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0. Introduction

Let M be a complex Hermitian manifold and{fa}a∈D a holomorphic family of
endomorphisms ofM,whereD is the unit disk. This means that the mapD×M →
M, defined by(a, x)→ fa(x), is holomorphic. Suppose thatf = f0 has a com-
pact surjectively invariant subsetK, that is,f(K) = K. For example,K could be
a fixed point or a periodic orbit, but also a more complicated set such as the Julia
set of a rational function. We may then ask ifK is persistent under the perturba-
tionfa of the mapf. For instance, ifK is a fixed point off, then we ask iffa has a
fixed pointKa nearK for a small enough. A sufficient (albeit not necessary) con-
dition for this is that the fixed pointK be hyperbolic, meaning that the derivative
of f atK has no eigenvalue of modulus 1.

There is a natural notion of hyperbolicity for general setsK. Let us first consider
the case when the mapsfa are diffeomorphisms. The precise definition (which
can be found e.g. in [R]) will not be stated here, but it says that the tangent bundle
overK splits continuously into two invariant subbundles on which the derivative
of f is expanding and contracting, respectively.

One basic result in real dynamics is that hyperbolic sets are persistent under per-
turbations in the mapf (see [R]). In our case this means that ifa is small enough,
thenfa has a hyperbolic setKa close toK, and there exists a homeomorphismha
close to the identity conjugatingf |K to fa|Ka .

If K is a hyperbolic fixed point, then it follows from the implicit function theo-
rem that the fixed pointKa of fa depends holomorphically ona. The natural gen-
eralization of this to more general setsK is the notion of a holomorphic motion,
the definition of which is given in Section 1.

Theorem A. Let {fa}a∈D be a holomorphic family of diffeomorphisms of a Her-
mitian manifoldM parameterized by the unit diskD. Suppose thatf = f0 has a
hyperbolic subsetK. ThenK moves holomorphically with the parametera at a =
0. More precisely, there existr > 0 and a holomorphic motionh : Dr ×K → M

such that, for eacha ∈Dr :
(1) Ka := h(a,K) is a hyperbolic subset forfa;
(2) the mapha := h(a, ·) : K → Ka is a homeomorphism andfa B ha = ha B f.
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Let us now return to the situation of a holomorphic family{fa} of endomor-
phisms of a Hermitian manifoldM. There is a notion of a hyperbolic setK in
this setting too [R]. Again, we will not give the precise definition, but let us note
that it involves the setK̂ = {(xk)k≤0; xk ∈K, f(xk) = xk+1} of backwards or-
bits inK.

The real theory [R] tells us that, fora small enough,fa has a hyperbolic set
Ka close toK and there exists a continuous surjective mapha : K̂ → Ka. NowK
andKa need not be homeomorphic, soK does, in general, not move holomorphi-
cally with a. Nevertheless, the dependence ofKa ona reflects the complex struc-
ture; one way of saying this is thata → Ka is a strongly analytic multifunction,
the definition of which is given in Section 1.

Theorem B. Let {fa}a∈D be a holomorphic family of endomorphisms of a Her-
mitian manifoldM parameterized by the unit diskD. Suppose thatf = f0 has a
hyperbolic subsetK. ThenK̂ moves holomorphically with the parametera at a =
0 anda → Ka is a strongly analytic multifunction. More precisely, there exist
r > 0 and a continuous maph : Dr × K̂ → M such that:

(1) for eacha ∈Dr , Ka := ha(K̂) is a hyperbolic set forfa, whereha = h(a, ·);
(2) for eacha ∈Dr , the mapha satisfies the relationfa B ha = ha B f̂ and lifts to

a homeomorphism̂ha : K̂ → K̂a, which is just the identity fora = 0;
(3) the maph(·, x̂) : Dr → M is holomorphic for eacĥx ∈ K̂;
(4) the set

⋃
a({a} ×Ka) in Dr ×M is foliated by holomorphic graphs overDr .

Sometimes a hyperbolic setK does move holomorphically with the parameter
even for endomorphisms. An important situation when this happens is whenK

is a repellor, meaning that the derivative off is expanding on the whole tangent
bundle overK (see Definition 1.3).

Theorem C. If {fa} is a holomorphic family of endomorphisms andK is a re-
pellor for f = f0, thenK moves holomorphically witha at a = 0 in the sense of
Theorem A.

Theorem C applies to show that the Julia set of a rational function moves holo-
morphically with the parameter on the open set of parameter space consisting of
hyperbolic maps. In [MSS], the authors prove that in fact one has a holomorphic
motion for a (possibly larger) open dense set of parameter space.

1. Definitions

In this section we recall the definitions of holomorphic motions and analytic mul-
tifunctions. For notational simplicity we will let these be parameterized by the
unit disk.
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Definition 1.1. LetD be the unit disk,M a complex manifold, andX a subset
of M. Then aholomorphic motionof X parameterized byD is a continuous map
φ : D×X→ M such that:

(1) φ(0, ·) = id;
(2) φ(·, x) : D→ M is holomorphic for everyx ∈X;
(3) φ(a, ·) : X→ M is injective for everya ∈D.

Holomorphic motions have mostly been studied for subsets of the Riemann sphere.
In [MSS], Mañe, Sad, and Sullivan proved the celebratedλ-lemma, which states
that each mapφ(a, ·) is quasiconformal and that the continuity assumption onφ

is redundant. Słodkowski [S], strengthening previous results, later proved that
a holomorphic motion of any subsetX of Ĉ can be extended to a holomorphic
motion of the whole Riemann sphere.

In higher-dimensional complex manifolds, such extension and continuity prop-
erties do not hold in general. Indeed, it is easy to construct a holomorphic mo-
tion of a subsetX of C2 such that all the mapsφ(a, ·) are discontinuous fora 6=
0. Moreover, the role of quasiconformality is not clear, at least not for arbitrary
setsX. Some results on quasiconformality and holomorphic motions in higher
dimension can be found in [ABR].

Next we discuss analytic multifunctions. LetM be a complex manifold. Then
a multifunction fromD toM is a mapK from D to the setK(M) of compact sub-
sets ofM. The mapK is called continuous (upper semicontinuous) if it is con-
tinuous (usc) in the Hausdorff metric onK(M). Its graph is defined by0(K) =⋃
a∈D({a} × K(a)), and it is easy to see thatK is usc iff 0(K) is closed in

D×M.
Definition 1.2. A strongly analyticmultifunction is an usc multifunctionK
such that0(K) is the union of graphs of holomorphic maps fromD toM.

From the definition it follows that a strongly analytic multifunctionK is both con-
tinuous and an analytic multifunction in the sense of [A]. The latter statement
means that ifD ⊂⊂ D is open andψ is plurisubharmonic in a neighborhood of
0(K|D), thenφ(λ) := sup{ψ(λ, x); x ∈K(λ)} is subharmonic onD. Also note
that a holomorphic motion can be viewed as a strongly analytic multifunctionK

such that0(K) is the union ofdisjoint graphs.
Analytic multifunctions appear naturally in complex dynamics. For example,

Baribeau and Ransford [BR] proved that iffa is a holomorphic family of rational
functions thena → J ∗a is an analytic multifunction, whereJ ∗a is the usc regular-
ization of the Julia setJa of fa; that is, the graph0(a→ J ∗a ) is the closure of the
graph0(a→ Ja).

Let us finally give the definition of a repellor as is needed in the statement of
Theorem C.

Definition 1.3. Letf be a holomorphic endomorphism of a Hermitian mani-
fold M, and letK be a compact invariant set. ThenK is said to be arepellor if
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there existc > 0 andλ > 1 such that|f n∗ v| ≥ cλn|v| for all tangent vectorsv over
K and alln ≥ 1.

2. Proofs

Proof of Theorem A.From the real theory [R] we know that we may find anr >
0 and, for alla ∈ Dr , a continuous mapha : K → M such thatKa := ha(K) is
a hyperbolic subset forfa; ha : K → Ka is a homeomorphism and the relation
fa Bha = ha B f holds. Moreover,h0 is the inclusionK ↪→ M, and the mapa→
ha is C∞ as a map fromD to the real Banach manifoldC(K,M) of continuous
functions ofK intoM. All of this is proved using the implicit function theorem
onC(K,M).

We want to prove that the mapa→ ha(x) is holomorphic for allx ∈K and de-
pends continuously onx. But the smoothness ofa→ ha implies thata→ ha(x)

isC∞ and that all derivatives ofha(x)with respect toa depend continuously onx.
Fix b ∈Dr and letµ be the section of the tangent bundle ofM overKb defined by
µ(hb(x)) := ∂

∂ā
ha(x)|a=b; this makes sense sincehb is a homeomorphism. Then

µ is a continuous (and hence bounded) section ofTM over the compact setKb.
We want to prove thatµ ≡ 0. From the relationfa B ha = ha B f we easily ob-
tainµ B fb = (fb)∗µ, where(fb)∗ is the derivative offb. But then the following
lemma tells us thatµ ≡ 0, which completes the proof.

Lemma 2.1. LetK be a hyperbolic set for an endomorphismf of a Riemannian
manifoldM, and let(xi)i∈Z be an orbit inK. Suppose thatµ is a bounded section
of the tangent bundle over(xi) (i.e.,µ(xi)∈ TxiM) with the propertyµ(xi+1) =
f∗(xi)µ(xi). Thenµ(xi) = 0 for all i.

Proof. We prove the lemma in the case whenf is a diffeomorphism—the mod-
ifications in the endomorphism case are left to the reader. There is a continu-
ousf∗-invariant splitting of the tangent bundle overK into unstable and stable
bundlesEu andEs, respectively, so we may writeµ = µu + µs, whereµu
andµs are bounded sections over(xi) of Eu andEs, respectively. We then
have thatµu(xi+1) = f∗(xi)µu(xi) andµs(xi+1) = f∗(xi)µs(xi). Suppose that
µu(xi) 6= 0 for somei. Then the expansion alongEu gives that|µu(xi+n)| =
|f n∗ (xi)µu(xi)| → ∞ asn → ∞. This contradicts the assumption thatµu was
bounded. Henceµu ≡ 0. In the same way, we see thatµs ≡ 0 and soµ ≡ 0.

Proof of Theorem B.The proof is very similar to that of Theorem A. The exis-
tence ofr andh satisfying (1)–(2) follows from the real theory [R]. This timeh
is constructed using the implicit function theorem on the real Banach manifold
C(K̂,M) of continuous functions from̂K toM. To prove (3), we takeb in Dr and
consider the mapµ from K̂b to TKb defined byµ(ĥb(x̂)) := ∂

∂ā
ha(x̂)|a=b. Then

µ is well-defined sincêhb is a homeomorphism. Moreover,µ is continuous (and
hence bounded) and satisfies the relationµ B f̂b = (fb)∗µ. Therefore, if(xi) is
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any orbit inKb, then Lemma 2.1 shows thatµ((xi)) = 0. This proves (3). Finally,
(4) follows immediately from (3).

Proof of Theorem C.Let ha be as in Theorem B. We claim that there exists a ho-
meomorphismga : K → Ka such thatga Bπ = ha, whereπ : K̂ → K is the pro-
jectionπ((xk)) = x0. To see this, take anyx ∈K and letx̂ = (xk) andŷ = (yk)
be two points inK̂ with π(x̂) = π(ŷ) = x (i.e., x0 = y0 = x). We must show
thatha(x̂) = ha(ŷ). Suppose this is not the case and letx(a) = ha(x̂) andy(a) =
ha(ŷ). Then, forn ≥ 0, we have

d(f na (x(a)), f
n
a (y(a))) ≤ d(f na (x(a)), f n(x))+ d(f na (y(a)), f n(x)) ≤ c(a),

wherec(a) → 0 asa → 0. Hence the forward orbits ofx(a) andy(a) are very
close ifa is small. Because of the expansion, this is only possible ifx(a) = y(a).
Therefore, the mapha : K → Ka is well-defined. It remains to be shown that
a → ha(x) is holomorphic for allx ∈ K, but this follows immediately because
the mapsa→ ha(x̂) are holomorphic.

It is also possible to give a direct proof of Theorem C without using Theorem B.
Let us sketch how to do this. The idea is to use Sullivan’s telescope construction as
described in [HO]. For simplicity we assume that the constantc in the definition of
a repellor is equal to 1; this can be achieved by changing the metric onM slightly
(a construction originally due to Mather). LetU0(x) be the ball of radiusε > 0
centered atx ∈K. The expansion implies thatf −1(U0(f(x))) has a unique com-
ponent contained inU0(x) for x ∈ K if ε is small enough. Call this component
U1(x). Inductively we find a nested sequence (telescope) of open sets{Un(x)}n≥0

for x ∈K, and the expansion implies that the diameter ofUn(x) is uniformly ex-
ponentially small. In particular, the intersection

⋂
n≥0Un(x) (the focus of the

telescope) is the single pointx. If a is small enough, then we may construct a per-
turbed telescope{Un,a(x)}n≥0 for x ∈K so thatUn,a(x) is a connected component
of f −na (U0(f

n(x))). We will still have that the diameter ofUn,a(x) is uniformly
exponentially small, so the focus of the telescope is a well-defined pointha(x).

It is easy to see, using that the expansion onK is bounded above, thatha(x) de-
pends continuously onx—in fact,ha is Hölder continuous. Exchanging the roles
of f andfa, we see that (fora small enough)ha is a homeomorphism, which is
bi-Hölder. DefineKa := ha(K). It is clear from the construction thatha conju-
gatesf onK to fa onKa. Finally, for fixedx, ha(x) is given as a uniform limit
of functions holomorphic ina; hencea→ ha(x) is holomorphic. This completes
the second proof of Theorem C.

3. Examples

Our first example concerns polynomial diffeomorphisms ofC2, for which we
use [BS] as a reference. We consider only diffeomorphisms that are conjugate to
finite compositions of (generalized) Hénon maps.
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A polynomial diffeomorphism ofC2 is said to behyperbolicif it is hyperbolic
on its nonwandering set; in this case the nonwandering set consists of a basic set
J of unstable dimension 1 and a finite number of repelling or attracting periodic
points.

It follows from Theorem A that if{fa}a∈D is a holomorphic family of polynomial
diffeomorphisms ofC2 andf = f0 is hyperbolic, thenJ moves holomorphically
with a ata = 0.

The second example is of a polynomial endomorphismf of C2, defined by
f(z,w) = (z2, w2). The nonwandering set� of f is the union�0 ∪ �1 ∪ �2,

where�0 = {(0,0)}, �1 = {|w| = 1, z = 0} ∪ {|z| = 1, w = 0}, and�2 =
{|z| = |w| = 1}. In this casef is hyperbolic on all of�, and it has unstable
dimensioni on�i.

We now embedf in a holomorphic family{fa} of endomorphisms ofC2 with
f0 = f. It then follows from Theorem C that the set�2 moves holomorphically
with a for a small enough; the same is true for�0. On the other hand, the set�1

does not move holomorphically in general. To see this, consider the component
K = {|z| = 1, w = 0} of �1. We embedf0 in the holomorphic family{fa} de-
fined byfa(z,w) = (z2, w2 + az), |a| < 1/4. Then the Riemann surfaceVa =
{w2 = r 2z} is invariant, wherer = 1/2− √1/4− a and the branch of the root
is chosen so that

√
1/4= 1/2. If we usez as a variable onVa, then the dynamics

onVa is given byz→ z2. HenceKa = {|z| = 1, w2 = r 2z}. Fora 6= 0, this is a
fiber bundle over the circle{|z| = 1, w = 0} with a two-point set as a fiber, and it
is clear thatKa is not a holomorphic motion ofK.

In fact, the discontinuity ofKa in this example is misleadingly simple. If we
takefa(z,w) = (z2, w2+w/10+ az), then one can see that the setKa, which is
a perturbation of the setK0 = {|z| = 1, w = 0} for smalla 6= 0, is a fiber bundle
over the circle|z| = 1 with Cantor sets as fibers.
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