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1. Introduction

The program of knowing the Banach space properties of the gpeoaf bounded
analytic functions on the disk and their duals has been greatly stimulated since the
appearance of Petciagki’'s notes [Pe2] about Banach spaces of analytic func-
tions. Specifically, Petczynski asked about some classical properties such as weak
sequential completeness, the Dunford—Pettis property, property (V), or being a
Grothendieck space. Most of this program has been realized in a series of papers
by Bourgain [B1; B3; B4]. Namely, Bourgain has shown th&f and all its duals
have the Dunford—Pettis property, that all the odd dualg ©fare weakly sequen-
tially complete and have property Y, and thatH *° is a Grothendieck space and
has property (V). Therefore, the following question is open: Are the even duals of
H®* Grothendieck spaces, and do they have property (V)? In this paper, we give
a positive answer to this question. In fact, we prove several stronger results which
we detail below.

Properties (V) and (¥) were introduced by Petchgki in [Pel]. Following
[Pel], a Banach spaceis said to have property (V) (resp. property(yif every
subsetW c X* (resp.W C X) satisfying

lim sup [(x* x,)| =0 (resp. limsup|(x}, x)| = 0)
nox*ew noxew

for every weakly unconditionally Cauchy serig$, x, in X (resp.y_, x;in X*)
is weakly relatively compact itk * (resp. inX). On the other hand, a Banach
spaceX is said to be a Grothendieck space if every sequeng&e ithat is weak:
convergent is also weakly convergentiri.

We alsorecall that iX is a Banach spacé,is an index set, and is an ultrafilter
on I, then the ultrapowe(X ), is defined as the quotient of the Banach space

Coo(I, X) = {(x)ier C X :sUP|lx;i]l i€l } <00}
by its closed subspace
Ny = {(xi)ier €L, X) : i'Lf‘fZLHXiH =0}.
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A detailed study of ultrapowers of Banach spaces can be found in Heinrich [H]
and Stern [St]. It is well known that ultrapowers are used as a convenient device
for the localization of infinite-dimensional properties, and it is said tathas

local property(P) if each ultrapowelX);, has property(P). Our central result

of this paper says that the disk algeraas the local property (V). This improves
previous results due to Delbaen [De] and Kisliakov [K]. From this fact we de-
duce thatHd > also has local property (V), a result that extends Bourgain’s theo-
rem [B3, Thm. 1]. We also show that, for every ultrafiltérthe dual of the ultra-
power(Ll/Hc})u has property (V). Bearing in mind that, for a Banach spsce

one has
X* has property (V)= X has property (V),

our result improves another result of Bourgain’s which says thdtt;),, has
property (V). It is worth mentioning that there are examples that show the fore-
going implication is not an equivalence [SS1]. Finally, we obtain that the odd
duals ofA and H* are Grothendieck spaces, answering in the positive the ques-
tion stated at the beginning.

The rest of the paper is divided into two sections. In the first we present an ab-
stract condition about subalgebras of a cer@{k) that allows us to deduce that
these subalgebras have property weak (V), a weakening of the property (V) that
was introduced by E. Saab and P. Saab [SS2]. Inthe second section, we obtain our
results about ultrapowers and dualsdchnd H>°. Some of our proofs use and re-
fine certain ideas from Bourgain’s paper [B3]. Our notation and terminology are
standard:D denotes the unit disk i€ anddD the boundary o); A is the nor-
malized Lebesgue measuredi; andX &, Y denotes thé,-sum of the Banach
spacesX andY (1 < p < oo). Our references for Banach space theory are [Di],
[DS], and [La]. Pelc#isky’s notes [Pe2] and [W] contain all the facts we shall
need about Banach spaces of analytic functions.

2. Property Weak (V)

In their study of the unconditionally convergent operators defined over Banach
spaces of continuous vector-valued functions, Saab and Saab [SS2] introduced
property weak (V). A Banach spadehas property weak (V) if every subsiét
X* satisfying

lim sup|{x* x,)] =0,

nox*ew

for every weakly unconditionally Cauchy (wuC) ser}es, x, in X is weakly con-
ditionally compact inX*. It is clear, using Rosenthal’s theorem, ttkathas the
property (V) if and only ifX has property weak (V) and* is weakly sequentially
complete. On the other hand, Saab and Saab provedthas the property weak
(V) ifand only if, for every Banach spadg each unconditionally convergent oper-
atorT: X — Y (i.e., T sends wuC series into unconditionally convergent series)
has a weakly precompact adjoifit: Y* — X* (i.e., T*(By+) is weakly condi-
tionally compact). In our first result, we present some other characterizations of
property weak (V) that we shall need later.
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ProrosiTioN 2.1.  The following assertions are equivalent.

(1) X has property weakV).

(2) For every Banach spack and every operatof : X — Y, eitherT fixes a
copy ofcpor T*: Y* — X* is weakly precompact.

(3) For each sequencex)) in X* that is equivalent to the unit basis @i, there
existe > 0, a subsequencer;, ) C (x,), and a sequencer;) in X such that
> xriswuC and(x; , x;) > ¢ forall ke N.

(4) For each sequencex)) in X* that is equivalent to the unit basis @i, there
existe > 0, a sequencér,,) in the scalar fieldK, a sequencéx,) in X, and
a sequenceér),) of pairwise disjoint finite subsets &f such thatZieF” A <
M forsomeM > Oand alln €N, )" x, iswuC, and

<Zkix§‘, x,,> >¢ forall neN.

i€k

Proof. (1) < (2) This follows directly from [Di, Chap.V, Exer. 8].
(2) = (3) If X has property weak (V) and:) is a sequence i * equivalent
to an¢;-sequence, then we can define

T: X — £y, x> T(x) = ({x), x)y,.

ThenT*: £, — X* is a non-weakly conditionally compact operator,5ixes
a copy ofcg. That is, there exists a sequen@g) in X such that(x;) and(Tx;)
are equivalent to the unit basis of. Therefore,)_ x; is wuC and|Tx;| >
¢ for somee > 0 and allk € N. Looking at the definition off and using
a standard argument, we may obtain a subsequerjge of (x;;) that satisfies
sup.(x,,, Xk) > €.

It remains only to proved) = (2) (since(3) = (4) is obvious). Letl: X —
Y be an operator such th@t* is non-weakly conditionally compact. Then the
subset ofX* defined by

B={T"(y"):y"eY"and|y*| <1}

is non-weakly conditionally compact. Appealing to Rosenthal’s theorem, take a
sequenc&T *(y;)) in B that is equivalent to the unit basis 6f. By assump-
tion, we find ane > 0, a constant¥ > 0, a sequencéir,) C K, a sequence
(F,) of pairwise disjoint finite subsets &f, and a sequencgx,) in X such that

sup, X icp, 1Ail < M, Y x, iswuC, and

<Z)»iyf, T(Xn)> = <ZA,-T*(y?‘),x,,> >¢ forall neN.

iekF, ieF,

Therefore, we have two wuC seri@sx,, and)_ T'(x,) with inf, ||T(x,)| > O
andinf, ||x, || > 0. Finally, by the Bessaga—Petdmi selection principle and [Di,
Chap.V, Cor. 7], we may obtain an increasing sequence of natural nutihers
such that(x,,) and(T(x,,)) are basic sequences that are equivalent to the unit
basis ofcg. Hence,T fixes a copy oty and we get (2). O
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ReEMARKs. In Proposition 2.1 and whenevér is a dual space, we can change
statement (2) as follows: For every Banach spa@nd every operatdf : X —
Y, eitherT fixes a copy oft,, or T*: Y* — X* is weakly precompact. To see
this, note that the seriés «, x,, is weak?* convergent for everyx,) € £, where
(x,) is the sequence obtained @) = (2). This allows us to define an obvious
operator fromé,, to X. Now, bearing in mind [R], we can deduce tHafixes a
copy of .

The following theorem gives a sufficient condition for a subalgebrg @)
to have the property weak (V). The proposition uses several ideas of the proof of
Lemma 3 from [B3]. We fix the following notation: IX is a Banach algebra,
¥ € X, and® € X* then the functionaly ® € X* is defined by

(Y, ¢) = (P, o) forall peX.

THEOREM 2.2. Let K be a compact Hausdorff space, and }tbe a(closed
subalgebra ofC(K) containing the unitl¢ k) such thatX* = Z @4 Y. Assume
there are element; - in the unit sphere ofZ* and 1y« in the unit sphere oV *,
with 1« + 1y« = 1¢k) (this equality must be viewed in the bidual 6(K)).
ThenX has property weak (V) if the following condition holds: There exist
0, x > 0, and a sequences(n)), with B(n)/n -5 Osuch that, if®, . .., ®,
are elements in the unit ball of (resp.Y’) with

n
E APy,
m=1

then there exisp,,, ¥, in Z* (resp.inY*) imm =1, ..., n) satisfying
(D) llagm + by,|l <lforallm=1,...,nanda, beD;
(1) X mram @z — )| < B (resp.| ), _yam Ly — Y| < B()) for

allay, ..., a, eD; and
(1) (@, n) =>x forallm=1,..., n.

>(1-0)) lanl (a,....a,€0),
m=1

Proof. We want to use Proposition 2.1(4), so(&},) be a sequence K* equiva-

lentto the unit basis df;. Without loss of generality, we may assume thigt|| <1

(n € N). Now, take a sequenc&?) in Z and a sequendd’)) in Y such thal’, =

I'Z +T'Y. Passing to a subsequence if necessary and bearing in mind Rosenthal’s
theorem, it is clear that we may (and do) assume that eifiror (I'Y) is equiv-

alent to the unit basis of;. Suppose, for instance, that?) is equivalent to an
£3-sequence (in the other case, the proof follows until the end with a completely
similar argument). ThefilC'Z|| < 1 and there is & > 0 such that

n n
8 lanl < | anly
m=1 m=1

Take a positive number, > 0 such that, ||[TZ|| = 1. Applying the James regu-
larization principle for¢;-sequences [J] (see also [Pfi, Thm. 2.1.4]), we can find
a sequencér,) in K and a sequenag,) of pairwise disjoint finite subsets of
such that

n

< Zlam| (a1, ...,a,€C, neN).

m=1
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supy Il < <

n ieF,
and

A=) lanl <
m=1

where®? = Y, . A;c;T” € Z. Now define, for each e N,

=Y nall ey and @, =) + &7 => rclieX”

iekF, ieF,

n

Zamd)

m=1

n
<Y lanl (a1...,a,€C, neN),
m=1

Since 1< ¢, < 871, we see thaf|®, || < 1/6% (n € N). Moreover, by appealing
to Hahn—Banach theorem, for eack N we can obtain a regular countably addi-
tive measurey,, over K (i.e., an element o# (K)) such thatu, is an extension
of @, to the whole ofC (K), with ||u, || = ||®,| and

(P, (ﬂ) Z/wdﬂn (QDGX)-
Q

Take a sequence of positive numbeér,g) and a decreasing sequergég) of real
numbers in the interval [A] such that

[Ta+60Y e < T
n=1 n=1

Since(B(n)/n) is a null sequence, we can obtain a strictly increasing sequence of
positive integergN, ), such that B(N,) < &,8?N,. Then we make the following
construction.
Defining Do := N and fixing the firstv; elementsb?, . . Nl, the assump-
tion gives uspZ, Y2 € Z* € X** (1 <m < Ny) verifying
() llapZ +by?| <1forallm =1,..., Nyanda, b e D;
(I ||Zm 1a,,,(1z* -y < BNy forallay, ..., ay, €D; and
() (DZ, 9%y > xforallm=1,..., Ny.
Setwm =YL+ 1ys € X (m=1...,Np). SinceX* = Z* @ Y*, we
have
(1) llagf, + bl = maxX{|lag + byl |bly-|} < 1forallm =1,..., N

anda, b e D; .
M) |EM anewy — ¥m)| = | X0 an Lz — w2 < BNy for all
a, . ..,ay, €D; and

(M) (@, pZ2) = (P2 + DL @Z) = (D7, 9Z) > xforallm =1,..., Ny.

Applying the principle of local reflexivity, yields a continuous linear operator
T: H — X, whereH isthe subspace of ** spanned byZ, v, (m =1, ..., Nq)
and Xk (x), into X such that

IT(HI < A+8u)llfIl forall feH,
(@, T(f)) = (f, ) forall feH andm =1, ..., Ny,
T(Acxy) = lew)-
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Defineg,, = T(pZ) € X and v, := T(Ym) € X (m = 1,..., N1). Then we
have:

(V) llagy + byl <148y, forallm =1,..., Nyanda, b e D;

V) | M an Qe —¥m)|| < A+8n) B(ND) < 2B(Ny) forallay, . . ., ay, €
D; and
VD) (®,,, ¢n) =xforallm=1,..., Ny

Note that (V) implieszzlzﬂl— Ym(@)| < 28(Ny) forallt € K. Fix6 > 0
and letu € M(K). Then there exist functions,, . . ., hy, € C(K) with ||h, | <1
such that

0
lix — Yl S/l(l—lﬁm)hmldlﬂl-i-— (m=1..., Ny,
Q N1

where| | denotes the total variation @f. Therefore,

N1 N1 0
I = ] < (/|1—wm||hm|d|u|+—)

N1
<> [1a-vmldinl+o
m=1

< 28(No)llpll + 6.

Sinced was arbitrary, we can assume that

N1
D i = Ympll < 2B(ND [l

m=1
In particular, giverp € Dy, we have

N1 N1
1) = Ym@pll < D llttp — Yty
1 m=1

m=

< 2B(Np)llupll
= 2B(ND) [P,
Therefore, there exists am(p) € {1, . . ., N1} such that
2B(ND)|®,ll _ 2B(N1)
”cbp - wm([i)cbp” = N1 = 82N1 = é1.
This shows us that there is necessarilyrare {1, . . ., N1} for which

”(Dp - I/fm1q>p|| =&
holds for all p in an infinite subseD; of Dy, with min D; > N;. Hence,
la@m, + bW ll <148y, <1436, forall a,beD,

Py @my) = %,
”q)p - Wmlq)p” <¢g forall p € D1.
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Itis clear that the foregoing procedure can now be appligohtarhus, starting
again with the firsiv, elements o1, we can findn, € D1 (m2 > my), functions
©Omas ¥, IN X, and an infinite subsdd, of D41 (with min D, > Nj) satisfying

lagm, + bYm,| <1+86,, forall a,beD,

(Cbmz, (sz) Z X,
I®) — Y, ®,ll <&z forall pe D,
Continuing in this way, we can construct a subsequége) of (o), two se-

qguencesy,,,) and(y,,,) in X, and a sequend®,,) of infinite subsets oN (with
D,.1 C D, andm,,1€ D,) such that, for each € N, we have

(VI Nagm, 4+ bYm, | < 1+ 8y, foralla, b eD,
(viny 1®, — Y, ®,ll < e, forall pe D,, and
(IX) (@mn’ (pmn> = X.

Now consider the following elements &f;
N1 = Qmy,
Np = 1ﬂml ce Ipm,,_l(/)m,, (n> 2)
We will show by induction that, giveh different positive integers

Pl .-+ Pk C{m, :neN},
we have

k k
Z Wpy - Wp, 10p, | = 1_[(1+ 8p,)-
r=1 r=1

Fork =1and by (VII), we see thdp,,| <1+ §,,. Suppose that the statement
is true for all the positive integers smaller than or equal.tdhen

k+1
D W Vs | = 10l + 1@l + -+ 1 - VO
r=1

k+1
< lgpl + |1//p1|<2 [¥py - Yp, 10p, |)
r=2

k+1
< lgpl + |¢p1|<]"[<1+ 8p,))

r=2
k+1

<[]a+s,-
r=1
Hence,

o0 o0 o0
Yoimal < [J@+8m) < [J@+80) < 0.
n=1 n=1 n=1

This means that the serigs n, is wuC in C(K) and, sinceX is a subspace of
C(K), itis indeed a wuC series IK.
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On the other hand, it > 2 then we have that, € D,,_; and
@, — Wy =+ Yy ) P, |l
SN Pwm, = Yy @, Il + 1V P,y — Wiy = Y,y ) P |
<1+ 1VmlllPm, — Wiy -+ Vi, 1) P, |l
e+ A+ 8u)INPm, — Wy -+ Y, ) P, |

: n—2
<ert L+ 8m)ez+ -+ [ A+ 8m)en s
j=1

o0 n—1
X
< ]_[1(1+ 3,,)25,- <7
n= j=1
Therefore,
{ @,y 1)l = U (Wmy =+ Y1) Ponys P
= (@, @) = S llm, | =~ 22 =2
jl my s (pm,, 4 §0m,1 X 4 - 2
The proof is completed by applying Proposition 2.1(4) to the seque@gs)
and(n,). O

3. Property (V) and Ultrapowers of A and H®

In this section we shall prove that has the local property (V) and obtain sev-
eral consequences of this fact. Apart from Theorem 2.2, we also need some useful
lemmas. It is important to point out that each ultrapoyy;, is a Banach alge-

bra. In fact, the following is known [H, Prop. 3.1]: K is a Banach algebra and

U is an ultrafilter, then the multiplication

v - du = xiydu,  xdu, Ydu € Xu,

is well-defined and induces a Banach algebra structure on the ultrap&egr
From this, we see that ¥ has a unit ¥ then(X), also has a unit—namel§ly),.
Therefore, if sp) denotes the function that assigns the value 1 to every element
of 4D, then %) is in A and H* and (A);, and (H*);, are Banach algebras
with unit (1C(61D>))Z/l~

The first lemma is due to Dor [Do]. Although he states it forJPwith the
Lebesgue measure, a detailed analysis of the proof shows that it works also for
every finite measure space.

LemMma 3.1. Let (22, X, u) be a probability space, 1ed < 6 < 1, and let
f1. . . ., f» be functions in the unit ball of.*(x, C) such that

n
Z A fm
m=1

=0 lan| (ai....a,€C).
m=1
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Then there exist pairwise disjoint measurable subgegjs. ., A, € X satisfying

|fuldu > 6% (m=1...n).
Am

Using Dor’s lemma, we can give a result for the spaégu, C) that is similar to
the one given by Bourgain for the spat&H}.

LemMma 3.2. Let (2, X, u) be a probability space, led < t < 1, and let
f1, . .., f, be functions in the unit ball oL.1(x, C) such that

n
D anf
m=1

Then there exisp,, € L*°(u, C) and v, € L*(u, R) (1 < m < n) satisfying
(N llapm + byl <lforallm =1, ...,nanda,beD;
(1) | 1an(xe — ¥w)| <1forallay, ..., a, eD; and

(M) (from) = A=1)forallm=1,...,n.

>(1-1)) lanl (ay....a,€C).
m=1

Proof. Apply Lemma 3.1 to obtain pairwise disjoint measurable subsets. .,
A, € X satisfying

|fuldu>1-1)% (m=1...,n).

Am
Foreachn =1, ..., n, define,
|fm(w)‘ H
(@) ;={ G (@ 20

It is clear thatr,, belongs to the unit sphere @& (u, C). On the other hand,
consider the functions

Pm = TmXa, €L (1, C), Y 1= xa\a, €L (W, R) (m=1...,n).
It can be shown that these functions verify (ll},), and (I11):

lagm + bm | = €sssuplary (@) xa, (@) +b — bxa, ()| :0eQ} <1

Y an(xe —¥m)| = esssu;{ ZamxA,,,(w)‘ lweQ } <%
m=1 m=1
ons o) =/ rmfmdu=/ uldi = A= 1)2. 0
Aln Aln

For the third lemma, we recall some facts about the dua@l@D). If Vsingdenotes

the Banach space of singular measures with respect to the normalized Lebesgue
measurel. on dD, then the following well-known decompositions [Pe2, p. 11]
hold:

M@OD) = C(OD)* = L*(A) ®1 Vsing, ~ A* = LYH ®1 Veing.
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Moreover [La, pp. 44, 46]M (D) is the complexification of the Banach space
M (9D, R) of regular countably additivR®-valued measures ovéi. In the next
proof, it will be useful to consider the element&f(aD)* given by

lyopy[h + 0] = / hdh+0@D) (hel'A), o€ Vsing),
oD
and its restriction td/sing, Obviously given by

1(Vsing)* (U) = O—(a]D)) (o' I VSing)-

Lemma 3.3. Let0O <t <landoy, ..., o, be elements in the unit ball dfsing

such that .
> anon
m=1

Then there exisp,,, ¥m € (Vsing)™ (1 < m < n) satisfying

Q) llag, + byl <1lforallm=1,...,nanda,beD;

) | Xme1amQvgngs — ¥m)|| <1forallay, ..., a, €D; and
3) (O, om) = A —1)?forallm=1,...,n.

>(1-1)) lanl (ay....a,€C).
m=1

Proof. SinceM (0D, R) is an abstracL-space [LT, pp. 111, 113], by Kakutani's
theorem [La, p. 135] we have that(dDD, R) is linearly isometric and lattice iso-

morphic to theZ;-sum
Lg = (@ LY, R)) ,
1

iel
where(R2;, Z;, u;) is a certain finite measure space for evegyl. Without loss

of generality, we may assume that N Q;, = @ (i # [). Denote byT the corre-
sponding isometric lattice isomorphism frath(dDD, R) to Lrg. Now, define

T:M@D) > L¢ = (@ LY, C)) :
1

iel
w=p1+ipo > T(p) = T(pa) +iT (ko).
According to [La, Chap. 5, Exer. 10], we know tH&is a linear isometry. On the
other hand, denote hy the inclusion ofVs;ng into M (dD). Then, we can get an

infinite countable subset of I such thatl'S(o,,) vanishes outsidé for all m =
1,...,n. Hence, letR be the canonical projection froia: to

(EB L. C)) :
jeJ 1
Take a sequence;);c, of positive numbers such that
Y@ =1
jed

Because the sefg; are pairwise disjoint, if we put
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Q=J.
jeJ
Y ={ACQ:ANQ;jeX; jel},
w(A) =) gui(ANQ) (Ael),
jeJ

then we see that2, X, u) is a probability space and that

(@ Ll(u,,C)> = LY. ). (fjes = UL(fjes:

jeJ

given by
1
Ul(f)jesl(@) = ;fj(a)) wheneverw € ;,
J

is a well-defined linear isometry. Now consider
Gm = URTS(0,) € LY(u,C) (m=1...,n).
By hypothesis|io,,|| <11 <m < n)and so

n

Zamam 2(1_1_)2”:"1”1' (al,...,anEC);

m=1 m=1
we also have thdlo,, || <11 <m <n) and

D ann| = A=1)) lan| (ar....a,€C).
m=1 m=1

Therefore, applying Lemma 3.2, we figg, € L*(u, C) and&,\n e L*®(u,R)
(1 < m < n) satisfying
(1) |la@n + b || < 1whenevem =1,....nanda, b eD;
(1 ||Zm 1am(Xe — ¥m)| < 1wheneven, ..., a, €D; and
(my G, om) = A— )2forallm=1,...,n.
Finally, the functions we are looking for are defined by

O = S*(T)*R*U*@m) € (Veing® (m=1,...,n),
Y = S* (D) [R*U*(Yr) + TU N\ D] € (Veing*  (m=1,....n),
wherel'(1 \ J) € (P;¢; L™ (i ©)) , with
=0 for i e J,
I = xq fori¢d.

We now show that the functiong,,, v,, satisfy conditions (1), (2), and (3).
Statement (3) is trivial sinc&,,,, @,,) = (o, @) forallm = 1,...,n. On the
other hand, given, b € D, we have

la@m + bWl < |R*U*[a@m + b¥rm] + T\ D]
< max{||a@y, + b, 1BIITU N\ D} < 1

F(I\J)=(Fi)5{
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Therefore, condition (1) also holds. For the second condition, we claim that

Livgng 1= S*(T)*[R*U*(xe) + T(I\ J)].

Hence, giveruy, . .., a, €D,
Y anAvgnge — Y| < | D anlR*U*(x2) — R*U* (Y] ‘
m=1 m=1
<D am(xe—vm)| <1

m=1

Proof of the Claim.lIt is easy to check that

Fel®(w,C) = U'(f) = (fla)jes € <@ L (uj, C)) .

jeJ
ThereforeU*(xq) = (xg;)jes- On the other handk* is the canonical injection
of (B, L®(uj, ©)), into (P, L= (i, C)) .. Thus,
R*U*(xo) +TU\J) = (xo)ier-
Bearing in mind thatevery € LY. = (@ie] L (u;, (C))OQ can be written ag’ =
fitifawith f1, fo€ L = (B, L®(wi. R)) . itis clear that

f=h+ifaelie (D)) =T"(f1) +iT*(f2) € M(3D)*.

Note that(xg,)icr € L. Since M (0D)* is the complexification o (9D, R)*
[M, p. 71], we deduce tha(ff)*[(XQi)ie,] = T*[(xg,)ies] In the following sense:

(T)*[(xe)ier)(r1+ ip2) = T*[(xe)ierl (k1) +iT*[(xe)ier] (142),

whereus, o € M(9D, R).

At this point, we need to recall a concept from the theory of Banach lattices
[La, p. 13]: A positive element of a real Banach lattic& is said to be a strong
unit if

e> x| < |[x[ =1 (x€X).
Of course, a strong unit is unique whenever it exists. It is obvious(ha;c; is
the strong unit of @, ., L™ (1, R)) . We will show that the positive element of
M (D, R)* given by

Luaome (1) 1= (D) (n e M@D,R))

is the strong unit ofM (dD,R)*. On the one hand, ifp| < lyepry> (¢ €
MOD, R)*), then
el = llell < 11uepry-ll =1

On the other hand, ify| < 1(p € M (3D, R)*) andu € M (3D, R) (u > 0), then

(Amep.rr — loD () = n@D) — le|(1) = w@D) — llelllwl
= pn@D) — llellinll = wdD) — ||| = 0.
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Thereforelysn r)« > |@|. Bearing in mind that every isometric lattice isomor-
phism maps the strong unit into the strong unit, we have that

T*[(xe)iecr] = 1p@n,Ry*-
Therefore, giveru = p1 + ipz € M(3D) andug, 2 € M(OD, R),
(T)*[(xa)iel () = Luep.ry (1) + ilyep. Ry (42) = Lyepy ().

Hence,(T)*[(XQl.)iel] = 1y o)+ and the proof of the claim will be complete if
we show thatS* (1ymy+) = L,y But this is trivial, since the adjoint of an in-
clusion is always the corresponding restriction. O

In the following lemma and for each ultrapow@fsing)zs Of Vsing, We use the no-
tation1yy,,,.1+ for the element of (Vsing)z/]* defined by

Litvsngea=> (@u) = M (Ligoge, o) = lim 033D,
Whel’e(a,)z,{ € (Vsing)l/{o

LEmMmA 3.4. LetO < 7 < 1land ®4,..., ®, be elements in the unit ball of

n 1 n
APl >11— =1 an, a,...,a, €C).
mzzl ( 2);1' | (a )

Then there exisp,,, Ym € [(Vsingu]™ (1 < m < n) satisfying

(D Nlagm + by, || <1whenevem =1,...,nanda, beD;

an 1xn2 lam(l[(vsmg)u — )| < 1wheneven1, ...,a, €D; and
() (@, om) > @—1)2forallm=1,.

Proof. We may (and do) assume that
[Pn@OI =11Pull =1 (m=1...,n,i€l).

Taked = (1— 3)/(L— 1) > Lland let{h, ..., b,} be as-net in the unit sphere
of £, where 0< 8 < (1— r)%. Foreach =1, ..., r, take an elemert, in the
ultrafilter/ such that, foi € Uy,

m

Z 2 (1— 5) by = bi(D), ..., bi(n)).

DefineU =UyN---NU, eU. Then, given(ay, . .., a,) € C* with "7 _|a,| =
1, wecanfind’e{1,...,r}such that

Z'bl’(m) - aml =< 8.
m=1

Hence, for eache U,
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n l n
> an®u()| = —<1— %) =Y i (m) = anll|@n ()]
m=1

m=1

I
)
D

[\
DI+
N
|_\
|
NI«
~

We thus have that

Xn: am ®ﬂl (l)

m=1

1 _C n n
> 5(1— 5) mZZl|am| = (1—r>m2=1|am|

whenevew,, . . ., a, € C andi € U. Applying Lemma 3.3, we obtain

Om (@), Y (i) € (Vsing)* l<m=<n,iel)
satisfying

Q) llag, (@) + by, ()| <1lwheneverm =1,...,n,i €U, anda, b eD;
) | Xm1amQvgegs — ¥m ()| < 1whenevem,, . .., a, e Dandi € U; and
(3) (®,,(i), (i) > A—1)?forallm =1,...,nandi e U.

Consider the elemenis,, ¥, of [(Vsing)]* given by
(m, &) == Jim (i om@) and (Y, &) = <Iim (&is Y (D))

for eaché = (&)u € (Vsingu, Whereg,, (i) = ¥, (i) = 0 fori ¢ U. Finally, tak-
ing limits in the ultrafilteils, it is clear thatp,, andys,, satisfy conditions (1)(11),
and (111). O

The next result is due to Bourgain [B3, Lemma 2]. In a manner similar to the
foregoing, for each ultrapowei./ H}),, of LY/H}, the element of (LY H})u(]*
denoted b}l[(Ll/Hé)M]* is defined by

(g o) = i, / fidh ((fu e (LYH).
i—=U Jop

Lemma 3.5. Given an ultrapower LY/ H})y, there existry; > 0, x> 0, and

a sequenceéfy (n)), with By (n)/n — 0 such that, wheneveby, . . ., @, are
elements in the unit ball ofLY/H}),, with

Zn: a,d
m=1

there existp,,, ¥, € [(LYHY)ul* (1 < m < n) satisfying

Q) llagm + by, |l <1lwhenevem =1, ...,nanda, beD;

@) |10 1am(1[(L1/H1)u — )| < ,BM(n) whenevewy, . . ., a, € D; and
3) (P, o) >zuf0rallm_ﬁL ...

> (-7 ) lanl (a,...,a,€C),

m=1

We are now ready to prove the main result of this paper, which improves the result
of Delbaen [De, theorem of p. 292] and Kisliakov [Ki, Thm. 1].
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THEOREM 3.6. The disk algebraA has local property (Vi)that is, every ultra-
power ofA has the property (V).

Proof. Let (A)y, be an arbitrary ultrapower od. First of all, we shall embed
[(A)y]* into some ultrapower of* following [H, Cor. 7.6]. For the proof of our
theorem, we need to know in detail the definition of that ultrapower, so let us start
by describing it. Define the index sétto be the collection of aliM, N, &), with

M a finite-dimensional subspace @fd);,]*, N a finite-dimensional subspace of
(A)y, ande > 0. LetV be an ultrafilter dominating a certain order filter defined
overJ. Then, for eacliM;, N, ¢;) € J, there is a mapping@; : M; — (A*)y, an

(1+ &;)-isomorphism onto its image, such that

(T;(®), (fu) = (P, (fHu) (PeM;, (f)uech;)
and
Ti(T((f)e) = (fDu (f)u € (ADy N M),
wherell is the canonical embedding ¢A*),, into [(A);,]*. Moreover, the map

T: [(Dul” = (Au)v, O = T(P) = (F))v,
given by
. { T(®) if deM;,
! 0 otherwise,
is a linear isometry, and the map

0: (Au)y = [(Aul”,
OL((f Duvl((gu) = j|iLT1V<i|L”ZL<ﬁTj7 gi)) ((g)u € (A)u)

is surjective and satisfies th&T is the identity in [A)y]*. In particular [H,
Cor. 7.6], [A)y]* is isometrically isomorphic to a norm-1 complemented sub-
space of the ultrapowe&r* )y, 1.

According to [SS2, p. 529], we must show tlidf;, has the property weak (V)
and that [A);]* is weakly sequentially complete. It is clear that we can check
this last property i A*);;xy. Obviously,

(ADuxy = (LYHYuxv ®1 (Vsinguxv-

Now, (LYH})ux is weakly sequentially complete by [B4, Thm. 5.3]. On the
other hand, sinc&singis a norm-1 complemented subspacdt®D) and this last
space is isometric ta(u’, C) (see the proof of Lemma 3.3), we get thatg is
isometric to somd.*(u, C) [La, Sec. 17, Thm. 3]. Applying [H, Thm. 3.3], we
deduce thatVsing) 1/« v is also isometric to some othér(n”, C) and therefore
(Vsingux v IS weakly sequentially complete.

Hence the proof will be finished if we can show thidt);, has property weak
(V). Of course, we want to apply Theorem 2.2. By [H, Thm. 3(8)(dD)), is
isometric toC (K') for some compact Hausdorff spakiewith an isometry preserv-
ing the algebraic structure and, in particular, the unit. Therefore, we can identify
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(A)y with a certain subalgebra 6f(K) containing the corresponding uni¢ k),
which we can identify with1¢sp)),. Bearing in mind that

(Aw)y = (LYHYw)v ®1((Veingu) v
define
Z:={®e[(Au]*: T(®) e (LYHPw)v },
Y = {®e[(Aul*: T(P) € (Vsingu)v }-
SinceT is an isometry, we deduce that
[(Aul*=Z Y.

Denote bysS; (resp.S,) the canonical isometry from the iterated ultrapowers
((LYHg)u)v (resp.((Vsingu)v) into [(LYHy)uxv] (resp. [Vsinguxv]). Now
consider the elements of4),]* given by

12* =T* Sl (1[(L1/H 1* ) € Z*,

H
Uxy
1Y* =T Sz(l[(Vsing)uxV]*) € Y*

Itis clear that||1y«|| = ||1z+|| = 1 To use Theorem 2.2, we must also verify the
equality
17+ + y+ = (leep)u-

Toward this end, tak& e ((A)y)* with ® = ®Z 4+ &, whered? € Z and
®Y €Y. On the one hand,

(1zr 4+ Ly=, ®) = (Lzs, D7) + (Ly+, @)
= (ST Qi) T@D) +(85[Uvanguicni+]- T(@H)
= im (Lwymrs TE@)+ M (L, T(@H)

. Z . i i . Y .
_jlinv lim /D(T,(qa )): dA +,-'T‘v lim (7;(®"));(3D)

= lim_lim U (T (%)), d)u—i—(Tj(CDY))i(BD)]
oD

j=Vi—Uu

On the other hand,
(Leep)u, D) = (Lepp)u, QT (P)))

= lim_lim ((T;(®%)); + (T;(®"));, Leem))
j=Vi-u

= lim lim [/ (T;(®%)); d).+(]}(d>y)),~(8]l)):|.
i=Vi=U| Jop
To apply Theorem 2.2, consider

(i) = the minimum ofz—l1 and the positive numbet,, given by Lemma 3.5 for
the ultrapowel LY H})vix v,
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(i) » the minimum of(1 — 2r)? and the numbet;,, ,, given by Lemma 3.5 for
the ultrapowel LY H})yix v,
(iii) B(n) the maximum of Lan@,,. (n) given by Lemma 3.5 for the ultrapower
(LYHg)uxy (n€N).
We shall deal withZ, but theY-case is identical using Lemma 3.4 instead of
Lemma 3.5 and; instead ofS;.
Take®q, ..., @, elements in the unit ball df, with

n

ap®p| = 1L=1) ) lanl (a1,...,a,€C).
1 m=1

m=

It is clear that the element&T(®,,) (m = 1, ..., n) belong to the unit ball of
(LYH})uxy and that

i amSlT(qu)
m=1

> A= 1uxv) ) lan| (a1.....a, €C).
m=1

Therefore, applying Lemma 3.5, there exist, 1///,\,, € ((Ll/Hg)uxv)* forallm =
1, ..., n satisfying

(1) lla@y + bYm| < 1whenevem =1,...,n anda, b € D;
(D) ||Z::1:la'"(1((L1/Hé>uxv)* — ¥m)| < Buxv(n) < B(n) whenever

ai,...,a, €D; and

() (S1T (D), Pm) > xuxy > xforallm =1,.. . n.

Put e

=TT @m)s Ym :=T*ST(W) (m=1....n).

Note that
(Om, P) = (@, S1T(P)) =0 (PeY)

becaus,, € (LYHy)uxv)*. Thereforep,, € Z*. In a completely similar way,
we have that},, € Z*. Finally, we see that

(IV) llagm + by, |l <1whenevem =1, ...,n anda, b e D;
(V) llagm + by, |l <1lwhenevem =1,...,n anda, b €D; and
(V1) (P, om) = xforallm=1..., n O

Using [H, Prop. 6.7] and the remarks of Section 2, and recalling that a dual Banach
space with property (V) is a Grothendieck space [Di, Chap. VI, Exer. 12], we can
give the following corollaries of Theorem 3.6.

CoroLLARY 3.7. A has property (V) and all its even duals are Grothendieck
spaces. Infact, it > 1and7: A®” — Y is an operator, then eithef is weakly
compact orT fixes a copy of,.

The following result extends the one given by Bourgain [B3, Thm. 1].

CoroLLARY 3.8. H* has local property (M)that is, every ultrapower ofd >
has the property (V).
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Proof. Note that every ultrapower off * is isometric to a complemented sub-
space of an ultrapower ef**, which, in turn, is isometric to a complemented sub-
space of some ultrapower df[H, Prop. 6.7]. O

CoroLLARY 3.9. H and all its even duals are Grothendieck spaces. In fact, if
n>0andT: (H*®)?®) — Y is an operator, then eithef is weakly compact or
T fixes a copy 0¥ .

Recalling that ifX* has property (V) therX has property (V), we have the
following result.

CoroLLARY 3.10. All the odd duals ofH* and A have property (V).

Finally, we improve the result of Bourgain [B1] which says that every ultrapower
of LYH} has property (V).

CoroLLARY 3.11. The dual of every ultrapower ot.Y/H} is a Grothendieck
space.

Proof. Note that the dual of every ultrapower bt/ H}, is isometric to a comple-
mented subspace of some ultrapowetHs¥ [H, Cor. 7.6]. O

REMARKs. In view of the proof of Theorem 3.6, we know th@fsing)* (and in
fact any ultrapower of this space) is @3°-space and moreover is a Grothen-
dieck space. It is worth mentioning that there Afeé-spaces that have the Schur
property and so are not Grothendieck spaces [B2].
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