Analytic Varieties with
Boundaries in Totally Real Tori

MIiIrRAN CERNE

1. Introduction

Let 8D be the unit circle irC and letr,: C2 — C be the projectionrs(z, w) =
w. Let T; and T, be disjoint maximal real smooth tori 5D x C such that, for
eacht € 9D andj = 1, 2, the fiber

Ty.c i= m2(T; N ({€) x ©))

of T; over¢ is a smooth Jordan curve @ Also, letV be a two-sheeted analytic
variety overD with boundary inT; U T»; that is, there exisp andg holomorphic
functions onD, continuous up to the boundasp, such that

V={(z,w)eDxC; w?— p)w+qz) =0}

and such that, for every boundary po§nt 9D, each curvely ; andT, ¢ contains
exactly one root of the equatian® — p(&)w + g(£) = 0.

In this paper we consider the question of when it is possible to perturb variety
alongT,U T». More precisely, we are interested in geometric conditionf,on7’
andV such that it is possible to parameterize all nearby two-sheeted varieties over
D with boundaries il U T,. The method we apply is the method of partial in-
dices, which has been successfully used in problems of perturbing analytic discs
along maximal real boundaries by several authors [4; 6; 7; 8; 9]. The geometric
conditions we obtain are expressed in terms of the winding numbers of the normals
to the fiberdT; ¢ (j = 1, 2) along the roots of the equatia? — p(&)w +g(€) =0
(£ € 9D). A typical result is the following.

THEOREM. Let V be an irreducible two-sheeted analytic variety overwith
boundary in the disjoint unioff; U T, of two maximal real tori fibered oveiD.
Leto; anda, be the complex functions @ representing the boundary roots of
the varietyV such that, for everg € D, we havex;(§) € Tj ¢ (j = 1, 2); let

A = a1 — ap. Also, letv(€) and v2(£) be normals to the fiber®, ; and T ; at

the pointsx1(£) and a2(§), respectively. W (vy) + W(v,) > —1, then the fam-

ily of two-sheeted analytic varieties ovér with boundaries inf; U T, that are
close toV is aC! submanifold of the space of two-sheeted analytic varieties over
D of dimensior2(W(vy) + W(vz) + W(A)) + 2.
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See Section 3 for more details. HeW(y) denotes the winding number of a non-
zero continuous complex functionon aD.

The method we apply also allows small perturbatibnand7 of the tori7; and
T, (respectively) and hence our results also prove the existence of two-sheeted ana-
Iytic varieties overD with boundaries in the perturbed unidpuU 7>. Recall that,
for a single maximal real torug overdD, it is a well-known result of Forstndri
[7] that the existence of a holomorphic functighfrom the disc algebrai(D)
such that for eacl € aD the valuef (&) lies in the interior of the bounded com-
ponent ofC \ T; implies the existence of a holomorphic functier A(D) such
thata (&) € T; for eacht € dD. Actually Forstnerd proves much more. Infact, the
whole polynomial hull ofl" over D is given as the union of the graphs of the ana-
lytic discsa € A(D) such thati(§) € T; for eaché € dD; see [7] for more details.
See also [1; 2; 3; 13; 14; 15] for results related to the question on the polynomial
hull of a compact fibration oveiD.

ACKNOWLEDGMENT. The author wishes to thank Prof. Franc Forsihand Prof.
Josip Globevnik for stimulating discussions.

2. Partial Indices

We will just recall some of the facts related to the partial indices of a clased
(0 < a < 1) pathe in aC? maximal real manifold” in C". One may also con-
sider aC2 maximal real fibration 7 }scop OveraD. In the latter case each fiber
T; is a maximal real submanifold &” and¢ (&) € T;: for everyé € aD. More
details on partial indices can be found in [8; 9] and [16; 17]; see also [11].

For eactt € aD let A(¢) denote a matrix whose columns span the tangent space
of T (or of the fiberT;) at the pointp (§). Then there exist integersky, . . ., k,
called the partial indices of the closed pé&tm T, uniquely determined up to their
order, and a holomorphic matrix functioh € (A%(D))"*" such thatd: D —
GL(n, C) and such that, oAD,

a0 ... 0
A AE T = 0 g e
BO =A@A® T=0® ~ " o le®
0 ... 0 gk

that is, the holomorphigth columnv; (&) of the matrix functiond (¢) solves the
equation
B(&)v;(§) = §5v;(8)

on aD. If the tangent bundle of" is trivial (orientable) along)(dD), one may
chooseA(§) to beC® onaD. However, any choice of a matrik(¢) whose columns
span the tangent space®f(or of the fiber7;) at the pointp (£) will result in the
same matrix functiorB (§).

The sumky + - - -+ k, = k = W(det(B)) is called theotal indexof the closed
path¢ in T. The total index is even if' is trivial along¢ (0D) and odd otherwise.
In the case all partial indices are greater than or equalttowe call the curve
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¢ regular. It is known from results of Globevnik [8; 9] and Oh [11] that, in this
case, for every maximal real manifofticlose toT' the family of small(A*(D))”
analytic perturbations af along7 is aC* submanifold of the spadet®(D))" of
dimensior + k. Also, these manifolds depend smoothlyBnSee [8; 9; 11] for
more detalils.

3. Two-Sheeted Varieties oveb with
Boundariesin ;U T,

Let 7; and T, be disjoint maximal real tori ove¥D such that, forj = 1, 2 and
eacht € aD, the fiber

Tje = mo(T; N (&} x C))

is a smooth Jordan curve . More precisely, lets? = R/Z. Then there exist
r1, ro € C%(dD x S1) such that the mapping

(,1)€dD x S* > (&, 1;(5,1) €T}

is a parameterization df; (j = 1, 2). Also, for eachj = 1, 2 and eacl§ € dD,
the mapping
teSt e riE 1)

is aC?2 parameterization of the fibdf; ;. In particular%rj(s, t) # 0foranyj =
1,2, £€dD, andt € St

GivenTy, T, and their parameterizatioms, r», we defineX (71, T,), a 3-torus
in 3D x C2 C C3, as the set of all point&, w1, w,) € 3D x C2 such that

wy=r1E, 1) +r2(E,5) and wp = 3(riE, 1) — ra(£, 5))?

for somes, ¢ € S1.

PropOSITION 1. Letws: C3 — C2 be the projectionrs(z, wy, w2) = (w1, wo).
If T.N T, =@, then(Ty, T») is a maximal real3-torus in C3 and every fiber
X(T1, To): = m3(X(T1, T2) N ({&} x C?)), £ € D, is a maximal real2-torus
in C2.

Proof. Every pair of complex numberg; and w, uniquely determines an un-
ordered pair of complex numbess, «» such that
wi=o1+ay and wy = %(al — )’
Becausdl; andT> are disjoint,X (71, T») is a 3-torus parameterized by the map-
ping
(£.1,5)€0D x S' x ST > (&, 116, 1) + r2(8.9), 3(ri(€. 1) — r2(£, $))%).

Let D(&,1,5) = ri(&, 1) — ra(&, s). For eacke € 9D, the tangent space to the
fiber X (T4, T2): atthe point(ri(§, t) +ra(§, s), 1D(&, t,5)?) is theR-linear span
of the columns of the matrix
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_ ( %rl(? 1) %rZ(S’, s) ) )
D, 1,5) gri€.1) =D 1,5) 2raE,s) )
SinceT; andT; are disjoint, the determinant

det(A) = —2D(&, 1, )3 rl(é DS rz(é s)

is nonzero and (T4, T2)¢ is a maximal real 2-torus ig2. Also, =(Ty, T») is a
maximal real 3-torus iC3. O

Let@; anda, be twoC® complex functions 0D such that, for every € oD,

Ol]_(éz) (S TLS and Olz(é:) S Tg,g.
To a pair of such closed curves@we associate the closed curve

£ > (01(®) + a2(8), 3(1(§) — a2(8))%) &)

in C2 such that, for each € dD, the point(c1(§) + a2(£), 3 (2a(§) — @2(£))?) lies
in the maximal real toruE (7, T»)¢. To each curve in a maximal real fibration in
C? overdD one can associate two partial indices, hence one can define the partial
indices of a pair o”* closed curves; in T; anda; in T, as the partial indices of
the curve (2) in the maximal real fibrati¢®X (71, T2)¢ }econ-
Letv;(§) = —i%rj(f;‘, t), evaluated at the poimf(¢, 1) = «;(£), denote a nor-
mal to the curvd ; at the point; () (j = 1, 2), and letA (&) = ay(§) — a2(8).
Then the matrix (1) along the curve (2) can be written in the form

(1 1 vE) 0
A@)"(A@) —A@))( 0 vz(@)’

and the corresponding matrix(§) := A(§) A(§)Lis
BE) = — 1 <1 1 )(rl(é) 0 )(@ 1)
20 \AE) —A®/\ 0 n®/\A® -1/
where
v;(§)?

0= er

forj =12
If I € Z is a partial index of the curves, anda, then there exisC* functions
a andb on D, holomorphic onD and with no common zeros ab, such that on

aD we have i@ ®
_f
($)<b<§>) ¢ <b(§)>'
Therefore, ordD the following two equations hold:
nA(Aa+b) = —£'A(Aa+b), (3)

12A(Aa — b) = —£'A(Aa — b). 4)

We know that the total index is given as the winding number of the determinant
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det(B) = AA 117,
Hence the total index is
k =2W(A) + W(ty) + W(t2) = 2(W(A) + W(vy) + W(vy)).

We assume from now on that andw, represent the boundary values of some
two-sheeted analytic variety over D with boundary inf1UT». Thatis, we assume
there exisiC* functionsp, ¢ on D, holomorphic onD, such thatV is given by

w® — p(D)w +q(z) =0
and such that
p(&) = a1(§) + a2(8), q(€) = a1(§)az(8)

for every& € 9D (p andg are actually inC>-°(D) according to [5]). This con-
dition also implies that, for every symmetric polynomialof two variables, the
functioné — P(a1(§), a2(¢)) on aD has a holomorphic extension int@. In
particular this implies that

W(A) = Iw(a%) >0

since, as is well known, the winding number of a disc algebra function, which is
nonzero orfD, is a nonnegative integer.
Multiplying equations (3) and (4) yields

1112 A%(A2a2 — b2) = £ A2(A%? — b?) (5)
ondD. We denote
W) =n1, W) =nz, W(A) =ni.
Thus there exist real functions, u», 11>, andvqs on D such that
n(§) = §21ePO gy(f) = g22eP20), 6
and
A®§) = §n126v12(5)+iu12($). (7
Substituting (6) and (7) into (5), we have
21 (A22 _ p2)(g) = £20-2ma—m—n2)(A242 _ p2) (),

whereu = u1 + us + 2uq,. Let Hu denote the unique harmonic conjugate of
u for which (Hu)(0) = 0, and letK := ¢~“+“_ThenK has a holomorphic
extension intaD with no zeros oD and is such that, ofD,

% — K71k,
Therefore,
K(A24? — b?) = gZ(Z—nlz)—kK(A2a2 _ bz) 8)

ondD. Becauser; anda, are the boundary roots of a two-sheeted varlégver
D, the functionk (A%a? — b?) has a holomorphic extension ind.
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Let us assume for a moment that
2([ — I’l12) —k > 0. (9)

Then the left-hand side of (8) is an antiholomorphic functionband the right-
hand side of (8) is a holomorphic function dhwith a zero at 0This is only
possible if

(A%a? - b =0

on D. Observe that? is a well-defined function om. If « had a zero oD then

b would have a zero at the same point, which is impossible. ‘&Huss no zeros
on D andA? = b?/a? on D. Hence the variety is reducible. We may assume
A = b/a. Then equation (3) implies that

b— b
11-2b = —g’(-)zb
a a

= W(‘L’l) = 2W(l)1) = 21’!1.

ondD and hence

The other partial index is
k—1=2(W(y2) +W(A)) = 2ny+ 2n1.

Using the value of in the inequality (9), we see that this case can only happen if
nyg—nz > 2n12.

In case the inequality (9) does not hold for any of the partial indicés ¢.g.,
whenV is an irreducible variety), we must have

20 —n1) — k<0 or 1 <k/24n1
for both partial indices. Hence we also have
k—1<k/2+ni.

THEOREM 1. LetV be a two-sheeted analytic variety ovBrwith boundary in
the disjoint unionTy U T, of two maximal real tori fibered oveiD. Let o3 and
a2 be the complex functions @ representing the boundary roots of the variety
V such that, for everg € 9D, we havew;(§) € T; ¢ (j = 1, 2). Also, letvy(&)
and v, (&) be normals to the fiber®; ; and T, ¢ at the pointsx1(§) and a2(§),
respectively.

(1) If V isreducible andW(v1) — W(v2)| > W(A), then the partial indices of
Vare2maxW(vy), W(va)} and 2W(A) + 2 min{W(v1), W(vy)}.

(2) In the cases

(a) V isreducible andW(vy) — W(v2)| < W(A) or
(b) V isirreducible,

the partial indices are bounded by
W) + W(v2) < ki, k2 < W(v1) + W(v2) + 2W(A).
In either case, the total index is= 2(W(vy) + W(v,) + W(A)).
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Proof. The only part of the theorem we still have to check is the first case. We
may assuméV(vy) — W(vz) > W(A). Using the notation from (6) and (7), let

Kq:= el (urtu1p)+iH (u1+u12)) Ky = pluatu)+il(uotu12) . ilurtiHuy)

Forl = 2W(v1), a pair of holomorphic functions ands that solve (3) and

4)is
a:=IiL, b:=Aa=IAL.

Recall thatV is reducible and henc& has a holomorphic extension inf. Let
N =2(W(v1) — W(vy)). SinceW(vy) — W(vp) > W(A), there exists a polyno-
mial P(¢) = 2;:3“ c;&/ such thatty_; = ¢; for eachj = 0,..., N and such
thatA divides PK1 + K». Then a pair of holomorphic functionsandb that solve
(3) and (4) forl = 2W(A) + 2W(vy) is

ai= i(PKl—k K2), b= i(PKi— K2).

Observe that o L(PR. LK
det( i < (PK1+ K>?)
IAL i(PKi— K>5)
is nonzero orD. O

) =2LK;

Results from [8; 9] imply that when both partial indices are greater than or equal
to —1 there exist a neighborhoad of (p, ¢) in (A%(D))? and a neighborhoot!

of (r1, 2) in (C%(dD x $Y))? such that, for each paify, 7») € U, the set of discs

(p, q) € N such that

(P&, 3(p(®)* — 4G (&))) € (T, To)e

for everyé € 9D (71 and T, are the 2-tori inC2 defined by the parameterizations
71 andr, respectively) is &' submanifold ofV of dimension 2W (v1) +W(v,) +
W(A)) + 2.

Identifying the space of two-sheeted analytic varieties @verith the space of
analytic discgA%(D))?, we have the following corollary.

CoroLLARY 1. LetV be atwo-sheeted variety ovBrwith boundary inTp U 7.
(1) If Visreducible andW(vy) — W(v2)| = W(A), let2maxW(vy), W(vo)} >
Oand2W(A) + 2min{W(vy), W(v,)} > 0.
(2) If eitherV is reducible andW(vy1) — W(v2)| < W(A) orif V isirreducible,
let W(vy) + W(vp) > —1.
Then, for every paiff; and 7, of maximal real tori overD close toT; and T»,
respectively, the family of two-sheeted analytic varieties @varith boundaries
in T, U T, that are close toV is a C! submanifold of the space of two-sheeted
analytic varieties ovelD of dimensior2(W(vy) + W(vz) + W(A)) + 2. These
manifolds depend smoothly Gk and 7>.

There are two major cases of the positions of thefpandT, that one may con-
sider. One is the case whefglies in the unbounded component@D x C) \ Ty
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and the other is the case whétglies in the bounded component@D x C)\ T;.

Of course the roles dfy; andT, can be exchanged, but this does not produce any
new different cases. We will first consider the second case under the assumption
that there exists a functiane A%(D) such that, for each € 9D,

c(&) entTo, CC IntTy. (10)

Here,f,; denotes the closure of the bounded simply connected dom@irtiat
is bounded byT; ;; that is, T; ¢ is the polynomial hull of7; ¢ in C (j = 1, 2).
Condition (10) is biholomorphically equivalent to the case

OelntTre CCINtTye
(i.e.,c = 0). In this case we have the following equalities:
W(A) = W(a) = W), W(az) = W(v).

Becauser; anda; are the boundary roots of a two-sheeted analytic variety over
D, their sumx; 4+« and their produci; o have holomorphic extensions in.
Thus
0 < W(aa+az) = W) = W(vy) (11)
and
0 < W(aaz) = W(aa) + W(az) = W(v) + W(vp). (12)

CoroLLARY 2. If the torusT; lies in the bounded component GfD x C) \ Ty
and there exists a functiane A*(D) such that(10) holds, then every two-sheeted
analytic varietyV over D with boundary inT; U T5 is regular. Also,W(vy) > 0
andW(vy) + W(vy) > 0.

Here (and hereafter), the regularity is meant in the sense of Section 2. That is,
both associated partial indices are greater than or equdl.tand not in the usual
sense of regularity of a variety.

Henceforth we assume that

ToeNToe=0 (13)

for every& € 9D. We also assume that there exists a functienA*(D) with no
zeros omD such thatW(c) is an even integer and such that

i@ eintTee and yo(€) elnt Ty, (14)

for everyé € aD. Here,y; andy;, are the square roots ebveraD, that is, theC*
functions ondD such that/1(£)? = y2(£)? = c(£) andy1(§) = —y»(&) for every
&EeaD.

REMaRrks. (1) Itis enough to assume thais from the disc algebra.

(2) The assumption on the existence of such a funeti@biholomorphically
equivalent to the assumption that there exists a two-sheeted analytic Vériety
over D defined by functions from the disc algebra and with boundary recasd
y2 such that, for each € 3D we havey; (&) € Intf}; (j=12).
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(3) Using a biholomorphism we may even assume thiata finite Blaschke
product.

We write
ar=y1+a1 and ax=y2+ay (15)

for some nonzer@® functionsa; anda, for whose winding numbers we have
W) = W(vy) =n1 and W(az) = W(vz) = na,
respectively. Furthermore, fgr= 1, 2 we have
ocjz = )/_]-2 +a;(2y; + a;)).
Because (13) holds, the functions
§ 2O +a;§) (=12

are nonzero oD. Condition (13) actually implies much more; given that the
winding number is homotopy invariant, we conclude fog 1, 2 that

Wy + &) = W2y) = 2W (o). (16)

DenoteA; := &;(2y; + @;), j = 1,2. ThenA; andA; are nonzer@® functions
ondD such that, forj =1, 2,

a? =y?+ A =c+A (17)
and

W(Aj) = W) + 3W(c). (18)

Sincea; anda; represent the boundary roots of a two-sheeted analytic variety
over D, (17) implies that the functions

&> A1) + A2(5) and & > A1(§)Az(8)
have holomorphic extensions infa. Thus
W(A142) = W(A1) + W(A2) = W(v1) + W(v2) + W(c) = 0.
Also, the homotopy invariance of the winding number implies that
W(A) = W(y1—y2) = 3W(). (19)

ProrosiTioN 2.  If conditions(13)and (14)hold, thenW (vy) +W(vo) +W(c) >
OandW(A) = W(c)/2. Also, the partial indice&; andk, of an irreducible two-
sheeted analytic variety over D with boundary inT; U T, satisfy the following
inequalities

—W(c) < W) +W(v2) < kg, ko < W) + W(v2) + W(e).

More can be said when the holomorphic functidmas a holomorphic square root.
Adding and multiplying equations (15), we see that the functions

a1+ ar and )/1(&2—5(1)+5[15[2
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on aD have holomorphic extensions infd. Multiplying the first function byy;
(which has a holomorphic extension infy) and adding and subtracting it from
the second function, we get that the functions

ax(2y1+a1) and ay(—2y1+ @)

holomorphically extend int®. We observe that these two functions have no zeros
on dD and that condition (13) implies (16). Hence

W(@2(2y1+ a1)) = W(az) + 3W(c) = 0
and
W(@(—2y1+ &2)) = W(@) + sW(c) = 0.

ProrosiTioN 3.  If, inaddition to conditior(14),the functiore has a holomorphic
square root, then

W) = —3W(e) and W(z) = —3W(o).

ProrosiTioN 4. If W(c) = 0 then every two-sheeted analytic variety over
with boundary in71 U T5 is reducible.

Proof. Let V be a two-sheeted analytic variety ov@with boundary inT; U Ts.
We know from (19) that
W(A) = 3iW(c) =0.

Therefore, the winding number of the discriminayttof the varietyV is 0 and so
it has a holomorphic square root. Heri¢es reducible. O

4. Examples

ExampLE 1. Leta; # ap be two positive real numbers and #t= dD x a1(dD)
andT, = aD x a»(dD). Letn € Z be a nonnegative integer and 1ebe the variety
given by

V={(z,w)eD xC; w?— (a1 + ax)z"w + a1az*" = 0},

whereV is a variety with boundary iff; U T». The winding numbers of the corre-
sponding normals ar# (v1) = W(v,) = n andW(A) = n. Also, a short calcula-
tion shows that the partial indices are @nd 4:. Thus the total index isioand, for
each pair of maximal real tori close 1§ U T», there exists &6n + 2)-parameter
family of two-sheeted analytic varieties ovBrclose toV. Each reducible two-
sheeted analytic variety ovér close toV with boundary inT; U T5 is given by
an equation of the form

(w — a1e'’B(2) - - By(2)(w — aze’C1(2) - - C(2)) = 0,

wherep, v e RandBy, . .., B, andC;. . ., C, are automorphisms of the unit disc
D close to the identity with the leading factor equal tdHence the family of re-
ducible two-sheeted analytic varieties ovemwith boundary inTy U T5 is a sub-
manifold of the codimension2= (6n+2) — (1+1+2n+2n) of the manifold of
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all two-sheeted analytic varieties ovBrwith boundaries irf; U T, that are close
to V. Thus, most of the two-sheeted varieties ofewith boundaries irf’; U T,
and close td/ are irreducible.

EXAMPLE 2. Letc € A%(D) be such that it has no zeros 6P and its winding
numberW(c) is an even integer. Let > 0 be a positive constant such thak
mingp|c(z)|, and let

TIUT, = {(§, w) €D x C; |w? —c(§)| =a}.

Let B be a finite Blaschke product, and let variétywith boundary inT; U T, be
given by the equation
w? = c(z) + aB(z).

The winding numbers of the normals to the fiber§'gf 7, along the boundary of
V are thenW(vy) = W(vz) = W(B) — $W(c) andW(A) = 1 W(c). The partial
indices are W(B) — W(c) and 2V(B), and the total index isW(B) — W(c).

ExampLE 3. LetTi ={(&, w)edDxC; |w| = % }tandT, = { (§, w) € 0D x C;
lw| = 1}. Let p be a disc algebra function such that
p(@D) S {(x,y) eR?=C; x? + 4% =1},
and letV be given by the equation
w?—p@w+3=0. (20)
The solutions of the equation (20) ovéD are
a1=5(p—3p) and = 5ar.
Also,
@ = ¥(p— 30 (P — 3p)
= 3(Rep)? +4(Imp)? = 1.

HenceV is a two-sheeted analytic variety ovBrwith boundary inT; U T,. The
winding numbers of the corresponding normals to the fibers are

W) =W(p) and W(vz) =—-W(p).

Thus, one of the winding numbers of the normals to the fibers can be an arbitrary
negative integer—that is, there is no lower bound as in Proposition 3. Recall that
Corollary 2 implies that every two-sheeted analytic variety dvavith boundary

in T, U Ts is regular and that it is always the case th&atv,) + W(v,) > 0.

EXAMPLE 4. LetTyU T, = {(§,w) € D x C; [w? — &% = ). LetV =
{z,w)eDxC;w2=7z%+ % } be a variety with boundary i, U T5. As shown
in Example 2, the winding numbers of the corresponding normals are-doémd
the partial indices are 0 and2 (variety V is not regular!). On the other hand,
if we just slightly perturb one of the tori closer to its center (i.e.,§01s e>0
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let 71 be the component df; U T> closer to the curvé — (&, £) and letT, be

the component of (£, w) € D x C; |w? — 2| = % — ¢} closer to the curve
§ > (6, -8), then there is no two-sheeted analytic variety oewith bound-
ary in 7, U T> close toV. Indeed, letV be a two-sheeted analytic variety ov@r

with boundary inT; U T». Then, ondD, we have
@2(6) =24+ A() and GE(E) = E2+ Ax(9),

whereA; and A, areC*® functions ondD such thatA;(§)| = 3 and|A(&)| =

2 — & for everyé € aD. Hence

W(Ay) = W(Ay— Ap) = W(@? —aj)
=W@—a)+Wai+a)>1+0=1
On the other hand, we know from (18) tha&t( A1) = W(91) + 1 and thus
W) = 0; (21)

that is, at least one of the Winding numbers of the normals to the fibdig.of

along the boundary roots 6f is greater than or equal to Blence whateve% >

¢ > 0 we choose, none of the varietiésan be uniformly close t&. Observe also

that the mequallty (21), together with Proposmon 3, shows that every two-sheeted
analytic varietyV over D with boundary in7; U T is regular.

ExamMPLE 5. LetT be a maximal real torus iaD x C such that, for each €
oD, the fiberT; = 7o(T N ({€} x C)) of T overé is a disjoint union of two Jor-
dan curveslgl andJ§ in C. Let V be a two-sheeted variety ovBrwith boundary
in T—that is, there exist functions andq from A*(D) such that

V={(z,w)yeDxC; w?— pw+qz) =0}

and such that, for ever§y € aD, each curvelg1 and J§ contains exactly one root
of the equationw? — p(&)w + ¢ (&) = 0. Similarly as before, one defines a 3-
dimensional maximal real manifoll(7) € 3D x C2 whose each fibeX(T); =
73(Z(T) N ({€} x C?)) is a maximal real 2-torus i62 as well as an analytic disc

2 (P, 3(p(2)* — 49(2)) (22)

with boundary in the maximal real fibratidi (T')¢ }scop. One can again define
the partial indices of a two-sheeted variétyover D with boundary inT as the
partial indices of the disc (22) with boundary{iB (7' )s }scap-

Let F: C2 — C? be defined asF(z, w) := (z%, w). Then the preimage
F~XT) = T U T} is the union of two disjoint maximal real tori ovép. Also,
Ve = F~Y(V) is a two-sheeted variety ové? with boundary inT” UTy. Let
k1 > ko be the partial indices of the variety with boundary inT" and letk; > k9
be the partial indices of * with boundary inT}’ U TY. Then the form of the map
F implies that

kf = 2k1 and kg = 2ko,
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and one can easily prove statements similar to those before. For example, if there
exists a functiorr € A*(D) with no zeros ordD such thatW(c) is an odd integer
and such that, for evelye oD,

Je®entJt and —/c@® et

then
ki>—-W() and k> —W(o).

These inequalities imply that whé#i(c) = 1—for example, ifc(¢§) = &, which

is (modulo a biholomorphism) a canonical caseWoi) = 1—then every two-
sheeted variety oveb with boundary inT is regular. Together with the area
bounds, which are not too hard to obtain, we may apply Gromov’s compactness
theorem [10; 12, Thm. 4.2.1, p. 247] to obtain the existence of a two-sheeted ana-
Iytic variety V over D with boundary inT. This, however, is nothing new! The
result of Forstned [7] implies that there exists an analytic functiore A*(D)

such thatz(¢) € Ty, for everyé € dD. Let I'(a) be the graph ofi. ThenV =
F(I'(a)) is a two-sheeted variety oveér with boundary inT.
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