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1. Boundaries of Groups

The study of boundaries of groups originated in the study of limit sets of Kleinian
and Fuchsian groups. This idea was generalized by Gromov to boundaries of neg-
atively curved groups and CAT(0) boundaries of groups [8]. In [3], Bestvina and
Mess prove that, whenG is negatively curved, thenth Čech cohomology groups
(with coefficients in a ringR) of the Gromov boundary ofG are isomorphic to the
(n+1)th cohomology groups ofG with coefficients in the group ringRG.

In [2], Bestvina extends this result to include more general types of boundaries
of groups. He also gives some results relating the global and local Steenrod ho-
mology of boundaries of groups, weaker results for general boundaries of groups,
and stronger results when the boundary in question is the Gromov boundary of a
negatively curved group. These later results are based on the pointz of the Gro-
mov boundary satisfying what is called Axiom H. A proof is given that all points
of the Gromov boundary satisfy Axiom H.

In this note, we show that not all points of the Gromov boundary satisfy Ax-
iom H, but that almost all points of the Gromov boundary satisfy Axiom H. We also
establish a slightly weaker result relating the local and global Steenrod homology
of the Gromov boundary.

The following is a short synopsis of the setting and some of the results of
Bestvina’s paper [2].

Definition. A compact finite-dimensional contractible locally contractible met-
ric spaceX̄ is called aEuclidean retract(or ER). A closed subsetZ of an ER
X̄ is called aZ-set if there is a deformationht : X̄ → X̄ with h0 = id and
ht (X̄) ∩ Z = ∅.
Definition. A sequence(Ai) of subsets of a metric spaceY is anull sequence
if the diameters diam(Ai)→ 0 asi →∞.
Definition. LetG be a group. AZ-structure onG is a pair(X̄, Z) that satisfies
the following axioms.
(1) X̄ is an ER.
(2) Z ⊂ X̄ is aZ-set.
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(3) X = X̄ − Z admits a covering space action ofG with compact quotient.
(4) The collection of translates of a compact set inX forms a null sequence in̄X.

When these axioms are satisfied,Z is called aboundaryof G.

The most important example of a boundary of a group is the Gromov boundary of
a torsion-free negatively curved groupG. The spaceX in this example is the Rips
complex ofG. That(X, ∂G) forms aZ-structure is demonstrated in [3].

Definition. Let (X̄, Z) be aZ-structure onG. A sequenceU1 ⊃ U2 ⊃ · · · of
open sets inX is basicfor z ∈Z if there is a sequenceW1 ⊃ W2 ⊃ · · · of neigh-
borhoods ofz ∈ X̄ forming a basis atz such that the sequences{Wi ∩ X} andUi
are cofinal in each other.

The following are numbered as in [2].

Proposition 1.10. Suppose thatL is a countable field, and thatZ is a boundary
ofG.

(1) If Hq+1(G;LG) is finite-dimensional, then

Hq+1(G;LG)∗ = H lf

q+1(X) = H̃q(Z) ↪→ Hq(Z,Z − {z})
is injective for allz∈Z.

(2) If there is az ∈ Z with Hq(Z,Z − {z}) countable, thenHq+1(G;LG) is
finite-dimensional.

Here, the homology onZ is the Steenrod homology.

Axiom H. We say aZ-structure onG satisfies Axiom H if, for everyz∈Z, there
is a basic sequenceUi such that, for everyn > 1 and every compactK ⊂ X, there
existsg ∈G such that

(i) g(U1∪K) ⊂ Un and
(ii) g(Un) ⊃ Um for somem > n.

Proposition 1.17. Let Z be a boundary ofG and assume Axiom H. IfL is a
countable field,q ≥ 0, andz ∈ Z, then one of the following holds for Steenrod
homology with coefficients inL.
(1) The natural mapHq(Z) → Hq(Z,Z − {z}) is an isomorphism and the two

vector spaces are finite-dimensional.
(2) Hq(Z,Z − {z}) is uncountable.

Proposition 1.18. If the groupG is negatively curved andZ is the Gromov
boundary ofG, then Axiom H holds forZ.

This completes the synopsis of the pertinent parts of Bestvina’s paper. As one can
see, Proposition1.17 is a veryimportant result relating the homology group to local
homology groups in Steenrod homology. Unfortunately, we will see that Propo-
sition1.18 is false in general; in particular, we show that Axiom H is not satisfied
whenZ is the Gromov boundary of the free group of rank 2.
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Notice that Axiom H is in fact a local condition. In this paper, we will say that
z ∈Z, a boundary of a groupG, “satisfies Axiom H” if there is a basic sequence
for z satisfying the conditions of Axiom H.

Counterexample. If Z is the Gromov boundary ofF2, the free group of rank
2, thenZ fails to satisfy Axiom H.

Proof. We first show that if a pointz ∈ Z satisfies Axiom H then any basic se-
quence forz will have a subsequence satisfying Axiom H. Let{Um} be the basic
sequence ofz that satisfies Axiom H, and let{Vj } be any other basic sequence for
z. Now simply choose subsequences{Vji } and{Umi } with Vj1 ⊂ Um1 andVji ⊃
Umi . We can do this since any two basic sequences will be cofinal in each other.
Since{Um} satisfied the conditions Axiom H, it follows that{Umi } will also. We
now show that{Vji } satisfies the conditions of Axiom H. LetK be a compact sub-
set ofX. By Axiom H, there exists ag ∈ G such thatg(Um1 ∪ K) ⊂ Umn and
g(Umn) ⊃ Umr for somer > n. Thus

g(Vj1 ∪K) ⊂ g(Um1 ∪K) ⊂ Umn ⊂ Vjn .
For the other condition, notice thatg(Vjn) ⊃ g(Umn) ⊃ Umr ⊃ Vjs for somes >
r > n, since{Umi } and{Vji } are cofinal in each other.

WhenG is a negatively curved group andZ is its Gromov boundary, we can
replaceX with any other proper geodesic metric spaceX ′ on whichG acts co-
compactly and properly discontinuously by isometries; ifz∈Z satisfied Axiom H
before, then it still will. This follows from Theorem 5 in the next section.

Thus, forF2 = 〈a, b〉, we may takeX to be the Cayley graph (4-valence tree)
of F2. The elements ofZ can be thought of as the freely reduced rays that start
at the identity vertex0. For such a rayR, for i > 0 letUi be that component of
the complement of the midpoint of theith edge ofR that contains the end ofR.
In this setting, this corresponds to a half-space neighborhood ofR (defined in the
next section). It follows that{Ui} is a basic sequence forR ∈Z.

We now identify a ray that fails to satisfy Axiom H. LetR be the ray starting at
0 given byabaabaaabaaaab. . . . Notice that, for anyg 6= 1, R ∩ g(R) will con-
tain at most one edge labelled byb. Suppose, by way of contradiction, thatR sat-
isfies Axiom H. This implies that there is a subsequence{Vi} of {Ui} that satisfies
the conditions of Axiom H. Lete be the oriented edge ofR whose midpoint was
used to defineV1 oriented in the direction ofR. Let S be the subray ofR whose
first edge ise. Let I be the maximal initial segment ofS that contains only one
edge labeled byb. Fix n > length ofI.

Let g ∈ G such thatg(V1) ⊂ Vn. This implies that eitherg(e) ⊂ S with the
orientation preserved or thatg(S) ∩ S = ∅ andg(e) points away fromS. In the
latter case,g(Vi) ∩ S = ∅ for all i, sog(Vn) + Vj for all j. Thus we may as-
sume thatg(e) ⊂ S with the orientation preserved. This implies, by definition of
I, that g(S) ∩ S ⊂ g(I ). Sincen is larger than the length ofI, it follows that
if en is the edge ofS whose midpoint is used to defineVn, theng(en) ∩ S = ∅,
whenceg(Vn)∩S = ∅. In particular,g(Vn) contains noVm for anym, contradict-
ing Axiom H.
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In the next section we will define the notion of a “line transitive point” inZ. The
set of line transitive points of the Gromov boundaryZ satisfy Axiom H; as shown
in [7], these form a set of full measure inZ.

Proposition 1. If z ∈ Z (the Gromov boundary), and if z is a line transitive
point, then Axiom H is satisfied atz.

The proof will be given in the next section. Because (in the proof of Proposition
1.17)Bestvina uses only that the pointz ∈ Z satisfies Axiom H, it follows from
Proposition 1 that Proposition1.17 issatisfied at almost all points of the Gromov
boundary. We now give a slightly weaker global version of Proposition1.17 for
the Gromov boundary of a negatively curved group.

Main Theorem. LetZ be the Gromov boundary of a negatively curved group.
If L is a countable field andq ≥ 0, then one of the following holds for Steenrod
homology.

(1) For all z∈Z, the natural mapHq(Z)→ Hq(Z,Z − {z}) is an isomorphism
and the two vector spaces are finite-dimensional.

(2) Hq(Z,Z − {z}) is uncountable for somez∈Z.
The proof requires some very technical results and will be given in the next section.
The following question is left open.

Question. Is Bestvina’s Proposition1.17true for all points of the Gromov bound-
ary of a negatively curved group?

For this to be false, there would have to be a countable fieldL and a negatively
curved groupGwith Gromov boundaryZ with the property that, for someq ≥ 0,
(i) Hq(Z,Z−{z}) is uncountable for somez∈Z (to avoid the hypothesis of the

Main Theorem) and
(ii) dim Hq(Z) < dimHq(Z,Z − {y}) ≤ ℵ0 for somey ∈Z (this follows from

Proposition1.10,sinceHq(Z,Z − {y})must be countable at a pointy where
Proposition1.17 fails),

where these Steenrod homology groups have coefficients inL. Notice that thisy
cannot be a line transitive point ofZ.

2. Definitions and Proofs

LetX be a proper geodesic metric space with metricd. A geodesic interval(seg-
ment, ray, or line) is an isometric embeddingS : I → X, whereI is an interval
(segment, ray, or line) ofR. The image ofS is denoted bŷS.

When the words segment, ray, line, triangle, polygon, et cetera are used, it is to
be understood that they are geodesic. Unless stated otherwise, all closed rays are
parameterized using arc length by [0,∞).
Definition. A triangle inX is said to beδ-thin if any point on the triangle is
within δ of one of the other two sides of the triangle.
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Definition. We sayX is δ-hyperbolicif all triangles inX areδ-thin. A groupG
is callednegatively curvedif some locally finite Cayley graph ofG is δ-hyperbolic
for someδ ≥ 0.

For the time being,X will be a proper geodesicδ-hyperbolic metric space.

Definition. Two raysR, S ⊂ X areequivalent,denotedR ∼ S, if there is an
N > 0 such thatR̂ ⊂ Nbh(Ŝ, N ). The equivalence class of a rayS is denoted
by [S].

Remark. If R andS are equivalent rays then, forr � 0, d(R(r), Ŝ ) ≤ 2δ.

Definition. We define∂X to be the set of equivalence classes of rays. The
elements of∂X are calledpointsat∞.
Remark. If all triangles areδ-thin, then (a) alln-gons are(n − 2)δ-thin and
(b) idealn-gons (i.e.,n-gons with one or more vertices on∂X) are 2(n−2)δ-thin.

Definition. Let T be a closed set ofX with a ∈ X. DefineπT (a) = { t ∈ T :
d(t, a) = d(T, a) }. Notice that, in general,πT (a) is not a single point. Fort ∈
T we defineπ−1

T (t) = { x ∈ X : t ∈ πT (x) }; we extend this to∂X by defining
x ∈ ∂X to be inπ−1

T (t) if and only if there is some rayR representingx with R ⊂
π−1
T (t).

Definition. Let T be some geodesic interval (segment, ray, or line) witht ∈
domainT . Define thehalf-space

H(T, t) = { x ∈X : a ≥ t for somea ∈ T −1(πT̂ (x)) }.
Define the correspondingdisk

D(T, t) = { [S] ∈ ∂X : lim
s→∞ d(S(s),X −H(T, t)) = ∞}.

The disks so defined form the basis of a natural topology (equivalent to Gromov’s)
on∂X such that∂X is compact metrizable (see [1]) and∂X is finite-dimensional in
the case where the isometry group ofX acts cocompactly onX (see [9]). Also, the
union of a half-space with its corresponding disk forms a neighborhood of every
point of the disk in the natural compactificationX̄ = X ∪ ∂X of X. WhenX is a
locally finite Cayley graph of the groupG, ∂X is called theGromov boundaryof
G (this is independent of the choice of locally finite Cayley graph).

We now need some results about half-spaces.

Lemma 2 [4, 3.2.1]. LetX be δ-hyperbolic withR, S geodesics ofX andp ∈
R̂ ∩ Ŝ. If R̂ ∩ B(p,4δ) = Ŝ ∩ B(p,4δ) and the orientations ofR andS match
aroundp, then the half-spaces onR andS defined atp are equal; that is,

H(R,R−1(p)) = H(S, S−1(p)).

Lemma 3 [4, 3.2.0]. Half-spaces on equivalent rays nest uniformly. That is, there
is aK > 0 such that, ifS andR are equivalent rays, we can reparameterizeR and
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S using arc length so thatH(S, t + K) ⊂ H(R, t) andH(R, t + K) ⊂ H(S, t)
for all t > 0.

Definition. LetG be a group acting via homeomorphisms on a compact Haus-
dorff spaceY. A sequence(gi) of distinct elements ofG is called aconvergence
sequenceif there are pointsN,P ∈ Y, the repelling pointandattracting pointof
(gi) respectively, such that for any neighborhoodU ⊂ Y of P and any compact
K ⊂ Y with N /∈K, gn(K) ⊂ U for all n� 0.

The groupG is called aconvergence groupif every sequence of distinct ele-
ments ofG has a convergence subsequence. WhenG is a convergence group, a
pointy ∈ Y is a limit point if y is the attracting or repelling point of some conver-
gence sequence ofG; the collection of all limit points ofG is called thelimit set
of G and is denoted3G.

Convergence groups in this very general setting are given a nice treatment by Tukia
[10].

Definition. SupposeG is a convergence group acting on a spaceY with 3G
compact Hausdorff. A pointx ∈3G is line transitiveif, given any distinctu, v ∈
3G, there exists a sequence{gi} of elements ofG such thatgi(x) → u and
gi(y)→ v for all y ∈ Y − {x}.
Proof of Proposition 1.Let Z be the Gromov boundary of the negatively curved
groupG. Let 0 be a locally finite Cayley graph ofG. By [6], G acts on0̄ =
Z ∪ 0 as a convergence group with limit set3G = Z. Let z ∈Z be a line transi-
tive point ofZ. Let L be a line in0 that hasz as one endpoint andv ∈ Z as the
other. LetR be a subray ofL that representsz and lety ∈ 0 be the initial point
of R̂. By the definition of line transitive, there exists a sequence{gi} ⊂ G such
thatgi(z)→ z andgi(y)→ v for all y ∈ Z − {z}. Replacing(gi) with a subse-
quence, we may assume thatgi(R)→ L′ a line, which will have endpointsv and
z. ReparameterizeR andL′ as in Lemma 3 so thatH(R, t +K) ⊂ H(L′, t) and
H(L′, t +K) ⊂ H(R, t) for all t ≥ 0, whereK is the constant of Lemma 3. Let
Un = Int(H(R, n+K)). Clearly,{Un} is a basic sequence forz.

We will show that{Un} satisfies Axiom H. LetC be a bounded subset of0 and
n > 0. There is ani > 0 such thatgi(R̂) ⊃ L′([−4δ, n+K + 4δ +1]), L′(0) ⊂
gi(R([n+K,∞))), andC ⊂ gi(Un). By Lemma 2,gi(Un) ⊃ Int(H(L′,0)). By
Lemma 3,U1⊂ Int(H(L′,0)). Thus,g−1

i (U1∪B) ⊂ Un. As before, by Lemma 2
and Lemma 3,Un ⊃ gi(Um) formwith gi(R(m))∈L′([n+K, n+K+1]). Since
R andL′ are parameterized by arc length, there will exist such anm > n. Thus
g−1
i (Un) ⊃ Um and the basic sequence{Ui} satisfies Axiom H.
As we saw in the proof of the Counterexample,zwill still satisfy Axiom H even

if we change the ambient space from0 to the Rips complex (or any other proper
geodesic metric space on whichG acts cocompactly and properly discontinuously
by isometries).

Definition. Let Y andW be metric spaces. We say thatY andW arequasi-
isometric(K) for someK > 0 if there are functionsf : Y → W andg : W → Y
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such thatd(f(y), f(y ′)) ≤ Kd(y, y ′)+K for all y, y ′ ∈ Y andd(g(w), g(w ′)) ≤
Kd(w,w ′)+K for allw,w ′ ∈W. Also, for ally ∈ Y andw ∈W, d(gBf(y), y) ≤
K andd(f B g(w),w) ≤ K. The functionsf andg are calledquasi-isometries,
and together they form aquasi-isometry inverse pair.

We now need some results about quasi-isometries.

Theorem 4 [5]. Let W and Y be proper geodesic metric spaces withY δ-
hyperbolic. IfW is quasi-isometric toY, then (a) W is ε-hyperbolic for some
ε ≥ 0 and (b) the quasi-isometry functions induce homeomorphisms between∂W

and ∂Z that are inverse to each other.

Theorem 5 [4, 4.2.3]. Let Y, W, f, and g be as in the definition of quasi-
isometry(K) with Y δ-hyperbolic. Then there exists anL, dependent only onK
and δ, with the following property: For any raysR ⊂ Y andS ⊂ W that cor-
respond under the boundary homeomorphisms, if the endpoint ofR is equal tog
(the endpoint ofS) then, for anyn > 0, there is anm > 0 such that

H(S,m+ L) ∪D(S,m+ L) ⊂ g−1(H(R, n) ∪D(R, n))
⊂ H(S,m− L) ∪D(S,m− L).

Definition. For a groupG with generating setC and ford > 0, theRip’s com-
plexPd is a simplicial complex whose vertex set isG,where{g1, . . . , gn} is a sim-
plex exactly whend(gi, gj ) ≤ d (where this is the word metric ofG with respect
toC) for all i, j.

Ford � δ,dimZ,we may computeHq(Z)andHq(Z,Z−{z})usingPd (see [3]).

Proof of the Main Theorem.We need only consider the case where, for every
z∈Z, Hq(Z,Z − {z}) is countable. Fixz ∈ Z; we will show that (1) holds for
thisz. LetG be a negatively curved group withZ as its Gromov boundary. LetP
be the Rips complex with which we computeHq(Z) andHq(Z,Z − {z}). Let 0
be the Cayley graph ofG with the same generating set as was used forP.

There is a natural inclusionf of 0 into the 1-skeleton ofP. We can thus con-
structg : P → 0 by sending each point ofP to a closest point of0. Since the
metric onP is obtained by giving each simplex the metric of a Euclidean simplex
with edge lengths= 1, it follows that if p ∈ σ (whereσ is a simplex inP) then
f B g(p) lies in the 1-skeleton ofσ. Notice thatg B f is the identity on0. The
functionsf andg will form a quasi-isometry inverse pair.

For any half-spaceH(S, n), let f ∗(H(S, n) = starf(H(S, n)). LetR be a ray
in 0 that representsz. Let Ui = f ∗(H(R, i)). Using Theorem 5, one can show
that{Ui} forms a basic sequence forz.

We now argue as in [2]. Note thatHq(Z,Z − {z}) ∼= lim−→H
lf

q+1(Ui) and

(provided the coefficients are in a field)H lf

q+1(Ui) is the dual ofHq+1
c (U1). Thus

Hq(Z,Z− {z}) is isomorphic to the dual of lim←−H
q+1
c (Ui). For somen > 1, V =

Im[H q+1
c (Un)→ H

q+1
c (U1)] has dimensions <∞ because otherwise the dual of
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lim←−H
q+1
c (Ui) would be uncountable, contradicting the fact thatHq(Z,Z − {z})

is countable. Choosen so thats is minimal. Using Bestvina’s Proposition1.10, it
can be shown that dimH q+1

c (P ) ≤ s. It now suffices to show that the sequence
{H q+1

c (Ui)} is pro-isomorphic toHq+1
c (P ),which is true as a result of the follow-

ing claim.

Claim. There exists anN > 0 such that, for any rayS, the imageW =
Im(H q+1

c (f ∗(H(S, n+N))))→ H
q+1
c (f ∗(H(S, n)))maps isomorphically onto

H
q+1
c (P ).

Recall thatHq+1
c (P ) is finite-dimensional. As we argued forV,

dimW ≥ dimHq+1
c (P )

with equality only ifW maps isomorphically toHq+1
c (P ). By way of contra-

diction, suppose there exist a sequence of raysSi ⊂ 0 (whose domains contain
[0,∞) but may be larger) and a monotonic increasing sequence of positive inte-
gersni such thatWi = Im(H q+1

c (f ∗(H(Si, ni)))) → H
q+1
c (f ∗(H(Si,0))) has

the property that dimWi > dimH
q+1
c (P ).

We first show that dimWi < ∞ for all i � 0. Suppose not; then, by tak-
ing a subsequence, we may assume thatWi is infinite-dimensional for alli. By
using the group action, we may assume thatSi(0) is the identity vertex0 of 0.
Taking a subsequence, we may assume thatSi → S where a prioriS is a geo-
desic interval withS(0) = 0 andS containing [0,∞) in its domain. By Lemma 2,
half-spaces in0 are locally defined. Thus, by taking a subsequence we may as-
sume thatH(Si,0) = H(S, 0) for all i. For anym > 0 and alli � m, H(S,m) =
H(Si,m) and soH(S,m) ⊃ H(Si, ni) whenni > m. ThusWi is a subspace
of Im(H q+1

c (f ∗(H(S,m))))→ H
q+1
c (f ∗(H(S, 0))), which will have infinite di-

mension for eachm. However, as we saw before,Hq(Z,Z − S(∞)) will be un-
countable, which is a contradiction. Thus, taking a subsequence, we may assume
that dimWi <∞ for all i.

We now change the parameterization of theSi by subtractingni so that the
domain ofSi now contains [−ni,∞) instead of [0,∞). Now

Wi = Im(H q+1
c (f ∗(H(Si,0))))→ Hq+1

c (f ∗(H(Si,−ni))).
Using the group action, we may assume thatSi(0) is 0. Taking a subsequence, we
may assume thatSi → S, whereS is now a line through the identity vertex. By
Lemma 2, half-spaces in0 are locally defined. Thus, by taking a subsequence,
we may assume thatH(Si,0) = H(S, 0)) for all i. For anym > 0 and alli � m,

ni > m andH(S,−m) = H(Si,−m). Since dimWi > dimH
q+1
c (P ), it follows

that dim(Im(H q+1
c (f ∗(H(S, 0)))))→ H

q+1
c (f ∗(H(S,−m))) > dim(H q+1

c (P )).

By the argument of the previous paragraph, dim(Im(H q+1
c (f ∗(H(S, 0))))) →

H
q+1
c (f ∗(H(S,−m))) < ∞ for all m � 0. However,P is the nested union of
{f ∗(H(S,−m))} and soHq+1

c (P ) = lim−→H
q+1
c (f ∗(H(S,−m))), which is absurd

since we have just shown that dim(H q+1
c (P )) < dim(lim−→H

q+1
c (f ∗(H(S,−m)))).

This completes the claim and the proof.
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