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1. Introduction

The program of knowing the Banach space properties of the spaceH∞ of bounded
analytic functions on the disk and their duals has been greatly stimulated since the
appearance of Pełczyński’s notes [Pe2] about Banach spaces of analytic func-
tions. Specifically, Pełczynski asked about some classical properties such as weak
sequential completeness, the Dunford–Pettis property, property (V), or being a
Grothendieck space. Most of this program has been realized in a series of papers
by Bourgain [B1; B3; B4]. Namely, Bourgain has shown thatH∞ and all its duals
have the Dunford–Pettis property, that all the odd duals ofH∞ are weakly sequen-
tially complete and have property (V∗), and thatH∞ is a Grothendieck space and
has property (V). Therefore, the following question is open: Are the even duals of
H∞ Grothendieck spaces, and do they have property (V)? In this paper, we give
a positive answer to this question. In fact, we prove several stronger results which
we detail below.

Properties (V) and (V∗) were introduced by Pełczyński in [Pe1]. Following
[Pe1], a Banach spaceX is said to have property (V) (resp. property (V∗)) if every
subsetW ⊂ X∗ (resp.W ⊂ X) satisfying

lim
n

sup
x∗∈W
|〈x∗, xn〉| = 0

(
resp. lim

n
sup
x∈W
|〈x∗n, x〉| = 0

)
for every weakly unconditionally Cauchy series

∑
n xn in X (resp.

∑
n x
∗
n in X∗)

is weakly relatively compact inX∗ (resp. inX). On the other hand, a Banach
spaceX is said to be a Grothendieck space if every sequence inX∗ that is weak-∗

convergent is also weakly convergent inX∗.
We also recall that ifX is a Banach space,I is an index set, andU is an ultrafilter

on I, then the ultrapower(X)U is defined as the quotient of the Banach space

`∞(I,X) := { (xi)i∈I ⊂ X : sup{ ‖xi‖ : i ∈ I } <∞}
by its closed subspace

NU := { (xi)i∈I ∈ `∞(I,X) : lim
i→U
‖xi‖ = 0 }.
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A detailed study of ultrapowers of Banach spaces can be found in Heinrich [H]
and Stern [St]. It is well known that ultrapowers are used as a convenient device
for the localizationof infinite-dimensional properties, and it is said thatX has
local property(P) if each ultrapower(X)U has property(P). Our central result
of this paper says that the disk algebraA has the local property (V). This improves
previous results due to Delbaen [De] and Kisliakov [K]. From this fact we de-
duce thatH∞ also has local property (V), a result that extends Bourgain’s theo-
rem [B3, Thm. 1]. We also show that, for every ultrafilterU, the dual of the ultra-
power(L1/H 1

0)U has property (V). Bearing in mind that, for a Banach spaceX,

one has
X∗ has property (V)⇒ X has property (V∗),

our result improves another result of Bourgain’s which says that(L1/H 1
0)U has

property (V∗). It is worth mentioning that there are examples that show the fore-
going implication is not an equivalence [SS1]. Finally, we obtain that the odd
duals ofA andH∞ are Grothendieck spaces, answering in the positive the ques-
tion stated at the beginning.

The rest of the paper is divided into two sections. In the first we present an ab-
stract condition about subalgebras of a certainC(K) that allows us to deduce that
these subalgebras have property weak (V), a weakening of the property (V) that
was introduced by E. Saab and P. Saab [SS2]. In the second section, we obtain our
results about ultrapowers and duals ofA andH∞. Some of our proofs use and re-
fine certain ideas from Bourgain’s paper [B3]. Our notation and terminology are
standard:D denotes the unit disk inC and∂D the boundary ofD; λλλ is the nor-
malized Lebesgue measure on∂D; andX⊕p Y denotes thèp-sum of the Banach
spacesX andY (1≤ p ≤ ∞). Our references for Banach space theory are [Di],
[DS], and [La]. Pełczínsky’s notes [Pe2] and [W] contain all the facts we shall
need about Banach spaces of analytic functions.

2. Property Weak (V)

In their study of the unconditionally convergent operators defined over Banach
spaces of continuous vector-valued functions, Saab and Saab [SS2] introduced
property weak (V). A Banach spaceX has property weak (V) if every subsetW ⊂
X∗ satisfying

lim
n

sup
x∗∈W
|〈x∗, xn〉| = 0,

for every weakly unconditionally Cauchy (wuC) series
∑

n xn inX is weakly con-
ditionally compact inX∗. It is clear, using Rosenthal’s theorem, thatX has the
property (V) if and only ifX has property weak (V) andX∗ is weakly sequentially
complete. On the other hand, Saab and Saab proved thatX has the property weak
(V) if and only if, for every Banach spaceY, each unconditionally convergent oper-
atorT : X→ Y (i.e.,T sends wuC series into unconditionally convergent series)
has a weakly precompact adjointT ∗ : Y ∗ → X∗ (i.e.,T ∗(BY ∗) is weakly condi-
tionally compact). In our first result, we present some other characterizations of
property weak (V) that we shall need later.
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Proposition 2.1. The following assertions are equivalent.

(1) X has property weak(V).
(2) For every Banach spaceY and every operatorT : X → Y, eitherT fixes a

copy ofc0 or T ∗ : Y ∗ → X∗ is weakly precompact.
(3) For each sequence(x∗n) in X∗ that is equivalent to the unit basis of`1, there

existε > 0, a subsequence(x∗nk ) ⊂ (x∗n), and a sequence(xk) in X such that∑
xk is wuC and〈x∗nk , xk〉 ≥ ε for all k ∈N.

(4) For each sequence(x∗n) in X∗ that is equivalent to the unit basis of`1, there
existε > 0, a sequence(λn) in the scalar fieldK, a sequence(xn) in X, and
a sequence(Fn) of pairwise disjoint finite subsets ofN such that

∑
i∈Fn |λi | ≤

M for someM > 0 and alln∈N,∑ xn is wuC, and〈∑
i∈Fn

λix
∗
i , xn

〉
≥ ε for all n∈N.

Proof. (1)⇔ (2) This follows directly from [Di, Chap. V, Exer. 8].
(2)⇒ (3) If X has property weak (V) and(x∗n) is a sequence inX∗ equivalent

to an`1-sequence, then we can define

T : X→ `∞, x 7→ T(x) = (〈x∗n, x〉)n.
ThenT ∗ : `∗∞ → X∗ is a non-weakly conditionally compact operator, soT fixes
a copy ofc0. That is, there exists a sequence(xk) in X such that(xk) and(Txk)
are equivalent to the unit basis ofc0. Therefore,

∑
xk is wuC and‖Txk‖ >

ε for someε > 0 and allk ∈ N. Looking at the definition ofT and using
a standard argument, we may obtain a subsequence(x∗nk ) of (x∗n) that satisfies
supk〈x∗nk , xk〉 ≥ ε.

It remains only to prove(4)⇒ (2) (since(3)⇒ (4) is obvious). LetT : X→
Y be an operator such thatT ∗ is non-weakly conditionally compact. Then the
subset ofX∗ defined by

B = { T ∗(y∗) : y∗ ∈ Y ∗ and‖y∗‖ ≤ 1}
is non-weakly conditionally compact. Appealing to Rosenthal’s theorem, take a
sequence(T ∗(y∗n )) in B that is equivalent to the unit basis of`1. By assump-
tion, we find anε > 0, a constantM > 0, a sequence(λn) ⊂ K, a sequence
(Fn) of pairwise disjoint finite subsets ofN, and a sequence(xn) in X such that
supn

∑
i∈Fn |λi | ≤ M,

∑
xn is wuC, and〈∑

i∈Fn
λiy
∗
i , T (xn)

〉
=
〈∑
i∈Fn

λiT
∗(y∗i ), xn

〉
≥ ε for all n∈N.

Therefore, we have two wuC series
∑
xn and

∑
T(xn) with inf n‖T(xn)‖ > 0

and infn‖xn‖ > 0. Finally, by the Bessaga–Pełczyńki selection principle and [Di,
Chap. V, Cor. 7], we may obtain an increasing sequence of natural numbers(nk)

such that(xnk ) and(T (xnk )) are basic sequences that are equivalent to the unit
basis ofc0. Hence,T fixes a copy ofc0 and we get (2).
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Remarks. In Proposition 2.1 and wheneverX is a dual space, we can change
statement (2) as follows: For every Banach spaceY and every operatorT : X→
Y, eitherT fixes a copy of̀ ∞ or T ∗ : Y ∗ → X∗ is weakly precompact. To see
this, note that the series

∑
αnxn is weak-∗ convergent for every(αn)∈ `∞, where

(xn) is the sequence obtained in(4) ⇒ (2). This allows us to define an obvious
operator from̀ ∞ toX. Now, bearing in mind [R], we can deduce thatT fixes a
copy of`∞.

The following theorem gives a sufficient condition for a subalgebra ofC(K)

to have the property weak (V). The proposition uses several ideas of the proof of
Lemma 3 from [B3]. We fix the following notation: IfX is a Banach algebra,
ψ ∈X, and8∈X∗, then the functionalψ8∈X∗ is defined by

〈ψ8, ϕ〉 := 〈8,ψϕ〉 for all ϕ ∈X.
Theorem 2.2. LetK be a compact Hausdorff space, and letX be a (closed)
subalgebra ofC(K) containing the unit1C(K) such thatX∗ = Z ⊕1 Y. Assume
there are elements1Z∗ in the unit sphere ofZ∗ and 1Y ∗ in the unit sphere ofY ∗,
with 1Z∗ + 1Y ∗ = 1C(K) (this equality must be viewed in the bidual ofC(K)).
ThenX has property weak (V) if the following condition holds: There existτ >

0, ~ > 0, and a sequence(β(n))n with β(n)/n
n−→ 0 such that, if81, . . . , 8n

are elements in the unit ball ofZ (resp.Y ) with∥∥∥∥ n∑
m=1

am8m

∥∥∥∥ ≥ (1− τ) n∑
m=1

|am| (a1, . . . , an ∈C),

then there existϕm,ψm in Z∗ (resp. inY ∗) (m = 1, . . . , n) satisfying

(I) ‖aϕm + bψm‖ ≤ 1 for all m = 1, . . . , n anda, b ∈D;
(II)

∥∥∑n
m=1am(1Z∗ − ψm)

∥∥ ≤ β(n) (resp.
∥∥∑n

m=1am(1Y ∗ − ψm)
∥∥ ≤ β(n)) for

all a1, . . . , an ∈D; and
(III) 〈8m, ϕm〉 ≥ ~ for all m = 1, . . . , n.

Proof. We want to use Proposition 2.1(4), so let(0n) be a sequence inX∗ equiva-
lent to the unit basis of̀1. Without loss of generality, we may assume that‖0n‖ ≤ 1
(n∈N). Now, take a sequence(0Zn ) inZ and a sequence(0Yn ) in Y such that0n =
0Zn + 0Yn . Passing to a subsequence if necessary and bearing in mind Rosenthal’s
theorem, it is clear that we may (and do) assume that either(0Zn ) or (0Yn ) is equiv-
alent to the unit basis of̀1. Suppose, for instance, that(0Zn ) is equivalent to an
`1-sequence (in the other case, the proof follows until the end with a completely
similar argument). Then‖0Zn ‖ ≤ 1 and there is aδ > 0 such that

δ

n∑
m=1

|am| ≤
∥∥∥∥ n∑
m=1

am0
Z
m

∥∥∥∥ ≤ n∑
m=1

|am| (a1, . . . , an ∈C, n∈N).

Take a positive numbercn > 0 such thatcn‖0Zn ‖ = 1. Applying the James regu-
larization principle for̀ 1-sequences [J] (see also [Pfi, Thm. 2.1.4]), we can find
a sequence(λn) in K and a sequence(Fn) of pairwise disjoint finite subsets ofN
such that
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sup
n

∑
i∈Fn
|λi | ≤ 1

δ

and

(1− τ)
n∑

m=1

|am| ≤
∥∥∥∥ n∑
m=1

am8
Z
m

∥∥∥∥ ≤ n∑
m=1

|am| (a1, . . . , an ∈C, n∈N),

where8Z
n =

∑
i∈Fn λici0

Z
i ∈Z. Now define, for eachn∈N,

8Y
n :=

∑
i∈Fn

λici0
Y
i ∈ Y and 8n := 8Y

n +8Z
n =

∑
i∈Fn

λici0i ∈X∗.

Since 1≤ cn ≤ δ−1, we see that‖8n‖ ≤ 1/δ2 (n ∈ N). Moreover, by appealing
to Hahn–Banach theorem, for eachn∈N we can obtain a regular countably addi-
tive measureµn overK (i.e., an element ofM(K)) such thatµn is an extension
of 8n to the whole ofC(K), with ‖µn‖ = ‖8n‖ and

〈8n, ϕ〉 =
∫
�

ϕ dµn (ϕ ∈X).
Take a sequence of positive numbers(εn) and a decreasing sequence(δn) of real

numbers in the interval [0,1] such that
∞∏
n=1

(1+ δn)
∞∑
n=1

εn ≤ ~
4
.

Since(β(n)/n) is a null sequence, we can obtain a strictly increasing sequence of
positive integers(Nn)n such that 2β(Nn) < εnδ

2Nn. Then we make the following
construction.

DefiningD0 := N and fixing the firstN1 elements8Z
1 , . . . , 8

Z
N1
, the assump-

tion gives usϕZm,ψ
Z
m ∈Z∗ ⊆ X∗∗ (1≤ m ≤ N1) verifying

(I) ‖aϕZm + bψZ
m‖ ≤ 1 for allm = 1, . . . , N1 anda, b ∈D;

(II)
∥∥∑N1

m=1am(1Z∗ − ψZ
m)
∥∥ ≤ β(N1) for all a1, . . . , aN1 ∈D; and

(III) 〈8Z
m, ϕ

Z
m〉 ≥ ~ for all m = 1, . . . , N1.

Setψ̂m := ψZ
m + 1Y ∗ ∈ X∗∗ (m = 1, . . . , N1). SinceX∗∗ = Z∗ ⊕∞ Y ∗, we

have

(I ′) ‖aϕZm + bψ̂m‖ = max{‖aϕZm + bψZ
m‖, ‖b1Y ∗‖} ≤ 1 for allm = 1, . . . , N1

anda, b ∈D;
(II ′)

∥∥∑N1
m=1am(1C(K) − ψ̂m)

∥∥ = ∥∥∑N1
m=1am(1Z∗ − ψZ

m)
∥∥ ≤ β(N1) for all

a1, . . . , aN1 ∈D; and
(III ′) 〈8m, ϕ

Z
m〉 = 〈8Z

m +8Y
m, ϕ

Z
m〉 = 〈8Z

m, ϕ
Z
m〉 ≥ ~ for all m = 1, . . . , N1.

Applying the principle of local reflexivity, yields a continuous linear operator
T : H → X,whereH is the subspace ofX∗∗ spanned byϕZm, ψ̂m (m = 1, . . . , N1)

and 1C(K), intoX such that

‖T(f )‖ ≤ (1+ δN1)‖f ‖ for all f ∈H,
〈8m, T(f )〉 = 〈f,8m〉 for all f ∈H and m = 1, . . . , N1,

T (1C(K)) = 1C(K).
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Defineϕm := T(ϕZm) ∈ X andψm := T(ψ̂m) ∈ X (m = 1, . . . , N1). Then we
have:

(IV) ‖aϕm + bψm‖ ≤ 1+ δN1 for all m = 1, . . . , N1 anda, b ∈D;
(V)

∥∥∑N1
m=1am(1C(K)−ψm)

∥∥ ≤ (1+δN1)β(N1) ≤ 2β(N1) for all a1, . . . , aN1 ∈
D; and

(VI) 〈8m, ϕm〉 ≥ ~ for all m = 1, . . . , N1.

Note that (V) implies
∑N1

m=1|1− ψm(t)| ≤ 2β(N1) for all t ∈ K. Fix θ > 0
and letµ∈M(K). Then there exist functionsh1, . . . , hN1 ∈C(K) with ‖hm‖ ≤ 1
such that

‖µ− ψmµ‖ ≤
∫
�

|(1− ψm)hm| d|µ| + θ

N1
(m = 1, . . . , N1),

where|µ| denotes the total variation ofµ. Therefore,

N1∑
m=1

‖µ− ψmµ‖ ≤
N1∑
m=1

(∫
�

|1− ψm||hm| d|µ| + θ

N1

)

≤
N1∑
m=1

∫
�

|(1− ψm)| d|µ| + θ

≤ 2β(N1)‖µ‖ + θ.
Sinceθ was arbitrary, we can assume that

N1∑
m=1

‖µ− ψmµ‖ ≤ 2β(N1)‖µ‖.

In particular, givenp ∈D0, we have

N1∑
m=1

‖8p − ψm8p‖ ≤
N1∑
m=1

‖µp − ψmµp‖

≤ 2β(N1)‖µp‖
= 2β(N1)‖8p‖.

Therefore, there exists anm(p)∈ {1, . . . , N1} such that

‖8p − ψm(p)8p‖ ≤ 2β(N1)‖8p‖
N1

≤ 2β(N1)

δ2N1
≤ ε1.

This shows us that there is necessarily anm1∈ {1, . . . , N1} for which

‖8p − ψm18p‖ ≤ ε1

holds for allp in an infinite subsetD1 of D0, with minD1 > N1. Hence,

‖aϕm1 + bψm1‖ ≤ 1+ δN1 ≤ 1+ δm1 for all a, b ∈D,
〈8m1, ϕm1〉 ≥ ~,

‖8p − ψm18p‖ ≤ ε1 for all p ∈D1.
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It is clear that the foregoing procedure can now be applied toD1. Thus, starting
again with the firstN2 elements ofD1,we can findm2 ∈D1 (m2 > m1), functions
ϕm2, ψm2 in X, and an infinite subsetD2 of D1 (with minD2 > N2) satisfying

‖aϕm2 + bψm2‖ ≤ 1+ δm2 for all a, b ∈D,
〈8m2, ϕm2〉 ≥ ~,

‖8p − ψm28p‖ ≤ ε2 for all p ∈D2.

Continuing in this way, we can construct a subsequence(8mn) of (8n), two se-
quences(ϕmn) and(ψmn) inX, and a sequence(Dn) of infinite subsets ofN (with
Dn+1⊂ Dn andmn+1∈Dn) such that, for eachn∈N, we have

(VII) ‖aϕmn + bψmn‖ ≤ 1+ δmn for all a, b ∈D,
(VIII) ‖8p − ψmn8p‖ ≤ εn for all p ∈Dn, and

(IX) 〈8mn, ϕmn〉 ≥ ~.
Now consider the following elements ofX:

η1 := ϕm1,

ηn := ψm1 · · · ψmn−1ϕmn (n ≥ 2).

We will show by induction that, givenk different positive integers

p1, . . . , pk ⊂ {mn : n∈N },
we have

k∑
r=1

|ψp1 · · · ψpr−1ϕpr | ≤
k∏
r=1

(1+ δpr ).

Fork = 1 and by (VII), we see that|ϕp1| ≤ 1+ δp1. Suppose that the statement
is true for all the positive integers smaller than or equal tok. Then

k+1∑
r=1

|ψp1 · · · ψpr−1ϕpr | = |ϕp1| + |ψp1ϕp2| + · · · + |ψp1 · · · ψpkϕpk+1|

≤ |ϕp1| + |ψp1|
( k+1∑
r=2

|ψp2 · · ·ψpr−1ϕpr |
)

≤ |ϕp1| + |ψp1|
( k+1∏
r=2

(1+ δpr )
)

≤
k+1∏
r=1

(1+ δpr ).

Hence,
∞∑
n=1

|ηn| ≤
∞∏
n=1

(1+ δmn) ≤
∞∏
n=1

(1+ δn) <∞.

This means that the series
∑
ηn is wuC inC(K) and, sinceX is a subspace of

C(K), it is indeed a wuC series inX.
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On the other hand, ifn ≥ 2 then we have thatmn ∈Dn−1 and

‖8mn − (ψm1 · · · ψmn−1)8mn‖
≤ ‖8mn − ψm18mn‖ + ‖ψm18mn − (ψm1 · · · ψmn−1)8mn‖
≤ ε1+ ‖ψm1‖‖8mn − (ψm2 · · ·ψmn−1)8mn‖
≤ ε1+ (1+ δm1)‖8mn − (ψm2 · · ·ψmn−1)8mn‖
...

≤ ε1+ (1+ δm1)ε2 + · · · +
n−2∏
j=1

(1+ δmj )εn−1

≤
∞∏
n=1

(1+ δn)
n−1∑
j=1

εj ≤ ~
4
.

Therefore,

|〈8mn, ηn〉| = |〈(ψm1 · · · ψmn−1)8mn, ϕmn〉|
≥ |〈8mn, ϕmn〉| −

~

4
‖ϕmn‖ ≥ ~ −

~

4
2= ~

2
.

The proof is completed by applying Proposition 2.1(4) to the sequences(8mn)

and(ηn).

3. Property (V) and Ultrapowers of A and H∞∞∞

In this section we shall prove thatA has the local property (V) and obtain sev-
eral consequences of this fact. Apart from Theorem 2.2, we also need some useful
lemmas. It is important to point out that each ultrapower(A)U is a Banach alge-
bra. In fact, the following is known [H, Prop. 3.1]: IfX is a Banach algebra and
U is an ultrafilter, then the multiplication

(xi)U · (yi)U := (xiyi)U , (xi)U , (yi)U ∈ (X)U ,
is well-defined and induces a Banach algebra structure on the ultrapower(X)U .
From this, we see that ifX has a unit 1X then(X)U also has a unit—namely,(1X)U .
Therefore, if 1C(∂D) denotes the function that assigns the value 1 to every element
of ∂D, then 1C(∂D) is in A andH∞ and(A)U and(H∞)U are Banach algebras
with unit (1C(∂D))U .

The first lemma is due to Dor [Do]. Although he states it for [0,1] with the
Lebesgue measure, a detailed analysis of the proof shows that it works also for
every finite measure space.

Lemma 3.1. Let (�,6,µ) be a probability space, let0 < θ ≤ 1, and let
f1, . . . , fn be functions in the unit ball ofL1(µ,C) such that∥∥∥∥ n∑

m=1

amfm

∥∥∥∥ ≥ θ n∑
m=1

|am| (a1, . . . , an ∈C).
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Then there exist pairwise disjoint measurable subsetsA1, . . . , An ∈6 satisfying∫
Am

|fm| dµ ≥ θ2 (m = 1, . . . , n).

Using Dor’s lemma, we can give a result for the spaceL1(µ,C) that is similar to
the one given by Bourgain for the spaceL1/H 1

0 .

Lemma 3.2. Let (�,6,µ) be a probability space, let0 < τ < 1, and let
f1, . . . , fn be functions in the unit ball ofL1(µ,C) such that∥∥∥∥ n∑

m=1

amfm

∥∥∥∥ ≥ (1− τ) n∑
m=1

|am| (a1, . . . , an ∈C).

Then there existϕm ∈L∞(µ,C) andψm ∈L∞(µ,R) (1≤ m ≤ n) satisfying

(I) ‖aϕm + bψm‖ ≤ 1 for all m = 1, . . . , n anda, b ∈D;
(II)

∥∥∑n
m=1am(χχχ� − ψm)

∥∥ ≤ 1 for all a1, . . . , an ∈D; and
(III) 〈fm, ϕm〉 ≥ (1− τ)2 for all m = 1, . . . , n.

Proof. Apply Lemma 3.1 to obtain pairwise disjoint measurable subsetsA1, . . . ,

An ∈6 satisfying ∫
Am

|fm| dµ ≥ (1− τ)2 (m = 1, . . . , n).

For eachm = 1, . . . , n, define,

rm(ω) :=
{ |fm(ω)|

fm(ω)
if fm(ω) 6= 0,

0 if fm(ω) = 0.

It is clear thatrm belongs to the unit sphere ofL∞(µ,C). On the other hand,
consider the functions

ϕm := rmχAm ∈L∞(µ,C), ψm := χ�\Am ∈L∞(µ,R) (m = 1, . . . , n).

It can be shown that these functions verify (I),(II), and (III):

‖aϕm + bψm‖ = ess sup{ |arm(ω)χAm(ω)+ b − bχAm(ω)| : ω ∈� } ≤ 1;∥∥∥∥ n∑
m=1

am(χ� − ψm)
∥∥∥∥ = ess sup

{ ∣∣∣∣ n∑
m=1

amχAm(ω)

∣∣∣∣ : ω ∈�
}
≤ 1;

〈fm, ϕm〉 =
∫
Am

rmfm dµ =
∫
Am

|fm| dµ ≥ (1− τ)2.

For the third lemma, we recall some facts about the dual ofC(∂D). If Vsing denotes
the Banach space of singular measures with respect to the normalized Lebesgue
measureλλλ on ∂D, then the following well-known decompositions [Pe2, p. 11]
hold:

M(∂D) = C(∂D)∗ = L1(λλλ)⊕1Vsing, A∗ = L1/H 1
0 ⊕1Vsing.
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Moreover [La, pp. 44, 46],M(∂D) is the complexification of the Banach space
M(∂D,R) of regular countably additiveR-valued measures over∂D. In the next
proof, it will be useful to consider the element ofM(∂D)∗ given by

1M(∂D)∗ [h+ σ] :=
∫
∂D
h dλλλ+ σ(∂D) (h∈L1(λλλ), σ ∈Vsing),

and its restriction toVsing, obviously given by

1(Vsing)
∗(σ) := σ(∂D) (σ ∈Vsing).

Lemma 3.3. Let 0 < τ < 1 andσ1, . . . , σn be elements in the unit ball ofVsing

such that ∥∥∥∥ n∑
m=1

amσm

∥∥∥∥ ≥ (1− τ) n∑
m=1

|am| (a1, . . . , an ∈C).

Then there existϕm,ψm ∈ (Vsing)
∗ (1≤ m ≤ n) satisfying

(1) ‖aϕm + bψm‖ ≤ 1 for all m = 1, . . . , n anda, b ∈D;
(2)

∥∥∑n
m=1am(1(Vsing)

∗ − ψm)
∥∥ ≤ 1 for all a1, . . . , an ∈D; and

(3) 〈σm, ϕm〉 ≥ (1− τ)2 for all m = 1, . . . , n.

Proof. SinceM(∂D,R) is an abstractL-space [LT, pp. 111, 113], by Kakutani’s
theorem [La, p. 135] we have thatM(∂D,R) is linearly isometric and lattice iso-
morphic to thè 1-sum

LR :=
(⊕
i∈I

L1(µi,R)
)

1

,

where(�i,6i, µi) is a certain finite measure space for everyi ∈ I. Without loss
of generality, we may assume that�i ∩ �l = ∅ (i 6= l ). Denote byT the corre-
sponding isometric lattice isomorphism fromM(∂D,R) toLR. Now, define

T̃ : M(∂D)→ LC :=
(⊕
i∈I

L1(µi,C)
)

1

,

µ = µ1+ iµ2 7→ T̃ (µ) = T(µ1)+ iT (µ2).

According to [La, Chap. 5, Exer. 10], we know thatT̃ is a linear isometry. On the
other hand, denote byS the inclusion ofVsing intoM(∂D). Then, we can get an
infinite countable subsetJ of I such thatT̃S(σm) vanishes outsideJ for all m =
1, . . . , n. Hence, letR be the canonical projection fromLC to(⊕

j∈J
L1(µj,C)

)
1

.

Take a sequence(εj )j∈J of positive numbers such that∑
j∈J

εjµj(�j ) = 1.

Because the sets�j are pairwise disjoint, if we put
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� :=
⋃
j∈J

�j,

6 := {A ⊂ � : A ∩�j ∈6j, j ∈ J },
µ(A) :=

∑
j∈J

εjµj(A ∩�j) (A∈6),

then we see that(�,6,µ) is a probability space and that

U :

(⊕
j∈J

L1(µj,C)
)

1

→ L1(µ,C), (fj )j∈J 7→ U [(fj )j∈J ],

given by

U [(fj )j∈J ](ω) := 1

εj
fj(ω) wheneverω ∈�j,

is a well-defined linear isometry. Now consider

σ̂m := URT̃S(σm)∈L1(µ,C) (m = 1, . . . , n).

By hypothesis,‖σm‖ ≤ 1 (1≤ m ≤ n) and so∥∥∥∥ n∑
m=1

amσm

∥∥∥∥ ≥ (1− τ) n∑
m=1

|am| (a1, . . . , an ∈C);

we also have that‖σ̂m‖ ≤ 1 (1≤ m ≤ n) and∥∥∥∥ n∑
m=1

amσ̂m

∥∥∥∥ ≥ (1− τ) n∑
m=1

|am| (a1, . . . , an ∈C).

Therefore, applying Lemma 3.2, we find̂ϕm ∈ L∞(µ,C) andψ̂m ∈ L∞(µ,R)
(1≤ m ≤ n) satisfying

(I) ‖aϕ̂m + bψ̂m‖ ≤ 1 wheneverm = 1, . . . , n anda, b ∈D;
(II)

∥∥∑n
m=1am(χχχ� − ψ̂m)

∥∥ ≤ 1 whenevera1, . . . , an ∈D; and
(III) 〈σ̂m, ϕ̂m〉 ≥ (1− τ)2 for all m = 1, . . . , n.

Finally, the functions we are looking for are defined by

ϕm := S∗(T̃ )∗R∗U ∗(ϕ̂m)∈ (Vsing)
∗ (m = 1, . . . , n),

ψm := S∗(T̃ )∗ [R∗U ∗(ψ̂m)+ 0(I \ J )] ∈ (Vsing)
∗ (m = 1, . . . , n),

where0(I \ J )∈ (⊕i∈I L
∞(µi,C)

)
∞ with

0(I \ J ) = (0i) ≡
{
0i = 0 for i ∈ J,
0i = χ�i for i /∈ J.

We now show that the functionsϕm,ψm satisfy conditions (1), (2), and (3).
Statement (3) is trivial since〈σ̂m, ϕ̂m〉 = 〈σm, ϕm〉 for all m = 1, . . . , n. On the
other hand, givena, b ∈D, we have

‖aϕm + bψm‖ ≤ ‖R∗U ∗ [aϕ̂m + bψ̂m] + b0(I \ J )‖
≤ max{‖aϕ̂m + bψ̂m‖, |b|‖0(I \ J )‖} ≤ 1.
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Therefore, condition (1) also holds. For the second condition, we claim that

1(Vsing)
∗ := S∗(T̃ )∗ [R∗U ∗(χ�)+ 0(I \ J )].

Hence, givena1, . . . , an ∈D,∥∥∥∥ n∑
m=1

am(1(Vsing)
∗ − ψm)

∥∥∥∥ ≤ ∥∥∥∥ n∑
m=1

am[R∗U ∗(χχχ�)− R∗U ∗(ψ̂m)]
∥∥∥∥

≤
∥∥∥∥ n∑
m=1

am(χχχ� − ψ̂m)
∥∥∥∥ ≤ 1.

Proof of the Claim.It is easy to check that

f ∈L∞(µ,C) 7→ U ∗(f ) = (f |�j )j∈J ∈
(⊕
j∈J

L∞(µj,C)
)
∞
.

Therefore,U ∗(χ�) = (χ�j )j∈J . On the other hand,R∗ is the canonical injection
of
(⊕

j∈J L
∞(µj,C)

)
∞ into

(⊕
j∈J L

∞(µi,C)
)
∞. Thus,

R∗U ∗(χ�)+ 0(I \ J ) = (χ�i )i∈I .
Bearing in mind that everyf ∈L∗C =

(⊕
i∈I L

∞(µi,C)
)
∞ can be written asf =

f1+ if2 with f1, f2 ∈L∗R =
(⊕

i∈I L
∞(µi,R)

)
∞, it is clear that

f = f1+ if2 ∈L∗C 7→ (T̃ )∗(f ) = T ∗(f1)+ iT ∗(f2)∈M(∂D)∗.
Note that(χ�i )i∈I ∈ L∗R. SinceM(∂D)∗ is the complexification ofM(∂D,R)∗

[M, p. 71], we deduce that(T̃ )∗ [(χ�i )i∈I ] = T ∗ [(χ�i )i∈I ] in the following sense:

(T̃ )∗ [(χ�i )i∈I ](µ1+ iµ2) = T ∗ [(χ�i )i∈I ](µ1)+ iT ∗ [(χ�i )i∈I ](µ2),

whereµ1, µ2 ∈M(∂D,R).
At this point, we need to recall a concept from the theory of Banach lattices

[La, p. 13]: A positive elemente of a real Banach latticeX is said to be a strong
unit if

e ≥ |x| ⇐⇒ ‖x‖ ≤ 1 (x ∈X).
Of course, a strong unit is unique whenever it exists. It is obvious that(χ�i )i∈I is
the strong unit of

(⊕
i∈I L

∞(µi,R)
)
∞. We will show that the positive element of

M(∂D,R)∗ given by

1M(∂D,R)∗(µ) := µ(∂D) (µ∈M(∂D,R))
is the strong unit ofM(∂D,R)∗. On the one hand, if|ϕ| ≤ 1M(∂D,R)∗ (ϕ ∈
M(∂D,R)∗), then

‖ϕ‖ = ‖|ϕ|‖ ≤ ‖1M(∂D,R)∗‖ ≤ 1.

On the other hand, if‖ϕ‖ ≤ 1(ϕ ∈M(∂D,R)∗) andµ∈M(∂D,R) (µ ≥ 0), then

(1M(∂D,R)∗ − |ϕ|)(µ) = µ(∂D)− |ϕ|(µ) ≥ µ(∂D)− ‖|ϕ|‖‖µ‖
= µ(∂D)− ‖ϕ‖‖µ‖ ≥ µ(∂D)− ‖µ‖ = 0.
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Therefore,1M(∂D,R)∗ ≥ |ϕ|. Bearing in mind that every isometric lattice isomor-
phism maps the strong unit into the strong unit, we have that

T ∗ [(χ�i )i∈I ] = 1M(∂D,R)∗ .

Therefore, givenµ = µ1+ iµ2 ∈M(∂D) andµ1, µ2 ∈M(∂D,R),
(T̃ )∗ [(χ�i )i∈I ](µ) = 1M(∂D,R)∗(µ1)+ i1M(∂D,R)∗(µ2) = 1M(∂D)∗(µ).

Hence,(T̃ )∗ [(χ�i )i∈I ] = 1M(∂D)∗ and the proof of the claim will be complete if
we show thatS∗(1M(∂D)∗) = 1(Vsing)

∗ . But this is trivial, since the adjoint of an in-
clusion is always the corresponding restriction.

In the following lemma and for each ultrapower(Vsing)U of Vsing, we use the no-
tation1[(Vsing)U ]∗ for the element of [(Vsing)U ]∗ defined by

〈1[(Vsing)U ]∗ , (σi)U 〉 := lim
i→U
〈1(Vsing)

∗ , σi〉 = lim
i→U

σi(∂D),

where(σi)U ∈ (Vsing)U .

Lemma 3.4. Let 0 < τ < 1 and 81, . . . , 8n be elements in the unit ball of
(Vsing)U such that∥∥∥∥ n∑

m=1

am8m

∥∥∥∥ ≥ (1− 1

2
τ

) n∑
m=1

|am| (a1, . . . , an ∈C).

Then there existϕm,ψm ∈ [(Vsing)U ]∗ (1≤ m ≤ n) satisfying

(I) ‖aϕm + bψm‖ ≤ 1wheneverm = 1, . . . , n anda, b ∈D;
(II)

∥∥∑n
m=1am

(
1[(Vsing)U ]∗ − ψm

)∥∥ ≤ 1whenevera1, . . . , an ∈D; and
(III) 〈8m, ϕm〉 ≥ (1− τ)2 for all m = 1, . . . , n.

Proof. We may (and do) assume that

‖8m(i)‖ = ‖8m‖ ≤ 1 (m = 1, . . . , n, i ∈ I ).
Takeθ = (1− τ

2)/(1− τ) > 1 and let{b1, . . . , br} be aδ-net in the unit sphere
of `n1, where 0< δ < (1− τ) 1

θ
. For eachl = 1, . . . , r, take an elementUl in the

ultrafilterU such that, fori ∈Ul,∥∥∥∥ n∑
m=1

bl(m)8m(i)

∥∥∥∥ ≥ 1

2θ

(
1− τ

2

)
, bl = (bl(1), . . . , bl(n)).

DefineU = U1∩ · · · ∩Ur ∈U . Then, given(a1, . . . , an)∈Cn with
∑n

m=1|am| =
1, we can findl′ ∈ {1, . . . , r} such that

n∑
m=1

|bl′(m)− am| ≤ δ.

Hence, for eachi ∈U,
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m=1

am8m(i)

∥∥∥∥ ≥ 1

2θ

(
1− τ

2

)
−

n∑
m=1

|bl′(m)− am|‖8m(i)‖

≥ 1

θ

(
1− τ

2

)
.

We thus have that∥∥∥∥ n∑
m=1

am8m(i)

∥∥∥∥ ≥ 1

θ

(
1− τ

2

) n∑
m=1

|am| = (1− τ)
n∑

m=1

|am|

whenevera1, . . . , an ∈C andi ∈U. Applying Lemma 3.3, we obtain

ϕm(i), ψm(i)∈ (Vsing)
∗ (1≤ m ≤ n, i ∈U)

satisfying

(1) ‖aϕm(i)+ bψm(i)‖ ≤ 1 wheneverm = 1, . . . , n, i ∈U, anda, b ∈D;
(2)

∥∥∑n
m=1am(1(Vsing)

∗ − ψm(i))
∥∥ ≤ 1 whenevera1, . . . , an ∈D andi ∈U ; and

(3) 〈8m(i), ϕm(i)〉 ≥ (1− τ)2 for all m = 1, . . . , n andi ∈U.
Consider the elementsϕm,ψm of [(Vsing)U ]∗ given by

〈ϕm, ξ〉 := lim
i→U
〈ξi, ϕm(i)〉 and 〈ψm, ξ〉 := lim

i→U
〈ξi, ψm(i)〉

for eachξ = (ξi)U ∈ (Vsing)U , whereϕm(i) = ψm(i) = 0 for i /∈U. Finally, tak-
ing limits in the ultrafilterU, it is clear thatϕm andψm satisfy conditions (I),(II),
and (III).

The next result is due to Bourgain [B3, Lemma 2]. In a manner similar to the
foregoing, for each ultrapower(L1/H 1

0)U of L1/H 1
0 , the element of [(L1/H 1

0)U ]∗

denoted by1[(L1/H1
0 )U ]∗ is defined by

〈
1[(L1/H1

0 )U ]∗ , (fi)U
〉
:= lim

i→U

∫
∂D
fi dλλλ ((fi)U ∈ (L1/H 1

0)U ).

Lemma 3.5. Given an ultrapower(L1/H 1
0)U , there existτU > 0, ~U > 0, and

a sequence(βU (n))n with βU (n)/n
n−→ 0 such that, whenever81, . . . , 8n are

elements in the unit ball of(L1/H 1
0)U with∥∥∥∥ n∑

m=1

am8m

∥∥∥∥ ≥ (1− τU ) n∑
m=1

|am| (a1, . . . , an ∈C),

there existϕm,ψm ∈ [(L1/H 1
0)U ]∗ (1≤ m ≤ n) satisfying

(1) ‖aϕm + bψm‖ ≤ 1wheneverm = 1, . . . , n anda, b ∈D;
(2)

∥∥∑n
m=1am

(
1[(L1/H1

0 )U ]∗ − ψm
)∥∥ ≤ βU (n) whenevera1, . . . , an ∈D; and

(3) 〈8m, ϕm〉 ≥ ~U for all m = 1, . . . , n.

We are now ready to prove the main result of this paper, which improves the result
of Delbaen [De, theorem of p. 292] and Kisliakov [Ki, Thm. 1].
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Theorem 3.6. The disk algebraA has local property (V); that is, every ultra-
power ofA has the property (V).

Proof. Let (A)U be an arbitrary ultrapower ofA. First of all, we shall embed
[(A)U ]∗ into some ultrapower ofA∗ following [H, Cor. 7.6]. For the proof of our
theorem, we need to know in detail the definition of that ultrapower, so let us start
by describing it. Define the index setJ to be the collection of all(M,N, ε), with
M a finite-dimensional subspace of [(A)U ]∗, N a finite-dimensional subspace of
(A)U , andε > 0. Let V be an ultrafilter dominating a certain order filter defined
overJ. Then, for each(Mj,Nj, εj )∈ J, there is a mappingTj : Mj → (A∗)U , an
(1+ εj )-isomorphism onto its image, such that

〈Tj(8), (f ∗i )U 〉 = 〈8, (f ∗i )U 〉 (8∈Mj, (f
∗
i )U ∈Nj)

and
Tj(5((f

∗
i )U )) = (f ∗i )U ((f ∗i )U ∈ (A∗)U ∩Mj),

where5 is the canonical embedding of(A∗)U into [(A)U ]∗. Moreover, the map

T : [(A)U ]∗ → ((A∗)U )V , 8 7→ T(8) = (Fj )V ,
given by

Fj =
{
Tj(8) if 8∈Mj,

0 otherwise,

is a linear isometry, and the map

Q : ((A∗)U )V → [(A)U ]∗,

Q[((f ∗i,j )U )V ]((gi)U ) := lim
j→V

(
lim
i→U
〈f ∗i,j, gi〉

)
((gi)U ∈ (A)U )

is surjective and satisfies thatQT is the identity in [(A)U ]∗. In particular [H,
Cor. 7.6], [(A)U ]∗ is isometrically isomorphic to a norm-1 complemented sub-
space of the ultrapower(A∗)U×V .

According to [SS2, p. 529], we must show that(A)U has the property weak (V)
and that [(A)U ]∗ is weakly sequentially complete. It is clear that we can check
this last property in(A∗)U×V . Obviously,

(A∗)U×V = (L1/H 1
0)U×V ⊕1 (Vsing)U×V .

Now, (L1/H 1
0)U×V is weakly sequentially complete by [B4, Thm. 5.3]. On the

other hand, sinceVsing is a norm-1 complemented subspace ofM(∂D) and this last
space is isometric toL1(µ′,C) (see the proof of Lemma 3.3), we get thatVsing is
isometric to someL1(µ,C) [La, Sec. 17, Thm. 3]. Applying [H, Thm. 3.3], we
deduce that(Vsing)U×V is also isometric to some otherL1(µ′′,C) and therefore
(Vsing)U×V is weakly sequentially complete.

Hence the proof will be finished if we can show that(A)U has property weak
(V). Of course, we want to apply Theorem 2.2. By [H, Thm. 3.3],(C(∂D))U is
isometric toC(K) for some compact Hausdorff spaceK with an isometry preserv-
ing the algebraic structure and, in particular, the unit. Therefore, we can identify
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(A)U with a certain subalgebra ofC(K) containing the corresponding unit 1C(K),
which we can identify with(1C(∂D))U . Bearing in mind that

((A∗)U )V = ((L1/H 1
0)U )V ⊕1 ((Vsing)U )V ,

define
Z := {8∈ [(A)U ]∗ : T(8)∈ ((L1/H 1

0)U )V },
Y := {8∈ [(A)U ]∗ : T(8)∈ ((Vsing)U )V }.

SinceT is an isometry, we deduce that

[(A)U ]∗ = Z ⊕1 Y.

Denote byS1 (resp.S2) the canonical isometry from the iterated ultrapowers
((L1/H 1

0)U )V (resp.((Vsing)U )V) into [(L1/H 1
0)U×V ] (resp. [(Vsing)U×V ]). Now

consider the elements of [(A)U ]∗ given by

1Z∗ := T ∗S∗1
(
1[(L1/H1

0 )U×V ]∗
)∈Z∗,

1Y ∗ := T ∗S∗2
(
1[(Vsing)U×V ]∗

)∈ Y ∗.
It is clear that‖1Y ∗‖ = ‖1Z∗‖ = 1. To use Theorem 2.2, we must also verify the
equality

1Z∗ + 1Y ∗ = (1C(∂D))U .
Toward this end, take8 ∈ ((A)U )∗ with 8 = 8Z + 8Y , where8Z ∈ Z and
8Y ∈ Y. On the one hand,

〈1Z∗ + 1Y ∗ ,8〉 = 〈1Z∗ ,8Z〉 + 〈1Y ∗ ,8Y 〉
= 〈S∗1 (1[(L1/H1

0 )U×V ]∗
)
, T (8Z)

〉+ 〈S∗2[1[(Vsing)U×V ]∗
]
, T (8Y )

〉
= lim
j→V

〈
1[(L1/H1

0 )U ]∗ , Tj(8
Z)
〉+ lim

j→V
〈
1[(Vsing)U ]∗ , Tj(8

Y )
〉

= lim
j→V

lim
i→U

∫
∂D
(Tj(8

Z))i dλλλ+ lim
j→V

lim
i→U

(Tj(8
Y ))i(∂D)

= lim
j→V

lim
i→U

[ ∫
∂D
(Tj(8

Z))i dλλλ+ (Tj(8Y ))i(∂D)
]
.

On the other hand,

〈(1C(∂D))U ,8〉 = 〈(1C(∂D))U ,Q(T (8))〉
= lim
j→V

lim
i→U
〈(Tj(8Z))i + (Tj(8Y ))i,1C(∂D)〉

= lim
j→V

lim
i→U

[ ∫
∂D
(Tj(8

Z))i dλλλ+ (Tj(8Y ))i(∂D)
]
.

To apply Theorem 2.2, consider

(i) τ the minimum of14 and the positive numberτU×V given by Lemma 3.5 for
the ultrapower(L1/H 1

0)U×V ,
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(ii) ~ the minimum of(1− 2τ)2 and the number~U×V given by Lemma 3.5 for
the ultrapower(L1/H 1

0)U×V ,
(iii) β(n) the maximum of 1andβU×V(n) given by Lemma 3.5 for the ultrapower

(L1/H 1
0)U×V (n∈N).

We shall deal withZ, but theY -case is identical using Lemma 3.4 instead of
Lemma 3.5 andS2 instead ofS1.

Take81, . . . , 8n elements in the unit ball ofZ, with∥∥∥∥ n∑
m=1

am8m

∥∥∥∥ ≥ (1− τ) n∑
m=1

|am| (a1, . . . , an ∈C).

It is clear that the elementsS1T(8m) (m = 1, . . . , n) belong to the unit ball of
(L1/H 1

0)U×V and that∥∥∥∥ n∑
m=1

amS1T(8m)

∥∥∥∥ ≥ (1− τU×V) n∑
m=1

|am| (a1, . . . , an ∈C).

Therefore, applying Lemma 3.5, there exist̂ϕm, ψ̂m ∈ ((L1/H 1
0)U×V)

∗ for allm =
1, . . . , n satisfying

(I) ‖aϕ̂m + bψ̂m‖ ≤ 1 wheneverm = 1, . . . , n anda, b ∈D;
(II)

∥∥∑n
m=1am

(
1((L1/H1

0
)U×V )∗ − ψ̂m

)∥∥ ≤ βU×V(n) ≤ β(n) whenever

a1, . . . , an ∈D; and
(III) 〈S1T(8m), ϕ̂m〉 ≥ ~U×V ≥ ~ for all m = 1, . . . , n.

Put
ϕm := T ∗S∗1 (ϕ̂m), ψm := T ∗S∗1 (ψ̂m) (m = 1, . . . , n).

Note that
〈ϕm,8〉 = 〈ϕ̂m, S1T(8)〉 = 0 (8∈ Y )

becausêϕm ∈ ((L1/H 1
0)U×V)

∗. Therefore,ϕm ∈Z∗. In a completely similar way,
we have thatψm ∈Z∗. Finally, we see that

(IV) ‖aϕm + bψm‖ ≤ 1 wheneverm = 1, . . . , n anda, b ∈D;
(V) ‖aϕm + bψm‖ ≤ 1 wheneverm = 1, . . . , n anda, b ∈D; and

(VI) 〈8m, ϕm〉 ≥ ~ for all m = 1, . . . , n.

Using [H, Prop. 6.7] and the remarks of Section 2, and recalling that a dual Banach
space with property (V) is a Grothendieck space [Di, Chap.VII, Exer. 12], we can
give the following corollaries of Theorem 3.6.

Corollary 3.7. A has property (V) and all its even duals are Grothendieck
spaces. In fact, ifn ≥ 1andT : A(2n)→ Y is an operator, then eitherT is weakly
compact orT fixes a copy of̀ ∞.

The following result extends the one given by Bourgain [B3, Thm. 1].

Corollary 3.8. H∞ has local property (V); that is, every ultrapower ofH∞

has the property (V).
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Proof. Note that every ultrapower ofH∞ is isometric to a complemented sub-
space of an ultrapower ofA∗∗,which, in turn, is isometric to a complemented sub-
space of some ultrapower ofA [H, Prop. 6.7].

Corollary 3.9. H∞ and all its even duals are Grothendieck spaces. In fact, if
n ≥ 0 andT : (H∞)(2n) → Y is an operator, then eitherT is weakly compact or
T fixes a copy of̀ ∞.

Recalling that ifX∗ has property (V) thenX has property (V∗), we have the
following result.

Corollary 3.10. All the odd duals ofH∞ andA have property (V∗).

Finally, we improve the result of Bourgain [B1] which says that every ultrapower
of L1/H 1

0 has property (V∗).

Corollary 3.11. The dual of every ultrapower ofL1/H 1
0 is a Grothendieck

space.

Proof. Note that the dual of every ultrapower ofL1/H 1
0 , is isometric to a comple-

mented subspace of some ultrapower ofH∞ [H, Cor. 7.6].

Remarks. In view of the proof of Theorem 3.6, we know that(Vsing)
∗ (and in

fact any ultrapower of this space) is anL∞-space and moreover is a Grothen-
dieck space. It is worth mentioning that there areL∞-spaces that have the Schur
property and so are not Grothendieck spaces [B2].
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