Holomorphic Motions of Hyperbolic Sets

MATTIAS JONSSON

0. Introduction

Let M be a complex Hermitian manifold afd,}.cp @ holomorphic family of
endomorphisms a¥/, whereD is the unit disk. This meansthatthe nlag M —

M, defined by(a, x) — f,(x), is holomorphic. Suppose that= f, has a com-

pact surjectively invariant subsg&t that is, f(K) = K. For exampleK could be

a fixed point or a periodic orbit, but also a more complicated set such as the Julia
set of a rational function. We may then askkifis persistent under the perturba-
tion f, of the mapf. For instance, i is a fixed point off, then we ask iff, has a

fixed pointK, nearK for a small enough. A sufficient (albeit not necessary) con-
dition for this is that the fixed poink be hyperbolic, meaning that the derivative

of f atK has no eigenvalue of modulus 1.

There is a natural notion of hyperbolicity for general gét&et us first consider
the case when the mags are diffeomorphisms. The precise definition (which
can be found e.g. in [R]) will not be stated here, but it says that the tangent bundle
over K splits continuously into two invariant subbundles on which the derivative
of f is expanding and contracting, respectively.

One basic result in real dynamics is that hyperbolic sets are persistent under per-
turbations in the may (see [R]). In our case this means that i small enough,
then £, has a hyperbolic s&t, close toK, and there exists a homeomorphigm
close to the identity conjugating| x to f,|«, .

If K is a hyperbolic fixed point, then it follows from the implicit function theo-
rem that the fixed poink, of f, depends holomorphically an The natural gen-
eralization of this to more general sdsis the notion of a holomorphic motion,
the definition of which is given in Section 1.

THEOREM A. Let{f,}.ep be a holomorphic family of diffeomorphisms of a Her-
mitian manifoldM parameterized by the unit digk Suppose thaf = f; has a
hyperbolic subsek. ThenK moves holomorphically with the parameteata =

0. More precisely, there exist> 0 and a holomorphic motioh: D, x K —> M
such that, for each € D,:

(1) K, := h(a, K) is a hyperbolic subset fof,;

(2) the maph, ;= h(a,-): K — K, is a homeomorphism anfi o h, = h, o f.
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Let us now return to the situation of a holomorphic famflg,} of endomor-
phisms of a Hermitian manifold/. There is a notion of a hyperbolic s&t in
this setting too [R]. Again, we will not give the precise definition, but let us note
that it involves the sek = {(x1)k<0; xx € K, f(xx) = xx41} of backwards or-
bits in K.

The real theory [R] tells us that, far small enough f, has a hyperbolic set
K, close tok and there exists a continuous surjective hapK — K,. Now K
andK, need not be homeomorphic, &odoes, in general, not move holomorphi-
cally with a. Nevertheless, the dependencek@fon a reflects the complex struc-
ture; one way of saying this is that— K, is a strongly analytic multifunction,
the definition of which is given in Section 1.

THEOREM B. Let{f,}.cp be a holomorphic family of endomorphisms of a Her-
mitian manifoldM parameterized by the unit disk Suppose thaf = f; has a
hyperbolic subsek. Thenk moves holomorphically with the parameteata =
Oanda — K, is a strongly analytic multifunction. More precisely, there exist
r > 0 and a continuous mafp: D, x K — M such that

(1) foreachaeD,, K, := ha(K)isa hyperbolic set forf,, whereh, = h(a, -);

(2) for eacha € D,, the mapha sat|sf|es the relatiorf, o h, = h, o f and lifts to
ahomeomorph|srh K — K,, which is just the |dent|ty fon = O;

(3) the mapi(-, £): D, — M is holomorphic for eacli € K ;

(4) the set J,({a} x K,) in D, x M is foliated by holomorphic graphs ovér,.

Sometimes a hyperbolic sé& does move holomorphically with the parameter
even for endomorphisms. An important situation when this happens is When
is a repellor, meaning that the derivative pis expanding on the whole tangent
bundle overkK (see Definition 1.3).

THeOREM C. If {f,}is a holomorphic family of endomorphisms akds a re-
pellor for f = fu, thenK moves holomorphically with ata = 0 in the sense of
Theorem A.

Theorem C applies to show that the Julia set of a rational function moves holo-
morphically with the parameter on the open set of parameter space consisting of
hyperbolic maps. In [MSS], the authors prove that in fact one has a holomorphic
motion for a (possibly larger) open dense set of parameter space.

1. Definitions
In this section we recall the definitions of holomorphic motions and analytic mul-

tifunctions. For notational simplicity we will let these be parameterized by the
unit disk.
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DerFiNiTION 1.1.  LetD be the unit disk M a complex manifold, and a subset
of M. Then aholomorphic motiorof X parameterized bip is a continuous map
¢: D x X — M such that:

1) ¢(0,-) =id;

(2) ¢(-,x): D — M is holomorphic for every € X;

(3) ¢(a,-): X — M is injective for everyz € D.

Holomorphic motions have mostly been studied for subsets of the Riemann sphere.
In [MSS], Mafie, Sad, and Sullivan proved the celebratéeimma, which states

that each map (a, -) is quasiconformal and that the continuity assumptiopon

is redundant. Stodkowski [S], strengthening previous results, later proved that
a holomorphic motion of any subsgt of C can be extended to a holomorphic
motion of the whole Riemann sphere.

In higher-dimensional complex manifolds, such extension and continuity prop-
erties do not hold in general. Indeed, it is easy to construct a holomorphic mo-
tion of a subseX of C? such that all the mapg(a, -) are discontinuous far #

0. Moreover, the role of quasiconformality is not clear, at least not for arbitrary
setsX. Some results on quasiconformality and holomorphic motions in higher
dimension can be found in [ABR].

Next we discuss analytic multifunctions. L&t be a complex manifold. Then
a multifunction fromD to M is a mapK from D to the se#C(M) of compact sub-
sets of M. The mapK is called continuous (upper semicontinuous) if it is con-
tinuous (usc) in the Hausdorff metric d&XM ). Its graph is defined by'(K) =
U.epa} x K(a)), and it is easy to see tha is usc iff I'(K) is closed in
Dx M.

DErFINITION 1.2. A strongly analyticmultifunction is an usc multifunctiork
such thaf"(K) is the union of graphs of holomorphic maps fr@ro M.

From the definition it follows that a strongly analytic multifunctignis both con-
tinuous and an analytic multifunction in the sense of [A]. The latter statement
means that ifD cc D is open andy is plurisubharmonic in a neighborhood of
['(K|p), theng (1) = sup{y(r, x); x € K(A)} is subharmonic oD. Also note

that a holomorphic motion can be viewed as a strongly analytic multifunéfion
such thaf"(K) is the union ofdisjoint graphs.

Analytic multifunctions appear naturally in complex dynamics. For example,
Baribeau and Ransford [BR] proved thaffifis a holomorphic family of rational
functions theru — J* is an analytic multifunction, wherg* is the usc regular-
ization of the Julia sef, of f,; that is, the graplir(a — J) is the closure of the
graphI'(a — J,).

Let us finally give the definition of a repellor as is needed in the statement of
Theorem C.

DErINITION 1.3.  Let f be a holomorphic endomorphism of a Hermitian mani-
fold M, and letK be a compact invariant set. Thé&his said to be aepellor if
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there exist > 0 andi > 1 suchthaffv| > cA"|v]| for all tangent vectors over
K and alln > 1.

2. Proofs

Proof of Theorem AFrom the real theory [R] we know that we may findas
0 and, for alla € D,, a continuous map,: K — M such thatk, := h,(K) is
a hyperbolic subset fof,; h,: K — K, is a homeomorphism and the relation
faohys = hy o f holds. Moreoverhg is the inclusionk <— M, and the majpa —
h, is C* as a map fronD to the real Banach manifold@ (K, M) of continuous
functions of K into M. All of this is proved using the implicit function theorem
onC(K, M).

We want to prove that the map— h,(x) is holomorphic for allk € K and de-
pends continuously on. But the smoothness af — 4, implies thata — h,(x)
is C* and that all derivatives df, (x) with respect ta depend continuously on
Fix b € D, and letu be the section of the tangent bundleMfover K, defined by
w(hy(x)) = %ha(x)lazb; this makes sense sinég is a homeomorphism. Then
w is a continuous (and hence bounded) sectioffMf over the compact s&kt,.
We want to prove that = 0. From the relationf, o h, = h, o f we easily ob-
tainu o f;, = (fp)« 1, Where(f,), is the derivative off;,. But then the following
lemma tells us thgt = 0, which completes the proof. O

LemmMma 2.1. LetK be a hyperbolic set for an endomorphighof a Riemannian
manifoldM, and let(x;);cz be an orbit inK. Suppose that is a bounded section
of the tangent bundle ovél;) (i.e., u(x;) € Ty, M) with the propertyu (x;41) =
fe(x)u(x;). Thenu(x;) = 0 for all i.

Proof. We prove the lemma in the case whgns a diffeomorphism—the mod-
ifications in the endomorphism case are left to the reader. There is a continu-
ous f,-invariant splitting of the tangent bundle ov&rinto unstable and stable
bundles” and E*, respectively, so we may write = u, + u,, wherepu,

and u, are bounded sections oveér;) of E* and E*, respectively. We then
have thau’bu(xi—kl) = f*(xi)uu(xi) andﬂs (xH—l) = f*(xi)/'bx(xi)~ Suppose that
w.(x;) # 0 for somei. Then the expansion along* gives that|w, (x;1,)| =

| fI(x) ey (x;)] — oo asn — oo. This contradicts the assumption thaf was
bounded. Hencg, = 0. In the same way, we see that=0andsqu =0. O

Proof of Theorem BThe proof is very similar to that of Theorem A. The exis-
tence ofr andh satisfying (1)—(2) follows from the real theory [R]. This time

is constructed using the implicit function theorem on the real Banach manifold
C(K, M) of continuous functions fronk to M. To prove (3), we také in D, and
consider the map from K, to TK,, defined byu (7, (%)) := 2 hy(%)la=p. Then

w is well-defined sincé,, is a homeomorphism. Moreover,is continuous (and
hence bounded) and satisfies the relatimﬁ = (fp)«u. Therefore, if(x;) is
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any orbit inK;, then Lemma 2.1 shows that(x;)) = 0. This proves (3). Finally,
(4) follows immediately from (3). O

Proof of Theorem CLet i, be as in Theorem B. We claim that there exists a ho-
meomorphisng,: K — K, suchthag, omr = h,, wherer : K — K isthe pro-
jection ((xx)) = xo. To see this, take any € K and letx = (x;) andy = (y)

be two points inK with 7(£) = 7($) = x (i.e.,x0 = yo = x). We must show
thath,(x) = h,(y). Suppose this is not the case anddet) = 4,(x) andy(a) =
hq(¥). Then, forn > 0, we have

d(f (x(@), fi'(y(@) = d(fi'(x(@), f"(x) +d(f;(y(@)), f"(x)) < c(a),

wherec(a) — 0 asa — 0. Hence the forward orbits of(a) andy(a) are very
close ifa is small. Because of the expansion, this is only possiblé&df = y(a).
Therefore, the map,: K — K, is well-defined. It remains to be shown that
a — h,(x) is holomorphic for allx € K, but this follows immediately because
the maps: — h,(x) are holomorphic. O

It is also possible to give a direct proof of Theorem C without using Theorem B.
Let us sketch how to do this. The idea is to use Sullivan’s telescope construction as
described in [HO]. For simplicity we assume that the constamthe definition of

a repellor is equal to 1; this can be achieved by changing the meti¢ slightly

(a construction originally due to Mather). L&b(x) be the ball of radiugs > 0
centered at € K. The expansion implies that~X(Uy(f(x))) has a unique com-
ponent contained il/y(x) for x € K if ¢ is small enough. Call this component
Ui(x). Inductively we find a nested sequence (telescope) of operl$gts)},.>o

for x € K, and the expansion implies that the diametet/pfx) is uniformly ex-
ponentially small. In particular, the intersectipn, ., U,(x) (the focus of the
telescope) is the single point If « is small enough, then we may construct a per-
turbed telescop@/, ,(x)}.>0for x € K sothatU, ,(x) is a connected component
of £"(Uo(f"(x))). We will still have that the diameter d@f, ,(x) is uniformly
exponentially small, so the focus of the telescope is a well-defined ppirD.

It is easy to see, using that the expansionkois bounded above, that, (x) de-
pends continuously on—in fact, i, is Hoélder continuous. Exchanging the roles
of f and f,, we see that (for small enough}:, is a homeomorphism, which is
bi-Holder. Definek, := h,(K). It is clear from the construction that, conju-
gatesf on K to f, on K,. Finally, for fixedx, h,(x) is given as a uniform limit
of functions holomorphic ia; hencen — h,(x) is holomorphic. This completes
the second proof of Theorem C.

3. Examples

Our first example concerns polynomial diffeomorphismsCst for which we
use [BS] as a reference. We consider only diffeomorphisms that are conjugate to
finite compositions of (generalized) Hénon maps.
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A polynomial diffeomorphism o€? is said to behyperbolicif it is hyperbolic
on its nonwandering set; in this case the nonwandering set consists of a basic set
J of unstable dimension 1 and a finite number of repelling or attracting periodic
points.

Itfollows from Theorem Athat if 1, }.p is a holomorphic family of polynomial
diffeomorphisms of£? and f = f; is hyperbolic, thery moves holomorphically
with a ata = 0.

The second example is of a polynomial endomorphigraf C2, defined by
f(z, w) = (z%, w?). The nonwandering s&® of f is the unionQ2o U Q1 U 25,
whereQo = {(0,0)}, Q1 = {lw| =1,z =0 U{|z] = 1L, w = 0}, andQ, =
{lzI = |w| = 1}. In this casef is hyperbolic on all ofQ2, and it has unstable
dimension on Q;.

We now embedf in a holomorphic family f,} of endomorphisms of ? with
fo = f. It then follows from Theorem C that the s@ moves holomorphically
with a for a small enough; the same is true fag. On the other hand, the s@
does not move holomorphically in general. To see this, consider the component
K = {|z| = 1, w = 0} of ;. We embedfy in the holomorphic family f,} de-
fined by £, (z, w) = (z2, w? + az), |la| < 1/4. Then the Riemann surfadg, =
{w? = r?z} is invariant, where = 1/2 — /1/4 — a and the branch of the root
is chosen so thay/1/4 = 1/2. If we usez as a variable of¥,, then the dynamics
onV, is given byz — z2. Hencek, = {|z] = 1, w? = r?z}. Fora # 0, thisis a
fiber bundle over the circlfz| = 1, w = 0} with a two-point set as a fiber, and it
is clear thatk, is not a holomorphic motion of.

In fact, the discontinuity oK, in this example is misleadingly simple. If we
take f,(z, w) = (z%, w? + w/10+ az), then one can see that the &&t, which is
a perturbation of the s&y = {|z|] = 1, w = 0} for smalla # 0, is a fiber bundle
over the circlgz| = 1 with Cantor sets as fibers.
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