On Boundary Regularity of Analytic Discs

EVvGENI M. CHIRKA, BERNARD COUPET,
& ALEXANDRE B. SUKHOV

1. Introduction

In this paper we study the boundary behavior of analytic discs near the zero set of
a nonnegative plurisubharmonic function or a totally real submanifold’of
Our main result is the following.

THEOREM 1.1. Let Q2 be a complex manifoldg a plurisubharmonic function in
Q,and f: A — Q a holomorphic map of the unit dist c C into  such that
pof >0andpo f(¢) —> 0as¢ € A tends to an open arg C dA. Assume
that, for a certain pointz € y, the cluster seC(f, a) contains a pointp € Q
such thatp is strictly plurisubharmonic in a neighborhood pf Then f extends
to a Holder1/2-continuous mapping in a neighborhoodawbn A U y. If, more-
over,p > 0 and the functiorp? is plurisubharmonic in a neighborhood pf for
some) € [1/2, 1], then f is HOlder1/26-continuoug Lipschitz, if6 =1/2) ina
neighborhood ofi on A U y.

Although this result is new even in the case when the fungti@of classC*,
we note thap is supposed only to be upper semicontinuous. In what follows we
write p.s.h. for plurisubharmonic. A functigmis calledstrictly p.s.h. in a neigh-
borhood ofp with local coordinates if, for somes > 0, the functionp — ¢|z|? is
p.s.h. in a neighborhood of; p is called strictly p.s.h. ir2 if it is strictly p.s.h.
at each point of2.

It seems that the assertion of Theorem 1.1 is new even in the caseSwisen
a domain in the complex plare (i.e., f is a usual holomorphic function in).
Some comments on the conditions of the theorem may be listed as follows.

(1) The manifold2 cannot be arbitrary because of the existence condition of the
described functiom. For instance, it implies that all the manifolésn {p < ¢},
¢ > 0, are hyperbolic at the point by a theorem of Sibony [14].

(2) Itis enough to assume thatis p.s.h. in a neighborhood of its zero set only.
Then, replacing2 by this neighborhood and by f o ¢ whereg: A - VN Ais
a conformal mapping for a suitable neighborhdod y, we are in the setting of
the theorem.

(3) If f is known to be continuous at the point then the situation becomes
purely local and we can work witfe as a domain itC”. But one of the essential
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difficulties is thatC( f, a) can bea priori unbounded ir2, and we can localize
the situation at the very end of the proof. Thus, the important special case when
Q is a domain inC” is not simpler than the general case.

Nevertheless, a typical situation in the theorem is wieis a domain inC”
and f is a bounded holomorphic map with cluster set contained in the zero set of
p. In this case we have the following.

CoroLLARY 1.2. LetD be adomainirC”, p ap.s.h. function irD with the zero
setX = p~10), and f: A — D* := {p > 0} a bounded analytic disc such that
the cluster seC(f, y) on an open argy C 9A is contained inX. Assume that,
for a certain pointa € y, the cluster se€(f, a) contains a poinp € X such that,
for somes > 0, the functiono(z) — ¢|z|? is p.s.h. in a neighborhood ¢f. Then

f extends to a Holdet/2-continuous mapping in a neighborhoodawobn A U y.

If, moreover, > 0andp? is p.s.h. in a neighborhood ¢f for some € [1/2, 1],
then f is Holder 1/ 26-continuous in a neighborhood afon A U y.

Indeed, it is sufficient to note that, for any closed subdrc y, the cluster set
is a compact set contained ky sincep is upper semicontinuous, we obtain that
p(x) > 0asz — y'.

We emphasize that there is no assumption of boundedness type in our main
theorem.

The regularity of analytic discs was studied by many authors. Our approach is
quite elementary and is partially inspired by some ideas of [12] and [14]; itis based
on estimates of the Kobayashi—Royden infinitesimal metric in a “tube” neighbor-
hood of a maximal totally real manifold and on the technique of boundary contin-
uous extension of holomorphic mappings between domai@i$ iwhich we adapt
to our case. From this point of view one can consider our main result as an analog
of the Forstneric—Rosay theorem [6] on the boundary continuity of holomorphic
mappings between strictly pseudoconvex domairfs’in

In formulating Theorem 1.1 we had in mind two important special cases. The
first one concerns analytic discs in the complement of a strictly pseudoconvex do-
main. In this case we have the following.

CoroLLARY 1.3. Letp be astrictly p.s.h. function i, andletf: A — Qt =
{p > 0} be an analytic disc such thato f(¢) — 0as¢ — y and the inter-
sectionC(f, a) N 2 is not empty for eaclh € y. Then f extends to a Holder
1/2-continuous map o U y.

This result is new even fa2 = C” andp(z) = |z|?> — 1, that is, for analytic discs
in the exterior of the unit ball itC". (Note the deep contrast with the boundary
behavior of analytic discs properly embedded in the ball, which can be wild in
general.)

The second main case is about the behavior of analytic discs near totally real
manifolds and their generalizations, which we introduce as follows. A closed sub-
setX in a complex manifold? is calledtotally real if there exists a strictly p.s.h.
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nonnegative functiop in a neighborhood’ of X such thatX = U N p~(0). This
definition is justified by the following well-known assertion about strictly p.s.h.
functions of clas<?.

(i) Let X = p~%(0) be the zero set of a nonnegative strictly p.s.h. function of
classC? in a complex manifold. The is locally contained in a maximal
totally real manifold of clas§’™.

(i) Conversely, ifM is a totally real submanifold of clags® in @, thenM can
be represented as the zero set of a cexgistrictly p.s.h. nonnegative func-
tion p of classC? in a neighborhood oM. Moreover, for every : 1/2 <
6 < 1there exists a neighborhoddof M in  such thaip? is p.s.h. inU.

See [7] for the proof of (i) and [4; 9] for (ii), where the statements are proved for
domains inC"; the general case follows in an obvious way by a partition of unity.
As another corollary of Theorefinl, weobtain the following statement.

CoRrOLLARY 1.4. LetM be atotally realC*-submanifold of2, and letf: A —
Q be an analytic disc such that(A) cc @ and the cluster sef'( f, y) is con-
tained inM. Then f is Holder «¢-continuous om U y for anya < 1.

In C", a somewhat less restrictive condition can be assumed as follows.

CoRrROLLARY 1.5. Let M be a totally realC*-submanifold of a domai® c C”,
andlet f: A — Q be a bounded analytic disc such th@tf, y) is contained in
M. Then f is Holder -continuous om\ U y for anyo < 1.

Classical examples from the one-variable theory show that this result is precise in
terms of Hélder classes (in generdl,is not Lipschitz). For the case wheké is
of smoothness- 1, similar results were obtained in [1; 4].

We note also that our method allows one to control the Hélder constants and to
obtain compactness theorems for families of analytic discs. One can control the
constants under perturbationsifas well.

If the defining strictly p.s.h. functiop is notC2-smooth, then the structure of
the totally real seX : p = 0 can be more complicated. Even for a functiowith
Lipschitz first partial derivatives, the zero sétcan have corners. For instance, it
was shown in [5] that the union of two real rays@hissued from the origin is a
totally real set iff the angle between them is strictly larger tha8 (rays can be
replaced by smooth curves). Nevertheless, in these cases also, Theorem 1.1 guar-
antees th&/2-smoothness up tp.

If 2 is a Runge domain if” and X is a compact subset &t, then the con-
dition X = p~(0) for some nonnegative p.s.h. functiongnis equivalent to the
polynomial convexity ofX (see [8]). Hence, the structure of the zero set of a non-
negative p.s.h. function (not necessarily strictly p.s.h.) can be rather complicated,
and we need additional assumptionscoim order to have the boundary regularity
of attached discs.
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2. An Estimate of the Kobayashi Metric

In what follows we need estimates of the Kobayashi metric in a “tube” neighbor-
hood of a totally real set. Our approach is based on the technique of Sibony [14],
who proved a global assertion that we localize here with uniform estimates. We
remark also that our proof is partially inspired by some ideas of [3; 16; 17].

In what follows, Kp(z, &) denotes the value of the Kobayashi—Royden infin-
itesimal metric in a domairD C  on the pair(z, &), wherez € D and¢ ¢
T,Q2. Denote byB the Euclidean unit ball it©". The following estimate of the
Kobayashi metric is of crucial importance for our approach.

ProrosiTioN 2.1. Let D be a domain inQ, letz: U — 3B be a coordinate
neighborhood irf2 with the center ap € D (z(p) = 0), and let|&| be the norm of
avector inT |y induced by the Euclidean norm@". Letu be a negative p.s.h.
function in D such that the function — ¢|z|? is p.s.h. inD N U and |u| < B in

D N z71(2B) for some constants, B > 0. Then there exists a positive constant
M = M(e, B) (independent af) such that

Kp(w, &) = MIg| - |u(w)| ™2
for eachw € D Nz Y(B) and£ € T,,Q2.

The coordinate neighborhodd is not assumed to be containedzin the main
point here is just the behavior & near the boundary @b in Q. Note also that
we do not assume any condition of the boundedness or hyperbolicity type.

Proof. We begin with an estimate of the Kobayashi metric that is not precise
enough but does allow us to localize the metric. €k) be a smooth nonde-
creasing function ofR , such thaty(x) = x for0 < x < 1/2 andy(x) = 1
for x > 3/4. For any pointg with |z(¢)| < 2, we define the functionv, =
V(lz — z(g)[®e™ in DNU and¥, = e*" in D\ U; the positive constarit will
be chosen later. Then the function Mg = log v (|z — 2(q)|?) + ruis p.s.h.in
D\{|z — z(¢)|?> < 3/4}. There exists a constadt > 0 depending only on the
functiony such that the function logi(|z — z(¢)|?) + A|z|? is p.s.h. inU. On the
other hand, it follows by the assumption aithat the function: — ¢|z|? is p.s.h.
onD N{|z — z(g)| <1}. Hence, taking. = A/e we obtain the function log,,
whichis p.s.h. orD N {|z — z(g)| < 1} and therefore everywhere .

Let nowg: A — D be a holomorphic map such that0) = ¢ € U with
|z(q)| < 2. Then the functiorv(¢) = LI/q(g(;“))/lg“|2 is defined in the punctured
unit discA\{0} and bounded from above by 1asends to the unit circle. Itis sub-
harmonic onA\{0}, and lim sup_ o v(¢) = |g’(0)|> exp(Au(q)/e) (as usual, we
denote byg’(0) the imagedgo(1) of the unit vectold = 1in oA ~ C). Hence,

v is subharmonic im\ and it follows by the maximum principle th&g'(0)|? <
exp(—Au(q)/¢e). By the definition of the Kobayashi metric it follows that, for any
g in D N z71(2B) and¢ in 7,2, one has
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Kp(q. &) = exp(Au(q)/2¢)|5] = N(e, B)|§], @

whereN = N(g, B) = exp(—AB/2¢).
Let dp be the Kobayashi pseudodistancelinand letBp(g,8) = {z € D :
dp(q, z) < 8} be the Kobayashi ball of radidsin D centered iny. We will use
the estimate (1) in order to compare the Kobayashi ball with a suitable Euclidean
ball; this allows us to control the distortion of holomorphic discs centeredmear

LemMA 2.2, For any pointg in D N z7Y(B) and anys < N, the Kobayashi ball
Bp(q, §) is contained inD N {|z — z(g)| < §/N}.

Proof. Let w be a point ofD and letl'(¢, w) be the set of all differentiable paths
y:[0,1] — D joining ¢ andw, with y(0) = ¢ andy (1) = w. Recall that, by
[13], the Kobayashi infinitesimal metriky (w, &) is upper semicontinuous on the
holomorphic tangent bundle @ and

1
dp(q,w)=__inf / Kp(y (@), y'(t) dt. 2
vel(q,w) Jo

SettingG = {w’ e U : |z(w") — z(g)| < 1}, we have (using (1) and (2)):

dp(q,w) > inf / Kp(y(@®),y'())dt > N inf / ly'(®)] dt.
rel(q,w) J,-1G) vellg,w) J,-1(c)

For anyy € I'(¢q, w), the last integral represents the Euclidean length of the
part of y contained inG. Hence, ifw is in G then the last inf is not less than
|z(w) — z(g)|. Indeed, if the pathy is contained inG then its length is>
lz(w) — z(q)|; If y intersects the boundary of this ball then the length of its
connected component joiniggand a boundary point@¥ is> 1> |z(w) —z(g)|.

If wis notinG (in particular, ifw is not inU), then the length can be simply
estimated from below by 1.
Thus, we have

dp(w,q) = Nmin{l, |z(w) — z(g)|}, weDNT,

3)
and dp(w,q) >N, w¢U.

In view of (3), the relationw € Bp (g, 8) implies thatw € U and|z(w) — z(¢)| <
8/N. Note also that, for any & § < N, the Kobayashi balBy (g, §) is nonempty
because we have the trivial upper estimate of the Kobayshi distareebinthe
Kobayashi distance in a Euclidean ball centeregland contained iD N U. O

Now we continue the proof of Proposition 2.1. lyebe as before, withir(x) = x
forx <1/2 andy(x) = 1foranyx > 1. Forw € DNz Y(B) andi, 8 > 0 we set
@5 5. = ¥z — z(w)|?/BHe* in DN U. The functiond, g ,, is well-defined in
D NU and takes its values in [@]. There exists a consta@t> 0 depending only
on the functiony such that the function lo@;. 4., + (C/B? — Ae)|z|2is p.s.h. in
DNU. Settingh = 1/|u(w)| andB? = C|u(w)|/e, we obtain a functiord,, such
that log®,, is p.s.h.inD N U.



276 E. M. CHIRKA, B. CouPET, & A. B. SUKHOV

Sets = (e?Y —1)/(e?N + 1) (so the Poincaré radius of the difg| < s} in
A is equal toN). It follows by Lemma 2.2 that, for any holomorphic mapping
g: A — D such thatg(0) = wis in D N z71(B), one has the inclusiog(sA) C
DNz Y(2B). Let f: A — D be a holomorphic map withi(0) = w and f'(0) =
£/a for &£ € T,Q. Thenv(¢) = ®,(f(¢))/[¢|? is a well-defined subharmonic
function onsA\{0}, and limsup_,v(¢) = ¢|§%/eClu(w)|a?. Hence,v is sub-
harmonic insA and the maximum principle gives > &%2s|&|(eC|u(w)|)Y2.
By the definition of the Kobayashi metric, it follows that

Kp(w, &) > e"25]&|(eClu(w)|) Y2

This estimate completes the proof of Proposition 2.1. O

Note the difference of the obtained estimate from standard estimates of the Kobay-
ashi metric near boundary points of pseudoconvex domains. In our case, we do
the estimates in interior points but the uniformity of constants allows to “move” a
domain; we will use this feature in the next section.

3. Boundary Continuity and Regularity

This section is devoted to the proof of Theorérh, so weassume that we are in
the setting of this theorem. We begin with the following lemma, which is well
known.

LemMA 3.1. Let¢ be a positive subharmonic function isuch thatp (¢) — 0
as¢ tendstoan args C dA. Then, for every compact subgetc A U y, there
exists a constanty such thatp(¢) < Cx(1— |¢|) foranys e K N A.

Proof. Let V be a neighborhood gf N K such thatW = V N A is simply con-
nected and < 1in W, and letg: A — W be a conformal mapping. Then, by
the reflection principleg —* extends holomorphically across Hence, replacing

¢ by ¢ o g, we reduce the question to the case of a function that is uniformly
bounded inA. But then the assertion follows by an obvious estimate of the Pois-
son kernel. O

Fix a constans > 0 small enough so that the intersectipm (a + 8A) is com-
pact iny; we denote by2; the intersectiom N (a + §A). By Lemma 3.1, there
exists a constar® > 0 such that, for any in 5, one has

po f(§) =CA-[gD. 4

By hypothesis, the functiop is strictly p.s.h. in a neighborhood ¢f hence we
can assume there are local coordinate§/ — 3B centered ap and a constant
e > 0 such that the functiop — ¢|z|2 is p.s.h.inD N U.

LeEMMA 3.2. There exists a constart > 0 with the following property If ¢ is
an arbitrary point of Q,,, such thatf(¢) isin D N 7 Y(B), then

If' )] < AL — |y V2
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Proof. Setd = 1 — |¢|. Then the dis¢ + dA is contained inQ2;. Define the
domainD; = {w € D : p(w) < 2Cd }. Then it follows by (4) that the image
f(¢ + dA) is contained inD,, where the p.s.h. functiom,; (w) = p(w) — 2Cd

is negative. By Proposition 2.1, there exists a cons#ént 0 (independent of
d) such that, for any in D N z7%(B) and any£ in T,,Q, one haskp, (w, £§) >
M|&| - lug(w)|™Y2. On another hand, for the Poincaré metric in the disedA,
we haveK,;4a(¢, 7) = |t|/d for anyt in T;A ~ C. By the decreasing property
of the Kobayashi metric, for any one has

MIF' O 1Tl lua(FEN™2 < Kp, (f(0), £1(O)7) < Kevan§, 7) = |Tl/d.

Therefore,| f/(¢)] < M Yua(fF(O)|Y?/d. As —2Cd < ua(f(¢)) < 0, this im-
plies the desired statement with= M ~1(2C)Y/2. O

Lemma 3.2 implies thaf extends continuously to the poimtin view of an inte-
gration argument (as in [2]) that is a variation of the classical Hardy-Littlewood
theorem.

Indeed, since the cluster s€{ f, a) containsp, there exists a sequence of
pointsa, € A converging taa and such thaff(a,) — p. Assume to the con-
trary that there exists a constant- 0 and a sequendg,} C A converging to
a such thatd(f(a,), f(b,)) > r for all v. (Hered(-, -) is the distance if2 in-
duced by the metric from Proposition 2.1 which is Euclideali inz~%(B), where
z: U — 3B is the coordinate neighborhood pf z(p) = 0.) Choosev so large
thatd(f(a,), p) < 1/2. Consider the piecewise linear path(oriented froma,
tob,) in A formed by three segments: the first onedig, )], wherea/, € [0, a,]
and|a, — a)| = |a, — b,|; the second one is:[, b,], whereb] € [0, b,] and
|b, — b)| = |b, — a,|; and the last one i9[, b,]. Letc, € I, be the closest
point toa, alongl, such thatd(f(a,), f(c,)) > min(1/2,r), and letJ, be the
path inI, betweeru, andc,. Then £(J,) is contained inJ N z~%(B). Because
the metric inU is Euclidean with respect to the coordinatesve have| f/(¢)| =
18'0)1 = (Zlg/@1)*for s e V = fU), whereg = zo f: V — C" and
g = (g1, ..., g). By Lemma 3.2 and the construction &f, we have|g’(¢)| <
Al — |¢])Y2for all ¢ € J,. Thus, integrating alongd,, we obtain

lg(c) — g )|<A/'“” di_ | 410 bl +A/'b”' dr
gcy) —glay)| = -
) =02 la, — b, |Y? by L—=1)Y?

< 6Ala, — b,|Y?,

a contradiction. Hencef, extends continuously of U {a}; in particular, there is
a neighborhood’ > a such thatf(A N V') c U N z7XB).

Choose nows > 0 so small that the disig — a| < 38 is contained inV’,
and setW = A N{|¢ —a| < §}. Then, for arbitraryz, n € W, we choose (as
before);" € [0, ¢] and n" € [0, 5] such that|g — ¢'| = |n — 7'l = [¢ —nl;
we denote byl the path {,¢'] U [¢’,n'] U[n',n]. Sincel C W, we have
Ig’(r)] < AQ— |t|)"¥2 on I. Hence, integrating alond, we obtain as before
thatd (£ (¢), f(n)) = |g(¢) — g(n)| < BA|¢ — n|Y?. It follows that f extends to
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a Holder ¥2-continuous map o U {|¢| =1, |¢ — a| < 8}. This completes the
proof of the first part of Theorerhl.

For the proof of the regularity part we can assufite be continuous o U y;
we then need show only that the2b-Holderness ifo? is still plurisubharmonic.
The compositionp? o f is defined in a neighborhood (depending o) of the
arcy in A. Replacing (if necessaryj by the composition with a biholomorphic
mapping betweel N A andA, we can assume without loss of generality that the
compositionp? o f is defined inA. Applying Lemma 3.1 to the functiop? we
obtain that, for any in A, one has o f(¢) < C(1— [¢])Y?, where the positive
constaniC depends on.

Now it remains to repeat the former argument. Ldbe a point inA (suffi-
ciently close taz) and letd = 1— |¢|. Then the imagef(¢ + dA) is contained in
the domainD,; = {w € D : uy(w) = p(w) — 2CdY? < 0}. Repeating the proof
of Lemma 3.2, we obtain thatf'(¢)] < M Yus(f()|Y%/d. As —2CdY? <
uq(f(¢)) < 0, this implies the estimatgf'(¢)| < AL — |¢])¥Y?’~1in a neighbor-
hood ofa in A; hence,f is Holder 7 26-continuous om\ U y neara by the same
integration argument as before.

This completes the proof of the theorem. O

In conclusion we would like to indicate two possible applications of our results.

(1) Using Corollary 1.5, we derive that the area of an analytic digs) at-
tached to aC* smooth totally real manifold/ is finite (for other proofs, see [4;
15]). Moreover, the area of ({1 — 8 < |¢| < 1}) is estimated by’ (g)81~¢ when
8 — O for arbitrarye > 0.

(2) Corollary 1.5 and Lempert’s theory [10; 11] imply that any extremal disc for
the Kobayashi metric of a strongly convex domain with boundary is Hélder
a-continuous up to the boundary for every 1. (Lempert established the Holder
1/2-continuity.)
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