it is with respect to the Haar measureρ.

We shall need the notion of avertical limit function[3]. Given a characterχ
and a Dirichlet seriesf ∈D with series expansion (0.1), we consider the function
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fχ(s) =
∞∑
n=1

anχ(n)n
−s ,

which is inD;moreover, iff is inH thenfχ is also inH. It was shown in [3] that
all these functionsfχ are precisely the normal limits of the vertical translates of
f, justifying the terminology. IfCθ is a half-plane where the Dirichlet seriesf(s)
is a bounded holomorphic function, then allfχ(s) are bounded there, too. More-
over, the supremum norm is the same for all of them, because from anyfχ we can
retrieve the originalf by applying the same limit process in reverse.

An important fact is the following result, due to H. Bohr (see [3]): If a function
f ∈ D with series expansion (0.1) has an analytic extension to a bounded func-
tion on a half-planeCθ , then the Dirichlet series (0.1) converges uniformly on all
slightly smaller half-planesCϑ with ϑ > θ.

3. Representation of8 by a Dirichlet Series

For the proof of Theorem A, we shall need this simple and well-known lemma.

Lemma 3.1. Let m be a positive integer, and letf(s) = ∑∞
n=m ann

−s be a
Dirichlet series from the classD, starting from the indexm. Thenmsf(s)→ am
uniformly as<s →+∞.
We are now able to prove the necessity part of Theorem A. Suppose thatf B8∈D
for everyf ∈H. In particular,k−8(s) ∈D for all k ∈N. Denote the corresponding
series by

k−8(s) =
∞∑

n=N(k)
b(k)n n

−s , (3.1)

whereN(k)∈N is the index of the first nonzero coefficient. Multiplying the equal-
ity (3.1) byN(k)s and applying Lemma 3.1, we arrive at

exp(s logN(k)−8(s) logk)→ b
(k)

N(k) as <s →+∞, (3.2)

with uniform convergence. Here, “log” stands for natural logarithm. Observe that
the function ofs in the exponent on the left-hand side is holomorphic inCθ (the
half-plane appearing in the formulation of Theorem A), so it mapsCθ into a con-
nected domain. Moreover, it maps any half-planeCϑ contained inCθ into a con-
nected domain as well. On the other hand, it follows from (3.2) that, fors with
sufficiently large real part, the values ofs logN(k)−8(s) logk are contained in
the setU(k)+ 2πiZ, whereZ is the set of all integers andU(k) is an arbitrarily
small open neighborhood of the point logb(k)N(k) (here “log” stands for the principal
branch of the logarithm). Hence, there must exist an integerq such that

s logN(k)−8(s) logk→ logb(k)N(k) + 2πiq as <s →+∞. (3.3)

Dividing the both parts of (3.3) bys logk (for k > 1), we have

lim
<s→+∞

8(s)

s
= logN(k)

logk
,
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with uniform convergence (by Lemma 3.1). It follows that the real number

c0 = logN(k)

logk

does not depend onk. We can look at this relation from the other side:N(k) =
k c0 is an integer for all positive integersk.

The following result is indubitably known. However, we have not been able to
find a suitable reference.

Lemma 3.2. A real numberc such thatnc is an integer for all positive integersn
is itself a nonnegative integer.

Proof. In the casec < 0 the statement is obvious: on the one hand,nc → 0 as
n → +∞; on the other, it must be an integer for alln. Hencenc = 0 for suffi-
ciently largen, which is impossible.

The casec > 0 can be reduced to a similar situation by means of taking finite
differences. We recall the definition of thefirst differenceof a sequence{xn}∞n=1 as
the sequence{1xn}∞n=1 where1xn = xn+1− xn. The differences of higher orders
are then defined inductively.

Let k be the least integer that is≥ c. We consider the sequence{yn}∞n=1, yn =
1kxn, with xn = nc. We observe thatyn = O(nc−k) asn→∞, and we consider
a series of the formf(t) = ∑∞j=0 aj t

c−j that is absolutely convergent fort > 1.
The difference operation1f(t) = f(t + 1) − f(t) carries it into a series of the
same kind, but starting fromj = 1, as

(t +1)c − t c = t c((1+1/t)c −1) = ct c−1+ c(c −1)

2
t c−2 + · · · , t > 1,

with absolute convergence on the indicated interval. It follows thatk applications
of the operation1 to f(t) results in a series starting fromj = k, which proves
the observation.

Hence,yn→ 0 asn→∞ unlessc equals the integerk. Since the numbersyn
are integers, we must then haveyn = 0 for sufficiently largen, sayn ≥ N. On the
other hand, the sequence{yn}∞n=1 is the restriction to the setN of a functiony(z),
which is holomorphic onC\]−∞,0] and grows no faster than a power of|z| as
|z| → ∞. If such a function vanishes on the setN ∩ [N,+∞[, it must be identi-
cally zero. Henceyn ≡ 0, and since the kernel of1k consists of those sequences
that are polynomials inn of degreek −1 or less, the original sequencexn = nc is
a polynomial of degree at mostk − 1. This is possible only ifc ≤ k − 1, which
contradicts the definition ofk. Hencec = k ∈N, as desired.

The casec = 0 is trivial.

From the lemma we conclude thatc0 ∈ N ∪ {0}. We shall now consider more
closely the functionϕ(s) = 8(s)− c0s. We claim thatϕ belongs toD.

Multiplying (3.1) byk c0s , we obtain

k−ϕ(s) =
∞∑

m=k c0

b(k)m

(
m

kc0

)−s
.
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Dropping the superscript, we can write this relationship as

k−ϕ(s) = b̃0 + b̃1

(
1+ 1

k c0

)−s
+ b̃2

(
1+ 2

k c0

)−s
+ · · · = b̃0 + h(s), (3.4)

where the notatioñbj stands for the shifted coefficients,b̃j = b(k)k c0+j . Combining
(3.4) with (3.3), we obtain

−ϕ(s) logk = log b̃0 + log(1+ h(s)/b̃0)+ 2πiq

on a half-plane where the principal branch of the logarithm defines a holomorphic
function, which is assured if|h(s)| < |b̃0| there. The Dirichlet series

∞∑
m=k c0

b(k)m m
−s

is inD, so that (by Lemma 3.1) the functionh(s) defined by (3.4) tends to 0 uni-
formly as<s →+∞. Expanding log(1+ z) in a Taylor series aroundz = 0 with
z = h(s)/b̃0, we have

−ϕ(s) logk =
∞∑
n=1

(−1)n−1

n
b̃−n0 h(s)n + log b̃0 + 2πiq,

with convergence fors with |h(s)| < |b̃0|.
Let us open the brackets in every expressionh(s)n and rearrange the terms,

which is allowed in the half-plane of absolute convergence ofh(s). It follows that
ϕ(s) is a series of the form

ϕ(s) =
∞∑
q=0

∞∑
n1,. . . ,nq=1

βn1,. . . ,nq

(
1+ n1

k c0

)−s
· · ·
(

1+ nq

k c0

)−s
,

which converges absolutely in some half-plane. In other words,ϕ(s) is a conver-
gent Dirichlet series over the multiplicative semigroupS(k c0) generated by the
set{1+ j/k c0}j∈N. Note thatϕ(s) does not depend onk, and that it is a Dirich-
let series overS(k c0) for everyk ∈ N. The following lemma now completes the
proof of the assertion thatϕ(s) belongs to the classD.

Lemma 3.3 (c0 ∈ N ∪ {0}). The intersection ofS(k c0) over all k ∈ N consists
only of positive integers.

Hence a Dirichlet series over the intersection of allS(k c0) is an ordinary Dirichlet
series.

Proof of Lemma 3.3.Suppose that a numberα lies in the intersection ofS(2c0)

andS(3c0). As an element ofS(2c0), α admits a representation by a fraction with
denominator(2c0)n for somen ∈ N. Similarly, α is a fraction with denominator
(3c0)m for somem ∈N. Sincec0 is a nonnegative integer, this is possible only if
α is an integer.
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It now follows that8 has the form8(s) = c0s + ϕ(s), wherec0 ∈ N ∪ {0} and
ϕ ∈D. This completes the necessity part of Theorem A.

We turn to the sufficiency part, and suppose that8 is a holomorphic mapping
Cθ → C1/2 of the form

8(s) = c0s +
∞∑
n=1

cnn
−s ,

wherec0 ∈ N ∪ {0} and the seriesϕ(s) = ∑∞
n=1cnn

−s converges in some half-
plane. A series inD, the space of convergent Dirichlet series, actually converges
absolutely in the half-plane one unit to the right of the half-plane of convergence;
in particular, this applies toϕ. We shall show that the compositionf B8 belongs
toD for every functionf ∈H. Fork = 1,2,3, . . . , we expand

k−8(s) = k−c0sk−ϕ(s) = k−c0s−c1 exp

(
−(logk)

∞∑
n=2

cnn
−s
)

= k−c0s−c1
∞∏
n=2

exp(−(logk)cnn
−s). (3.5)

The relationship (3.5) holds in the half-plane of absolute convergence of the
seriesϕ(s). Let us take an elementf(s) =∑∞k=1ak k

−s , f ∈H. We want to plug
the Dirichlet series expansion for everyk−8(s), obtained by opening the brackets
in the product in (3.5), intof B8(s) and so derive a Dirichlet series for the com-
positionf B8 by rearrangement of the terms. To justify this operation, we need
to check that the series formally obtained this way converges absolutely in some
half-plane. That is, we need to prove the absolute convergence of the Dirichlet
series obtained by expanding

∞∑
k=1

ak k
−8(s) =

∞∑
k=1

ak k
−c0s−c1

∞∏
n=2

(
1+

∞∑
j=1

(−cn logk)j

j!
n−js

)
. (3.6)

The absolute convergence of the Dirichlet series expanded from (3.6) follows from
the convergence of

∞∑
k=1

|ak|k−<(c0s+c1)
∞∏
n=2

(
1+

∞∑
j=1

(|cn| logk)j

j!
n−j<s

)

=
∞∑
k=1

|ak|k−c0<s−<c1
∞∏
n=2

k |cn|n
−<s

=
∞∑
k=1

|ak|k−c0<s−<c1 exp

(
logk

∞∑
n=2

|cn|n−<s
)
. (3.7)

The expression
∑∞

n=2|cn|n−<s is uniformly bounded in some half-planes ∈ Cϑ
(ϑ ∈R). In the case of characteristicc0 = 1,2,3, . . . , the absolute convergence of
the right-hand side of (3.7) inCϑ follows, providedϑ is positive and sufficiently
large.
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In case of characteristicc0 = 0, we need to check that<c1 >
1
2 . Once this has

been done, by Lemma 3.1 it follows that
∞∑
n=2

|cn|n−<s → 0 as <s →+∞,

with uniform convergence. Hence, in some sufficiently remote half-planeCϑ , the
inequality

∞∑
k=1

|ak|k−<c1 exp

(
logk

∞∑
n=2

|cn|n−<s
)
≤
∞∑
k=1

|ak|k−1/2−ε

holds with someε > 0, and the convergence of the right-hand part of (3.7) follows.
We turn to the assertion<c1 >

1
2 . The function8 : Cθ → C1/2 has the expan-

sion8(s) = ϕ(s) =∑∞n=1cnn
−s , and by Lemma 3.1,c1 equals the limit of8(s)

as<s →+∞. Hence<c1 ≥ 1
2, almost what we want to prove. If8 is constant,

then8(s) = c1 and<c1 >
1
2 . If 8 is not constant then there is a first indexn =

2,3,4, . . . such that the coefficientcn is different than 0; call this indexN. Then,
for large positive values of<s,

8(s) = ϕ(s) = c1+ cNN−s +O((N +1)−<s). (3.8)

In a sufficiently remote half-planeCϑ , the error term is negligible compared with
the second termcNN−s , so that the image ofCϑ under8 is a slightly perturbed
(punctured) disk centered atc1. In particular, since8mapsCθ intoC1/2, the point
c1 must be an interior point inC1/2.

The proof of Theorem A is now complete.

4. Mapping Properties

We shall need to extend the notationfχ to the class of functions of the formf(s) =
cs+ g, wherec is a real-valued constant andg is a Dirichlet series inD. For such
functions,fχ(s) will mean

fχ(s) = cs + gχ(s).
It should be pointed out that we cannot interpretfχ as a vertical limit function of
f in this case.

Let 8 be a holomorphic functionCθ → C1/2 (θ ∈ R) of the form8(s) =
c0s + ϕ(s), wherec0 ∈N∪ {0} andϕ ∈D. Forn = 1,2,3, . . . , the functionn−8

is a product of two elements ofD:

n−8(s) = n−c0sn−ϕ(s), (4.1)

so that we have
(n−8)χ(s) = (n−c0s)χ (n

−ϕ(s))χ .

Sincen−c0s = (nc0)−s , we have

(n−c0s)χ = χ(n)c0n−c0s ,
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and sinceϕ ∈D, we also have

(n−ϕ)χ (s) = n−ϕχ(s)

in the half-plane of uniform convergence for the Dirichlet seriesϕ(s). This leads
to the identity

(n−8)χ(s) = χ(n)c0n−8χ(s). (4.2)

We shall need the following relation between the mapping properties of8 and8χ.

Proposition 4.1(θ, ϑ ∈R). Suppose8 : Cθ → Cϑ is a holomorphic mapping
of the form8(s) = c0s + ϕ(s) for somec0 ∈N ∪ {0} andϕ ∈D. Then, for each
χ ∈4, 8χ extends to a holomorphic mapping8χ : Cθ → Cϑ .

Proof. For t ∈R, the vertical translate of8(s) by t units is

8(s + it) = ic0t + c0s + ϕ(s + it),
which mapsCθ toCϑ . The function

8t(s) = 8(s + it)− ic0t = c0s + ϕ(s + it)
also mapsCθ to Cϑ , and these functions8t form a normal family. The various
normal limits of8t(s) ast tends to infinity are the functions8χ(s). As such, the
functions8χ mapCθ to C̄ϑ ∪ {∞}. By the open mapping property of holomor-
phic functions, the only way that a point at the boundary ofCϑ (as a subset of the
Riemann sphere) could appear in the image is if the function8χ is constant. But
this is excluded automatically ifc0 = 1,2,3, . . . , and if c0 = 0 then this is pos-
sible only if8 is constant itself, in which case the constant value belongs toCϑ .
The assertion follows.

Proposition 4.2(θ, ϑ ∈R). Suppose8 : Cθ → Cϑ is a holomorphic mapping
of the form8(s) = c0s + ϕ(s) for somec0 ∈ N ∪ {0} andϕ ∈D. Then, if ϕ is
constant, that constant value lies in the closed half-planeC̄ϑ−c0θ ; if the function
ϕ is nonconstant then it extends to a holomorphic mappingϕ : Cθ → Cϑ−c0θ .

Moreover, for everyθ ′ ∈ R with θ ′ > θ, the harmonic function<ϕ is bounded
from above onCθ ′ , and if ϕ is nonconstant thenϕ mapsCθ ′ toCϑ ′−c0θ for some
ϑ ′ = ϑ ′(θ ′) > ϑ. In all these statements we may replaceϕ by any of its vertical
limit functionsϕχ, χ ∈4.
Proof. By assumption,<8(s) = c0<s+<ϕ(s) > ϑ for s ∈Cθ , so that<ϕ(s) >
ϑ− c0<s for s ∈Cθ . Asϕ ∈D, the functionϕ is bounded in some sufficiently re-
mote half-plane, which together with this estimate from below on<ϕ shows that
2−ϕ is bounded throughoutCθ . By the maximum modulus principle, the supre-
mum of the modulus of 2−ϕ is at most 2c0θ−ϑ , which leads to<ϕ(s) ≥ ϑ − c0θ

throughoutCθ . If ϕ is nonconstant then we also obtain strict inequality, by the
open mapping property of holomorphic maps.

We need to show thatϕ mapsCθ ′ to Cϑ ′−c0θ for someϑ ′ > ϑ, provided that
ϕ is nonconstant and thatθ ′ > θ; an application of the foregoing arguments then
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extends the statement toϕχ . It suffices to show that the supremum norm of 2−ϕ on
Cθ ′ is strictly less than 2c0θ−ϑ . We can use the well-known fact that, for a bounded
holomorphic functionF in Cθ , the associated function

MF(t) = sup{ |F(s)| : s ∈C t }, θ ≤ t < +∞, (4.3)

is decreasing and logarithmically convex (see [7, Thm. 12.8]). We apply this to
the functionF(s) = 2−ϕ(s), which tends to the constant value 2−c1 as<s →
+∞, wherec1 is the first coefficient in the series expansionϕ(s) =∑∞n=1cnn

−s .
Since the functionϕ is assumed to be nonconstant, it has an expansion analogous
to (3.8):

ϕ(s) = c1+ cNN−s +O((N +1)−<s) as <s →+∞ (4.4)

for someN = 2,3,4, . . . , wherecN 6= 0. Because of the termcNN−s , the image
of a remote half-plane underϕ is a slightly perturbed disk centered atc1, so that
the function 2−ϕ there assumes values larger in modulus than 2−<c1. It follows that
MF(t) cannot be constant. Because logMF(t) is convex, it must drop off imme-
diately to the right oft = θ : M(t) < M(θ) ≤ 2c0θ−ϑ for all t > θ.

It remains to see that the function<ϕ is bounded from above onCθ ′ if θ ′ >
θ. We know that the function 2−ϕ is inD and is a bounded holomorphic function
onCθ . By Bohr’s theorem (see Section 2), the Dirichlet series corresponding to
2−ϕ converges uniformly onCθ ′ for eachθ ′ > θ. If <ϕ were not bounded from
above onCθ ′ , we could find a sequence{sn}n of points inCθ ′ such that 2−ϕ tends
to 0 along the sequence. Sinceϕ(s)→ c1 uniformly as<s →+∞, the sequence
must have<sn bounded asn→ +∞. As we form vertical translates of 2−ϕ, we
find that one of them, say(2−ϕ)χ , has a zero on the interval [θ ′,+∞[ along the
real line. But we know from before that there are no such zeros.

That we may replaceϕ by ϕχ (χ ∈4) in the statement follows from Proposi-
tion 4.1, applied to the functionϕ in place of8, except to see that<ϕχ is bounded
from above onCθ ′ if θ ′ > θ. But this is easy: As 2−ϕ is bounded away from 0 on
Cθ ′ , the same holds true for its vertical limit functions 2−ϕχ , whence the desired
conclusion follows.

We should clarify the connection between the composition operatorsC8 andC8χ.
Proposition 4.3 (θ ∈ R). Suppose8 : Cθ → C1/2 is a holomorphic mapping
of the form8(s) = c0s + ϕ(s) for somec0 ∈N ∪ {0} andϕ ∈D. Then, forf ∈
H andχ ∈4, the following relation holds:

(f B8)χ(s) = fχc0 B8χ(s), s ∈Cθ . (4.5)

Proof. By Proposition 4.1,8χ mapsCθ to C1/2. Sincef ∈ H implies that
fχc0 ∈ H, the right-hand side of (4.5) makes sense as a holomorphic function
onCθ . Turning to the left-hand side, we expandf in a Dirichlet seriesf(s) =∑∞

n=1ann
−s , which converges absolutely onC1/2, so that

f B8(s) =
∞∑
n=1

ann
−8(s), s ∈Cθ . (4.6)
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For n = 1,2,3, . . . , the supremum norm of functionn−8(s) on Cθ is bounded
by n−1/2. In view of Proposition 4.2, we can improve this assertion to the follow-
ing: For θ ′ > θ, the supremum norm of the functionn−8(s) onCθ ′ is bounded
by n−1/2−ε for someε = ε(θ ′) > 0. We spell out the details as follows. For
characteristicc0 = 0, ϕ is nonconstant and so the proposition applies to yield the
desired result; for characteristicc0 = 1,2,3, . . . , we use the fact that<8(s) =
c0<s +<ϕ(s) ≥ c0<s − c0θ + 1

2 .

It follows that the norm sum
∞∑
n=1

|an|‖n−8‖H∞(Cθ ′ )

converges, where the norm with the subscript is the uniform norm onCθ ′ . Let
fN(s) =

∑N
n=1ann

−s be a partial sum, and note that, by (4.2),

(fN B8)χ(s) =
N∑
n=1

anχ(n)
c0n−8χ(s) = (fN)χc0 B8χ(s), s ∈Cθ .

The partial sum functionsfN B8 converge uniformly tof B8 onCθ ′ . Since the
operation of taking vertical limits is continuous with respect to the uniform norm,
we have that

(f B8)χ(s) =
∞∑
n=1

anχ(n)
c0n−8χ(s) = fχc0 B8χ(s), s ∈Cθ ′ .

Since the numberθ ′ (θ ′ > θ) is arbitrary, the assertion follows.

5. Almost Sure Analyticity

Here, we shall obtain the following partial result.

Proposition 5.1. If the holomorphic function8 : C1/2→ C1/2 has the property
that it induces a bounded composition operatorC8 : H→ H, then almost every
(with respect toχ) function8χ has an analytic extension toC+.

Proof. By Theorem A,8 has the form8(s) = c0s + ϕ(s), wherec0 ∈N ∪ {0}
andϕ ∈ D. For eachn = 1,2,3, . . . , n−s is inH, so thatC8(n−s) = n−8(s) is
in H, because of the assumption. It follows that(n−8)χ is holomorphic inC+
almost surely inχ [3, Thm. 5.1]. By (4.2), we have

n−8χ(s) = χ(n)−c0(n−8)χ(s) (5.1)

in the half-plane of uniform convergence for the Dirichlet seriesϕ. The right-hand
side of (5.1) provides an analytic extension of the functionn−8χ(s) toC+ for al-
most every characterχ. Since a countable union of null sets is a null set, it follows
that, almost surely inχ, the functionsn−8χ(s) (n = 1,2,3, . . .) are all analytic
in C+. Fix a characterχ with this property and consider the functionsn−8χ(s)

for all n ∈ N. The only possible singularities inC+ of the function8χ(s) are at
the zeros of the functionn−8χ = χ(n)−c0(n−8)χ . Let s0 ∈C+, and letmn(s0, χ)

stand for the multiplicity of the zero ats0 that the analytic extension of the function
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n−8χ develops (ifmn(s0, χ) = 0 then there is no zero). We calculate that, in the
half-plane of absolute convergence for the Dirichlet seriesϕ(s),

(n−8χ(s))′

n−8χ(s)
= −8′χ(s) logn. (5.2)

The left-hand part of (5.2) is a meromorphic function inC+ with at most simple
poles, so the relationship (5.2) provides such a meromorphic continuation of the
function8′χ(s) to C+. Let ρ(s0, χ) = lim s→s0(s − s0)8

′
χ(s) be the residue of

8′χ(s) at s = s0. The residue of the left-hand side of (5.2) at the points = s0

equals the multiplicitymn(s0, χ), an integer. Therefore, for eachn = 2,3,4, . . . ,
the numberρ(s0, χ) logn is an integer, which is possible only ifρ(s0, χ) = 0, in
which casemn(s0, χ) = 0 for all n. The proof of the proposition is complete.

6. The Necessity

In this section we shall demonstrate the following claim:

If a function8 : C1/2 → C1/2 generates a continuous composition op-
erator C8 : H → H, so that8(s) = c0s + ϕ(s) with c0 ∈ N ∪ {0}
and ϕ ∈ D, then: (a) if c0 = 0 then8 extends to a holomorphic map-
pingC+ → C1/2; and (b) if c0 > 0 then8 extends to a holomorphic
mappingC+ → C+.

Proof. We assume that8 : C1/2→ C1/2 generates a continuous composition op-
eratorC8 : H → H and letf ∈ H. In view of (4.5), for everyχ ∈ 4 we have
that

(f B8)χ(s) = fχc0 B8χ(s), s ∈C1/2. (6.1)

Sincef B8∈H, Theorem 4.1 in [3] shows that, almost surely inχ, (f B8)χ ex-
tends holomorphically toC+. Also, by Proposition 5.1,8χ extends analytically
to C+ almost surely inχ. Moreover, for characteristicc0 = 1,2,3, . . . , fχc0 is
almost surely holomorphically extendable toC+ because the transformationχ 7→
χc0 is measure-preserving (the pre-image of a set has the same mass as the set
itself ). However, for characteristicc0 = 0 we havefχc0 = f, and all we know
about this function is that it is holomorphic onC1/2.

We first consider the case of characteristicc0 = 1,2,3, . . . and letχ ∈4 belong
to the set of full measure with the properties that(f B8)χ, 8χ, andfχc0 all extend
analytically toC+. We wish to prove that8χ mapsC+ toC+ for then Proposition
4.1, applied to8χ in place of8, guarantees that8 also mapsC+ toC+ (after all,
8 is a vertical limit function of8χ). The image8χ(C+) ofC+ under8χ is a con-
nected open subset ofC, because the holomorphic mapping8χ is nonconstant.
Let� consist of all pointss ∈C+ for which8χ(s) ∈C+; it is an open subset of
C+. Since8χ mapsC1/2 toC1/2, it follows that� contains the half-planeC1/2.

Let�0 be the connectivity component of� that containsC1/2. Then, by analytic
continuation, (6.1) holds for alls ∈�0. If � is not all ofC+ then the same goes
for�0, and we can find a boundary points0 ∈ ∂�0 with s0 ∈C+. By wiggling the
point slightly, we can make sure that8′χ(s0) 6= 0, so that8χ is conformal near
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s0. The point8χ(s0) lies on the imaginary axis∂C+, and (6.1) (which is valid for
s ∈ �0) shows thatfχc0 has an analytic extension across a small segment of the
imaginary axis near8χ(s0). This extension is given by(f B8)χ B8−1

χ , where the
mapping8−1

χ refers to the inverse to the conformal map that8χ defines from a
neighborhood ofs0 to a neighborhood of8χ(s0). In conclusion, if8χ does not
mapC+ toC+, thenfχc0 necessarily extends holomorphically across a small seg-
ment of the imaginary axis.

We shall see that there is a functionf ∈H such that, almost surely inχ, fχ does
not extend analytically to any region larger thanC+ (in other words, the imagi-
nary axis is a natural boundary for the functionfχ); hence, the same can be said
for the functionfχc0 . This means that, for many (in fact, almost all) charactersχ

considered here,fχc0 has∂C+ as a natural boundary, which forces8χ to mapC+
toC+, as claimed.

We turn to the remaining case of characteristicc0 = 0, where the relation (6.1)
simplifies a bit as follows:

(f B8)χ(s) = f B8χ(s), s ∈C1/2. (6.2)

Let χ ∈4 belong to the set of full measure with the properties that(f B8)χ and
8χ both extend analytically toC+. We wish to prove that8χ mapsC+ toC1/2 for
then Proposition 4.1, applied to8χ in place of8, guarantees that8 also mapsC+
to C1/2. As before, let� be the open set of all pointss ∈ C+ for which8χ(s) ∈
C1/2. Since8χ mapsC1/2 toC1/2, � contains the half-planeC1/2. Let�0 be the
connectivity component of� that containsC1/2. Then, by analytic continuation,
(6.2) holds for alls ∈�0. If � is not all ofC+ then the same goes for�0, and we
can find a boundary points0 ∈ ∂�0 with s0 ∈C+. By wiggling the point slightly,
we can make sure that8′χ(s0) 6= 0, so that8χ is conformal nears0. The point
8χ(s0) lies on the vertical line∂C1/2, and (6.2), valid fors ∈�0, shows thatf has
an analytic extension across a small segment of the line∂C1/2. In conclusion, if
8χ does not mapC+ toC1/2, thenf necessarily extends holomorphically across
a small segment of the vertical line∂C1/2.

We shall see that there is a functionf ∈H that does not extend holomorphically
to any region larger thanC1/2. This forces8χ to mapC+ toC1/2, as claimed.

Let us consider the function

f(s) =
∑
p

app
−s ,

where the summation runs over the primesp and

ap = 1√
p logp

.

Clearly,f ∈H. The vertical limit functions off are

fχ(s) =
∑
p

apχ(p)p
−s ,

whereχ(p), p = 2,3,5,7,11, . . . , are to be thought of as independent uniformly
distributed stochastic variables onT, so they have mean value 0 and variance1. By
a theorem of H. Helson (see [3, Thm. 4.4]), the Dirichlet seriesfχ(s) converges
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onC+, so thatfχ(s) is holomorphic onC+ almost surely inχ. The stochastic
variablefχ(s) has variance

∑
p |ap|2p−2<s ,which diverges for<s < 0; hence, by

the central limit theorem [2] (applicable because of the regular behavior of each
term|ap|2p−2<s), the quantity∑

p :p≤N apχ(p)p
−s∑

p :p≤N |ap|2p−2<s

tends to the unit Gaussian distribution in the complex plane asN → +∞ for
<s < 0, so that

∑
p apχ(p)p

−s diverges almost surely. It follows that the ab-
scissa of convergence forfχ is almost surely the line<s = 0. The derivative of
the functionfχ is

f ′χ(s) = −
∑
p

χ(p)p−s−1/2.

Wintner [8] and Kahane [4; 5, Chap. IV] have studied random Dirichlet series of
this type.

Proposition 6.1 (Wintner, Kahane). Letgχ be the Dirichlet series

gχ(s) =
∑
p

χ(p)p−s−1/2.

(a) For a dense set of charactersχ, the line<s = 1
2 is both abscissa of conver-

gence and natural boundary for the seriesgχ .
(b) For almost all charactersχ, the line<s = 0 is both abscissa of convergence

and natural boundary for the seriesgχ .

The actual statements by Wintner and Kahane do not fully cover this case—mainly
because they use the two-point set{1,−1} in place of the unit circleT as the basis
for the probability statements—but the proofs easily modify to include our state-
ment of the proposition. Wintner does not prove part (a) as stated here; rather, he
claims the assertion holds forsome nonemptyset of characters. Kahane’s proof of
(a) invokes the Baire category theorem.

We now show thatf does not extend beyondC1/2. It follows from the rela-
tion f ′χ = −gχ that the functionfχ has the same two properties (a) and (b) of
Proposition 6.1 as does the functiongχ . The final touches of the proof run as fol-
lows. For a dense set ofχ, fχ hasC1/2 as its maximal domain of holomorphy (i.e.,
it has∂C1/2 as natural boundary), so this is true in particular for a single charac-
ter χ0. We then let the functionfχ0 play the role off in the argument treating
the casec0 = 0. Moreover, for almost allχ, fχ hasC+ as its maximal domain of
holomorphy.

The claim is proved.

7. The Sufficiency

In this section, we show that the necessary condition formulated in the previous
section is also sufficient. That is:
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If 8(s) = c0s + ϕ(s) (wherec0 ∈ N ∪ {0} and ϕ ∈ D) extends holo-
morphically to a mappingC+ → C+ if c0 ∈N and to a mappingC+ →
C1/2 if c0 = 0, then the composition operatorC8 defines a bounded
operatorH→ H.

Proof. Let us introduce two real parametersξ, η, with 0< ξ, η < +∞. We shall
introduce concepts for the variableξ, bearing in mind that we can always plug in
η in place ofξ. Consider the conformal transformationψξ : C+ → D given by

ψξ(s) = s − ξ
s + ξ ,

and note thatψξ(ξ) = 0. We denote byH 2
i (C+, ξ) the image of the usual Hardy

spaceH 2(D) on the unit disc under this transformation. The space itself does not
depend on the actual value of the parameterξ (in fact, it coincides with the space
H 2

i (C+) encountered in [3]), but as we pull back the norm fromH 2(D) we get
different—though equivalent—norms. To be more explicit, the norm in the space
H 2

i (C+, ξ) is defined by the relation

‖f ‖H2
i (C+,ξ)

= ‖f B ψ−1
ξ ‖H 2(D),

which we may write as

‖f ‖2
H2

i (C+,ξ)
=
∫
R
|f(it)|2 dλξ (t),

whereλξ (t) is the image of the normalized arc length measure on the circle under
the transformationψξ :

dλξ (t) = ξ

π

1

t 2 + ξ2
dt.

We first consider the case of characteristicc0 = 1,2,3, . . . . Then8 mapsC+
to C+, so that the holomorphic functionψη B 8 B ψ−1

ξ mapsD into itself. By a
version of Littlewood’s subordination principle [9, Thm. 10.4.4] we have, for a
holomorphic mappingω : D→ D,

‖F B ω‖H 2(D) ≤
1+ |ω(0)|
1− |ω(0)| ‖F‖H 2(D), F ∈H 2(D). (7.1)

If we apply (7.1) to themapping functionψη B8 B ψ−1
ξ , we obtain the norm esti-

mate

‖f B8‖2
H2

i (C+,ξ)
≤ 1+ |ψη B8 B ψ−1

ξ (0)|
1− |ψη B8 B ψ−1

ξ (0)|
‖f ‖2

H2
i (C+,ξ)

= 1+ |ψη(8(ξ))|
1− |ψη(8(ξ))| ‖f ‖

2
H2

i (C+,η)
, f ∈H 2

i (C+, ξ). (7.2)

For largeξ, 8(ξ) is close toc0ξ, and if we chooseη = c0ξ then

ψc0ξ (8(ξ))→ 0 as ξ →+∞,
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from which it follows that

1+ |ψc0ξ (8(ξ))|
1− |ψc0ξ (8(ξ))|

→ 1 as ξ →+∞. (7.3)

We now letf stand for a finite Dirichlet series,

f(s) =
N∑
n=1

ann
−s

with N ∈ N, and observe thatf is bounded inC+ and is hence an element of
H 2

i (C+, ξ) for eachξ (0< ξ < +∞). By (4.1) we have that, forn = 1,2,3, . . . ,
n−8 ∈D and hencef B8∈D, too, by forming finite linear combinations. More-
over, asf is bounded onC+ and8 mapsC+ to C+, we obtain thatf B 8 is a
bounded holomorphic function onC+, just asf is (in fact,f is bounded on every
half-planeCθ , θ ∈R). In other words, bothf andf B8 belong toM, the multi-
plier space ofH, and in particular toH itself. Forg ∈M, Carlson’s theorem (see
[3]) states that, for allσ (0< σ < +∞),

1

2T

∫ T

−T
|g(σ + it)|2 dt → ‖gσ‖2H as T →+∞, (7.4)

wherebygσ(s) = g(σ + s) is a horizontal translate ofg. If g(s) =∑∞n=1bnn
−s ,

then

‖gσ‖2H =
∞∑
n=1

n−2σ |bn|2,

which increases to‖g‖2H asσ decreases to 0. One deduces also from (7.4) that,
for all σ (0< σ < +∞),

‖gσ‖2H2
i (C+,ξ)

=
∫
R
|g(σ + it)|2 dλξ (t)→ ‖gσ‖2H as ξ →+∞, (7.5)

basically, the reason is that the probability measureλξ becomes more and more
spread out evenly on the real line asξ →+∞, just as the normalized (probability)
Lebesgue measure on the interval [−T, T ] does asT → +∞. A rigorous argu-
ment can be based on the integral identity

ξ

π

1

ξ2 + t 2 =
4ξ

π

∫ +∞
0

T

(ξ2 + T 2)2
1[−T,T ](t) dT,

where we use the notation 1A for the characteristic function of the setA. Applying
(7.2) to the function8σ(s) = 8(σ + s) in place of8(s) and usingη = c0ξ, we
arrive at

‖f B8σ‖2H2
i (C+,ξ)

≤ 1+ |ψc0ξ (8(σ + ξ))|
1− |ψc0ξ (8(σ + ξ))|

‖f ‖2
H2

i (C+,c0ξ)
. (7.6)

The limit calculation (7.3) is valid for8σ as well, so that

1+ |ψc0ξ (8(ξ + σ))|
1− |ψc0ξ (8(ξ + σ))|

→ 1 as ξ →+∞.
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Now let ξ → +∞ in (7.6), and observe by (7.4) that the norm off B 8σ in
H 2

i (C+, ξ) approaches‖f B8σ‖H and that the norm off in H 2
i (C+, c0ξ) tends

to ‖f ‖H (f is already a horizontal translate of a function inM). We find that

‖f B8σ‖2H ≤ ‖f ‖2H, 0< σ < +∞;
by lettingσ → 0, we obtain

‖f B8‖2H ≤ ‖f ‖2H. (7.7)

Approximation of general elements inH by finite Dirichlet series extends the in-
equality (7.7) to allf ∈H, which completes the proof in the case of characteristic
c0 = 1,2,3, . . . .

In the remaining case of characteristicc0 = 0, the proof is quite similar. By as-
sumption,8mapsC+ toC1/2. LetS1/2 be the mappingS1/2(s) = s− 1

2 . We again
consider the spaceH 2

i (C+, ξ) as well as a relative, the spaceH 2
i (C1/2, ξ), which

we obtain as the image ofH 2
i (C+, ξ) under the mappingf 7→ f B S1/2; the space

H 2
i (C1/2, ξ) is supplied with the induced norm. The functionψη B S1/2 B8 Bψ−1

ξ

mapsD to D, so by (7.1) andsome rewriting of norms we have, for everyf ∈
H 2

i (C1/2, η),

‖f B8‖2
H2

i (C+,ξ)
≤ 1+ |ψη B S1/2 B8 B ψ−1

ξ (0)|
1− |ψη B S1/2 B8 B ψ−1

ξ (0)|
‖f ‖2

H2
i (C1/2,η)

= 1+ |ψη B S1/2 B8(ξ)|
1− |ψη B S1/2 B8(ξ)| ‖f ‖

2
H2

i (C1/2,η)
. (7.8)

Let c1 be the first coefficient in the series expansion

8(s) =
∞∑
n=1

cnn
−s;

we know from Section 3 that<c1 >
1
2 . By Lemma 3.1,8(ξ)→ c1 asξ →+∞,

so that

1+ |ψη B S1/2 B8(ξ)|
1− |ψη B S1/2 B8(ξ)| →

1+ |ψη(c1− 1
2)|

1− |ψη(c1− 1
2)|

as ξ →+∞.

By [3, Thm. 4.11], for every functionf ∈H we have an estimate∫ τ+1

τ

|f(σ + it)|2 dt ≤ C‖f ‖H,

whereσ > 1
2, τ ∈R, andC is an absolute constant. By lettingσ → 1

2 and mak-
ing a small calculation, we see that the functionf is an element ofH 2

i (C1/2, η)

and that
‖f ‖H2

i (C1/2,η)
≤ L(η)‖f ‖H, f ∈H, (7.9)

for some constantL(η) that only depends onη. If, as before, we replace8 with
8σ (0< σ < +∞) and then apply (7.5), from (7.8) we obtain, lettingξ →+∞,

‖f B8σ‖2H ≤
1+ |ψη(c1− 1

2)|
1− |ψη(c1− 1

2)|
‖f ‖2

H2
i (C1/2,η)

;
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in the limit asσ → 0,

‖f B8‖2H ≤
1+ |ψη(c1− 1

2)|
1− |ψη(c1− 1

2)|
‖f ‖2

H2
i (C1/2,η)

. (7.10)

Sincec1 is an interior point inC1/2, the fraction represents a bounded expression.
The desired result now follows from (7.9) and (7.10). If one would like to improve
the estimate of the norm of the composition operatorC8, it is possible to use the
freedom of choice ofη; actually, with only minor modifications, we can obtain
(7.10) forcomplexη ∈C+, which allows us to pickη = c1− 1

2, in which case the
composition norm bound in (7.10)attains the minimum value 1. This, however,
does not mean that the norm of the composition operatorC8 : H → H is 1, be-
cause we still must take into account the constantL(η) in (7.9).

Remark. It follows from the proof of Theorem B that, for characteristicc0 =
1,2,3, . . . , the composition mappingC8 : H→ H is contractive. This is not so
for c0 = 0. If, for instance,8 is constant (say,8(s) = c1), then the norm of
C8 : H → H equals the norm of the point evaluation functional atc1, which is
expressed by the square root ofζ( 1

2 +<c1). The zeta functionζ(s) is real-valued
on ]1,+∞[ with values in ]1,+∞[, and it has a pole at 1.
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