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1. Introduction

LetG be a bounded planar region containing the origin in the complex planeC.
For 1≤ p <∞, the Bergman spaceLpa(G) consists of all analytic functionsf in
G with

‖f ‖p =
(∫

G

|f(z)|p dA(z)
)1/p

<∞,

wheredA denotes the Lebesgue measure on the complex plane.
Let φ be a smooth function with compact support. The Vitushkin localization

operatorTφ is defined by

Tφf(z) =
∫
f(w)− f(z)
w − z ∂̄φ dA(w),

wheref is a bounded function with compact support. LetLp(G) be the space of
measurable functions that are zero offG, and let

‖f ‖p =
(∫

G

|f(z)|p dA(z)
)1/p

<∞.

The Bergman spaceLpa(G) is a closed subspace of the Banach spaceLp(G). It is
well known that the operatorTφ is a bounded linear operator onLp(G) and leaves
L
p
a(G) invariant.
LetH∞(G) denote the Banach algebra generated by bounded analytic functions

onG. A closed subspaceM of Lpa(G) is anH∞(G) invariant subspaceif it is in-
variant under multiplication by each bounded analytic function onG. The dimen-
sion ofM/zM is no less than 1 since zero is inG. An H∞(G) invariant subspace
M satisfies thecodimension-1 propertyif the dimension ofM/zM is 1. LetZ(M)
be the set of common zeros of functions inM. We say thatM has thedivision
propertyif f(z)/(z−λ) is inM wheneverλ∈G \Z(M) andf ∈M with f(λ) =
0. In [5] it was shown that the codimension-1 property is actually equivalent to
the division property. Forf1, f2, . . . , fn in Lpa(G), let [f1, f2, . . . , fn] denote the
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H∞(G) invariant subspace generated byf1, f2, . . . , fn, that is, theLp(G) closure
of the set

{p1f1+ p2f2 + · · · + pnfn, p1, p2, . . . , pn ∈H∞(G)}.
A point λ0 on the boundary ofG is called aremovable point forH∞(G) if every
function inH∞(G) extends an analytic function in a neighborhood ofλ0.

The structure of invariant subspaces of the Bergman spaces (in particular, over
the unit disk) has attracted a lot of attention in recent years. For more information,
we refer the reader to [1; 2; 3; 4; 5; 6] and the references therein. Though there are
invariant subspaces that do not satisfy the codimension-1 property, such subspaces
are difficult to construct (see [2], [3], and [4]). It is always easy to construct invari-
ant subspaces with the codimension-1 property. For example, the invariant sub-
space [f ] ([f ] is called acyclic invariant subspace with cyclic vectorf ) has the
codimension-1property for eachf inLpa(G). In some cases, such as with the Hardy
spaces and certain weighted Dirichlet spaces on the unit disk, all invariant sub-
spaces are cyclic and therefore have the codimension-1 property. Hence, it is inter-
esting to know when an invariant subspace of the Bergman space has this property.

In [6], considering some local conditions of functions in an invariant subspace
on the boundary, the second author obtained some sufficient conditions for the in-
variant subspace of the Bergman space on the unit disk to have the codimension-1
property. Recently, Aleman and Richter obtained in [1] some local integrability
conditions on functions in an invariant subspace of the Bergman space on the unit
disk—conditions that ensure the invariant subspace has the codimension-1 prop-
erty. However, it seems that their method works only on the unit disk. In this
paper, we continue our work along this line and generalize Aleman and Richter’s
result to the Bergman space over a general region of the complex plane. The main
idea is to use the Vitushkin localization operator to localize functions in the in-
variant subspace and to show that the codimension-1 property depends only on
the local behaviors of functions in the subspace. Even in the open unit disk case,
our proof simplifies Aleman and Richter’s original proof. The main results of the
paper are the following.

Theorem A. LetV be an open disk with centerλ0 ∈ ∂G, and letf ∈Lpa(G) ∩
Ls(V ∩G, dA) andg ∈Lpa(G) ∩ Ls ′(V ∩G, dA), where1/s + 1/s ′ = 1/p. Sup-
pose thatH∞(G ∩ V ) is dense in bothLsa(G ∩ V ) andLs

′
a(G ∩ V ), and thatλ0

is not a removable point forH∞(G). Then theH∞(G) invariant subspace[f, g]
has the codimension-1property.

Notice that the condition thatH∞(V ∩ G) be dense inLpa(G ∩ V ) is very weak
since it holds if∂(V ∩ G) satisfies some wild analytic capacity conditions (see
[7]). The second assumption, thatλ0 is not a removable point forH∞(G), is also
wild since most planar regions satisfy the condition.

Corollary B. LetV andλ0 satisfy the conditions in Theorem A. Suppose that a
functionf inLpa(G) is bounded onV ∩G. Then everyH∞(G) invariant subspace
containingf has the codimension-1property.
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2. Proofs of the Results

The following properties about the Vitushkin operatorTφ are well known.

Lemma 1. Letφ be a smooth function with support inV. The Vitushkin localiza-
tion operatorTφ satisfies the following properties:

(1) the functionTφf is analytic onG ∪ (suppφ)c for each functionf in Lpa(G);
(2) Tφ is a bounded linear operator onLpa(G);
(3) if f ∈Lpa(G) ∩ Ls(G ∩ V ) wheres > p, then for every compact setK∫

K

(∫ ∣∣∣∣ f(z)z− λ ∂̄φ(z)
∣∣∣∣ dA(z))s dA(λ) <∞.

Lemma 2. LetM be theH∞(G) invariant subspace generated byf andg. Then
M has the codimension-1property if and only if there is a pointλ∈Gwithf(λ) 6=
0 andg(λ) 6= 0 such that

f(z)g(λ)− g(z)f(λ)
z− λ ∈M.

Proof. In [5], Richter showed thatM has the codimension-1 property if and only
if there exists aλ ∈ G such that, for bounded analytic functionsp and q, if
p(λ)f(λ)+ q(λ)g(λ) = 0 then

p(z)f(z)+ q(z)g(z)
z− λ ∈M.

However,

p(z)f(z)+ q(z)g(z)
z− λ

= p(z)− p(λ)
z− λ f(z)+ q(z)− q(λ)

z− λ g(z)+ p(λ)
f(z)− f(λ)

g(λ)
g(z)

z− λ .

This proves the lemma.

Recall thatV in Theorem A denotes the disk with radiusδ centered atλ0.

Lemma 3. Letf ∈ Lpa(G) ∩ Ls(V ∩G, dA) andg ∈ Lpa(G) ∩ Ls ′(V ∩G, dA),
where1/s + 1/s ′ = 1/p. Let φ be a smooth function with support inV. Then
(Tφf )g belongs to[g].

Proof. By Lemma 1, we know that there exists aδ0 < δ such thatTφf ∈
Lsa((G ∩ V ) ∪ { z : δ0 < |z − λ0| < N }), whereN is a constant greater than
the diameter ofG. Using thatH∞(G ∩ V ) is dense inLsa(G ∩ V ) and thatTφ is
a bounded operator onLsa(G ∩ V ), we conclude there exists a sequence{pn} ⊂
H∞(G∩V ) such thatTφpn converges toTφf in Ls(G∩V, dA) and uniformly on
Ḡ \V. Hence
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G

|(Tφpn)g − (Tφf )g|p dA
≤ sup

z∈Ḡ\V
|Tφpn − Tφf |‖g‖p + ‖pn − Tφf ‖Lsa(G∩V )‖g‖Ls ′a (G∩V )

→ 0.

SinceTφpn ∈H∞(G), we see that(Tφf )g ∈ [g].

Define

H [f, g, h](λ) =
∫
f(z)g(λ)− g(z)f(λ)

z− λ h(z) dA(z).

Proof of Theorem A.From Lemma 2, it suffices to show that the identity

H [f, g, h](λ) = 0

holds forλ∈G∩ V andh ⊥ M (Note thatH [f, g, h](λ) is zero offG). Let φ be
aC∞ function with support inV. It follows from Lemma 3 that∫

(Tφf )gh̄ dA = 0.

Using Fubini’s theorem, we get∫
φfgh̄ dA = 1

π

∫
f(z)h(z)

∫
g(λ)

λ− z ∂̄φ(λ) dA(λ) dA(z)

= − 1

π

∫
∂̄φ(λ)g(λ)

∫
f(z)

z− λh(z) dA(z) dA(λ).

Similarly, we have∫
φfgh̄ dA = − 1

π

∫
∂̄φ(λ)f(λ)

∫
g(z)

z− λh(z) dA(z) dA(λ).
Hence, ∫

∂̄φ(λ)H [f, g, h](λ) dA(λ) = 0.

Thus, by Weyl’s lemma,H [f, g, h](λ) equals an analytic functionA[f, g, h](λ)
onV a.e. with respect to the area measure.

Claim. The functionA[f, g, h](λ) is the zero function.
ForF ∈H∞(G) andλ∈G, we have

F(z)− F(λ)
z− λ ∈H∞(G).

On the other hand,

F(z)f(z)g(λ)− F(λ)f(λ)g(z)
z− λ

= F(z)− F(λ)
z− λ f(z)g(λ)+ F(λ)f(z)g(λ)− f(λ)g(z)

z− λ .

Thus it follows that
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H [Ff, g, h](λ) = F(λ)H [f, g, h](λ)

onG. Using the same argument forH [f, g, h], one can show that there is an ana-
lytic functionA[Ff, g, h] on V such thatH [Ff, g, h] equalsA[Ff, g, h] almost
everywhere onV. Therefore,

A[Ff, g, h](λ) = F(λ)A[f, g, h](λ)

onG ∩ V. Now assume thatA[f, g, h] is not zero; then the functionF extends a
meromorphic function onV. SinceF is bounded onG, we conclude thatλ0 is not
a pole forF(λ). Hence,λ0 is a removable point forH∞(G). This a contradiction.
Thus,H [f, g, h](λ) = 0.

Proof of Corollary B. It follows from Theorem A that the invariant subspace gen-
erated byf andg has the codimension-1 property. Now the corollary follows
from [5].

Acknowledgment. We would like to thank the referee very much for giving a
better assumption of Theorem A and pointing out a better argument in the latter
part of its proof.
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