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1. Introduction

Let ∂D be the unit circle inC and letπ2 : C2 → C be the projectionπ2(z, w) =
w. Let T1 andT2 be disjoint maximal real smooth tori in∂D × C such that, for
eachξ ∈ ∂D andj = 1,2, the fiber

Tj,ξ := π2(Tj ∩ ({ξ} × C))

of Tj overξ is a smooth Jordan curve inC. Also, letV be a two-sheeted analytic
variety overD with boundary inT1∪ T2; that is, there existp andq holomorphic
functions onD, continuous up to the boundary∂D, such that

V = { (z, w)∈ D̄ × C; w2 − p(z)w + q(z) = 0 }
and such that, for every boundary pointξ ∈ ∂D, each curveT1,ξ andT2,ξ contains
exactly one root of the equationw2 − p(ξ)w + q(ξ) = 0.

In this paper we consider the question of when it is possible to perturb varietyV

alongT1∪T2.More precisely, we are interested in geometric conditions onT1∪T2

andV such that it is possible to parameterize all nearby two-sheeted varieties over
D with boundaries inT1 ∪ T2. The method we apply is the method of partial in-
dices, which has been successfully used in problems of perturbing analytic discs
along maximal real boundaries by several authors [4; 6; 7; 8; 9]. The geometric
conditions we obtain are expressed in terms of the winding numbers of the normals
to the fibersTj,ξ (j = 1,2) along the roots of the equationw2−p(ξ)w+ q(ξ)= 0
(ξ ∈ ∂D). A typical result is the following.

Theorem. Let V be an irreducible two-sheeted analytic variety overD with
boundary in the disjoint unionT1∪ T2 of two maximal real tori fibered over∂D.
Letα1 andα2 be the complex functions on∂D representing the boundary roots of
the varietyV such that, for everyξ ∈ ∂D, we haveαj(ξ) ∈ Tj,ξ (j = 1,2); let
1 = α1− α2. Also, letν1(ξ) and ν2(ξ) be normals to the fibersT1,ξ andT2,ξ at
the pointsα1(ξ) andα2(ξ), respectively. IfW(ν1)+W(ν2) ≥ −1, then the fam-
ily of two-sheeted analytic varieties overD with boundaries inT1 ∪ T2 that are
close toV is aC1 submanifold of the space of two-sheeted analytic varieties over
D of dimension2(W(ν1)+W(ν2)+W(1))+ 2.
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See Section 3 for more details. Here,W(γ ) denotes the winding number of a non-
zero continuous complex functionγ on ∂D.

The method we apply also allows small perturbationsT̃1 andT̃2 of the toriT1 and
T2 (respectively) and hence our results also prove the existence of two-sheeted ana-
lytic varieties overD with boundaries in the perturbed unionT̃1∪ T̃2. Recall that,
for a single maximal real torusT over∂D, it is a well-known result of Forstnerič
[7] that the existence of a holomorphic functionf from the disc algebraA(D)
such that for eachξ ∈ ∂D the valuef(ξ) lies in the interior of the bounded com-
ponent ofC \ Tξ implies the existence of a holomorphic functiona ∈A(D) such
thata(ξ)∈ Tξ for eachξ ∈ ∂D. Actually Forstnerǐc proves much more. In fact, the
whole polynomial hull ofT overD is given as the union of the graphs of the ana-
lytic discsã ∈A(D) such that̃a(ξ)∈ Tξ for eachξ ∈ ∂D; see [7] for more details.
See also [1; 2; 3; 13; 14; 15] for results related to the question on the polynomial
hull of a compact fibration over∂D.

Acknowledgment. The author wishes to thank Prof. Franc Forstnerič and Prof.
Josip Globevnik for stimulating discussions.

2. Partial Indices

We will just recall some of the facts related to the partial indices of a closedCα

(0 < α < 1) pathφ in aC2 maximal real manifoldT in Cn. One may also con-
sider aC2 maximal real fibration{Tξ }ξ∈∂D over∂D. In the latter case each fiber
Tξ is a maximal real submanifold ofCn andφ(ξ) ∈ Tξ for everyξ ∈ ∂D. More
details on partial indices can be found in [8; 9] and [16; 17]; see also [11].

For eachξ ∈ ∂D letA(ξ) denote a matrix whose columns span the tangent space
of T (or of the fiberTξ ) at the pointφ(ξ). Then there existn integersk1, . . . , kn
called the partial indices of the closed pathφ in T, uniquely determined up to their
order, and a holomorphic matrix function8 ∈ (Aα(D))n×n such that8 : D̄ →
GL(n,C) and such that, on∂D,

B(ξ) := A(ξ)A(ξ)−1 = 8(ξ)


ξk1 0 . . . 0
0 ξk2 . . . . . .

. . . . . . . . . . . .

0 . . . 0 ξkn

8(ξ)−1;

that is, the holomorphicj th columnvj(ξ) of the matrix function8(ξ) solves the
equation

B(ξ)vj(ξ) = ξkjvj(ξ)
on ∂D. If the tangent bundle ofT is trivial (orientable) alongφ(∂D), one may
chooseA(ξ) to beCα on∂D.However, any choice of a matrixA(ξ)whose columns
span the tangent space ofT (or of the fiberTξ ) at the pointφ(ξ) will result in the
same matrix functionB(ξ).

The sumk1+ · · · + kn = k = W(det(B)) is called thetotal indexof the closed
pathφ in T . The total index is even ifT is trivial alongφ(∂D) and odd otherwise.
In the case all partial indices are greater than or equal to−1, we call the curve
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φ regular. It is known from results of Globevnik [8; 9] and Oh [11] that, in this
case, for every maximal real manifold̃T close toT the family of small(Aα(D))n

analytic perturbations ofφ alongT̃ is aC1 submanifold of the space(Aα(D))n of
dimensionn+ k. Also, these manifolds depend smoothly onT̃ . See [8; 9; 11] for
more details.

3. Two-Sheeted Varieties overD with
Boundaries in T1∪∪∪ T2

Let T1 andT2 be disjoint maximal real tori over∂D such that, forj = 1,2 and
eachξ ∈ ∂D, the fiber

Tj,ξ = π2(Tj ∩ ({ξ} × C))

is a smooth Jordan curve inC. More precisely, letS1 = R/Z. Then there exist
r1, r2 ∈C2(∂D × S1) such that the mapping

(ξ, t)∈ ∂D × S1 7→ (ξ, rj(ξ, t))∈ Tj
is a parameterization ofTj (j = 1,2). Also, for eachj = 1,2 and eachξ ∈ ∂D,
the mapping

t ∈ S1 7→ rj(ξ, t)

is aC2 parameterization of the fiberTj,ξ . In particular ∂
∂t
rj(ξ, t) 6= 0 for anyj =

1,2, ξ ∈ ∂D, andt ∈ S1.

GivenT1, T2 and their parameterizationsr1, r2, we define6(T1, T2), a 3-torus
in ∂D × C2 ⊆ C3, as the set of all points(ξ, w1, w2)∈ ∂D × C2 such that

w1= r1(ξ, t)+ r2(ξ, s) and w2 = 1
2(r1(ξ, t)− r2(ξ, s))

2

for somes, t ∈ S1.

Proposition 1. Let π3 : C3→ C2 be the projectionπ3(z, w1, w2) = (w1, w2).

If T1 ∩ T2 = ∅, then6(T1, T2) is a maximal real3-torus in C3 and every fiber
6(T1, T2)ξ = π3(6(T1, T2) ∩ ({ξ} × C2)), ξ ∈ ∂D, is a maximal real2-torus
in C2.

Proof. Every pair of complex numbersw1 andw2 uniquely determines an un-
ordered pair of complex numbersα1, α2 such that

w1= α1+ α2 and w2 = 1
2(α1− α2)

2.

BecauseT1 andT2 are disjoint,6(T1, T2) is a 3-torus parameterized by the map-
ping

(ξ, t, s)∈ ∂D × S1× S1 7→ (
ξ, r1(ξ, t)+ r2(ξ, s),

1
2(r1(ξ, t)− r2(ξ, s))

2
)
.

LetD(ξ, t, s) := r1(ξ, t)− r2(ξ, s). For eachξ ∈ ∂D, the tangent space to the
fiber6(T1, T2)ξ at the point(r1(ξ, t)+ r2(ξ, s),

1
2D(ξ, t, s)

2) is theR-linear span
of the columns of the matrix
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A =
(

∂
∂t
r1(ξ, t)

∂
∂s
r2(ξ, s)

D(ξ, t, s) ∂
∂t
r1(ξ, t) −D(ξ, t, s) ∂

∂s
r2(ξ, s)

)
. (1)

SinceT1 andT2 are disjoint, the determinant

det(A) = −2D(ξ, t, s)
∂

∂t
r1(ξ, t)

∂

∂s
r2(ξ, s)

is nonzero and6(T1, T2)ξ is a maximal real 2-torus inC2. Also, 6(T1, T2) is a
maximal real 3-torus inC3.

Let α1 andα2 be twoCα complex functions on∂D such that, for everyξ ∈ ∂D,
α1(ξ)∈ T1,ξ and α2(ξ)∈ T2,ξ .

To a pair of such closed curves inC we associate the closed curve

ξ 7→ (
α1(ξ)+ α2(ξ),

1
2(α1(ξ)− α2(ξ))

2
)

(2)

in C2 such that, for eachξ ∈ ∂D, the point
(
α1(ξ)+α2(ξ),

1
2(α1(ξ)−α2(ξ))

2
)

lies
in the maximal real torus6(T1, T2)ξ . To each curve in a maximal real fibration in
C2 over∂D one can associate two partial indices, hence one can define the partial
indices of a pair ofCα closed curvesα1 in T1 andα2 in T2 as the partial indices of
the curve (2) in the maximal real fibration{6(T1, T2)ξ }ξ∈∂D.

Let νj(ξ) := −i ∂
∂t
rj(ξ, t), evaluated at the pointrj(ξ, t) = αj(ξ), denote a nor-

mal to the curveTj,ξ at the pointαj(ξ) (j = 1,2), and let1(ξ) := α1(ξ)− α2(ξ).

Then the matrix (1) along the curve (2) can be written in the form

A(ξ) = i
(

1 1
1(ξ) −1(ξ)

)(
ν1(ξ) 0

0 ν2(ξ)

)
,

and the corresponding matrixB(ξ) := A(ξ)A(ξ)−1 is

B(ξ) = − 1

21(ξ)

(
1 1

1(ξ) −1(ξ)
)(

τ1(ξ) 0

0 τ2(ξ)

)(
1(ξ) 1

1(ξ) −1

)
,

where

τj(ξ) = νj(ξ)
2

|νj(ξ)|2
for j = 1,2.

If l ∈ Z is a partial index of the curvesα1 andα2 then there existCα functions
a andb on D̄, holomorphic onD and with no common zeros on̄D, such that on
∂D we have

B(ξ)

(
a(ξ)

b(ξ)

)
= ξ l

(
a(ξ)

b(ξ)

)
.

Therefore, on∂D the following two equations hold:

τ11(1a + b) = −ξ l1̄(1a + b), (3)

τ21(1a − b) = −ξ l1̄(1a − b). (4)

We know that the total index is given as the winding number of the determinant
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det(B) = 11̄−1τ1τ2.

Hence the total index is

k = 2W(1)+W(τ1)+W(τ2) = 2(W(1)+W(ν1)+W(ν2)).

We assume from now on thatα1 andα2 represent the boundary values of some
two-sheeted analytic varietyV overDwith boundary inT1∪T2.That is, we assume
there existCα functionsp, q on D̄, holomorphic onD, such thatV is given by

w2 − p(z)w + q(z) = 0

and such that

p(ξ) = α1(ξ)+ α2(ξ), q(ξ) = α1(ξ)α2(ξ)

for everyξ ∈ ∂D (p andq are actually inC2−0(D̄) according to [5]). This con-
dition also implies that, for every symmetric polynomialP of two variables, the
function ξ 7→ P(α1(ξ), α2(ξ)) on ∂D has a holomorphic extension intoD. In
particular this implies that

W(1) = 1
2W(1

2) ≥ 0

since, as is well known, the winding number of a disc algebra function, which is
nonzero on∂D, is a nonnegative integer.

Multiplying equations (3) and (4) yields

τ1τ21
2(12a2 − b2) = ξ2l12(12a2 − b2) (5)

on ∂D. We denote

W(ν1) = n1, W(ν2) = n2, W(1) = n12.

Thus there exist real functionsu1, u2, u12, andv12 on ∂D such that

τ1(ξ) = ξ2n1e2iu1(ξ), τ2(ξ) = ξ2n2e2iu2(ξ), (6)

and
1(ξ) = ξn12ev12(ξ)+iu12(ξ). (7)

Substituting (6) and (7) into (5), we have

e2iu(ξ)(12a2 − b2)(ξ) = ξ2(l−2n12−n1−n2)(12a2 − b2)(ξ),

whereu = u1 + u2 + 2u12. Let Hu denote the unique harmonic conjugate of
u for which (Hu)(0) = 0, and letK := e−i(u+iHu). ThenK has a holomorphic
extension intoD with no zeros onD̄ and is such that, on∂D,

e2iu = K−1K̄.

Therefore,
K(12a2 − b2) = ξ2(l−n12)−kK(12a2 − b2) (8)

on∂D. Becauseα1 andα2 are the boundary roots of a two-sheeted varietyV over
D, the functionK(12a2 − b2) has a holomorphic extension intoD.
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Let us assume for a moment that

2(l − n12)− k > 0. (9)

Then the left-hand side of (8) is an antiholomorphic function onD and the right-
hand side of (8) is a holomorphic function onD with a zero at 0. This is only
possible if

(12a2 − b2) = 0

on D̄. Observe that12 is a well-defined function on̄D. If a had a zero on̄D then
b would have a zero at the same point, which is impossible. Thusa has no zeros
on D̄ and12 = b2/a2 on D̄. Hence the varietyV is reducible. We may assume
1 = b/a. Then equation (3) implies that

τ1
b

a
2b = −ξ l

(
b

a

)
2b

on ∂D and hence
l = W(τ1) = 2W(ν1) = 2n1.

The other partial index is

k − l = 2(W(ν2)+W(1)) = 2n2 + 2n12.

Using the value ofl in the inequality (9), we see that this case can only happen if
n1− n2 > 2n12.

In case the inequality (9) does not hold for any of the partial indices ofV (e.g.,
whenV is an irreducible variety), we must have

2(l − n12)− k ≤ 0 or l ≤ k/2+ n12

for both partial indices. Hence we also have

k − l ≤ k/2+ n12.

Theorem 1. LetV be a two-sheeted analytic variety overD with boundary in
the disjoint unionT1 ∪ T2 of two maximal real tori fibered over∂D. Let α1 and
α2 be the complex functions on∂D representing the boundary roots of the variety
V such that, for everyξ ∈ ∂D, we haveαj(ξ) ∈ Tj,ξ (j = 1,2). Also, letν1(ξ)

and ν2(ξ) be normals to the fibersT1,ξ andT2,ξ at the pointsα1(ξ) and α2(ξ),

respectively.
(1) If V is reducible and|W(ν1)−W(ν2)| ≥ W(1), then the partial indices of

V are2 max{W(ν1),W(ν2)} and2W(1)+ 2 min{W(ν1),W(ν2)}.
(2) In the cases

(a) V is reducible and|W(ν1)−W(ν2)| < W(1) or
(b) V is irreducible,

the partial indices are bounded by

W(ν1)+W(ν2) ≤ k1, k2 ≤ W(ν1)+W(ν2)+ 2W(1).

In either case, the total index isk = 2(W(ν1)+W(ν2)+W(1)).
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Proof. The only part of the theorem we still have to check is the first case. We
may assumeW(ν1)−W(ν2) ≥ W(1). Using the notation from (6) and (7), let

K1 := ei((u1+u12)+iH(u1+u12)), K2 := ei((u2+u12)+iH(u2+u12)), L := ei(u1+iHu1).

For l = 2W(ν1), a pair of holomorphic functionsa andb that solve (3) and
(4) is

a := iL, b := 1a = i1L.
Recall thatV is reducible and hence1 has a holomorphic extension intoD. Let
N = 2(W(ν1)−W(ν2)). SinceW(ν1)−W(ν2) ≥ W(1), there exists a polyno-
mial P(ξ) = ∑j=N

j=0 cj ξ
j such thatcN−j = cj for eachj = 0, . . . , N and such

that1 dividesPK1+K2. Then a pair of holomorphic functionsa andb that solve
(3) and (4) forl = 2W(1)+ 2W(ν2) is

a := i

1
(PK1+K2), b := i(PK1−K2).

Observe that

det

(
iL i

1
(PK1+K2)

i1L i(PK1−K2)

)
= 2LK2

is nonzero onD̄.

Results from [8; 9] imply that when both partial indices are greater than or equal
to−1 there exist a neighborhoodN of (p, q) in (Aα(D))2 and a neighborhoodU
of (r1, r2) in (C2(∂D × S1))2 such that, for each pair(r̃1, r̃2)∈U, the set of discs
(p̃, q̃)∈N such that(

p̃(ξ), 1
2(p̃(ξ)

2 − 4q̃(ξ))
)∈6(T̃1, T̃2)ξ

for everyξ ∈ ∂D (T̃1 andT̃2 are the 2-tori inC2 defined by the parameterizations
r̃1 andr̃2 respectively) is aC1 submanifold ofN of dimension 2(W(ν1)+W(ν2)+
W(1))+ 2.

Identifying the space of two-sheeted analytic varieties overD with the space of
analytic discs(Aα(D))2, we have the following corollary.

Corollary 1. LetV be a two-sheeted variety overD with boundary inT1∪T2.

(1) If V is reducible and|W(ν1)−W(ν2)| ≥ W(1), let 2 max{W(ν1),W(ν2)} ≥
0 and2W(1)+ 2 min{W(ν1),W(ν2)} ≥ 0.

(2) If eitherV is reducible and|W(ν1)−W(ν2)| < W(1) or if V is irreducible,
letW(ν1)+W(ν2) ≥ −1.

Then, for every pair̃T1 and T̃2 of maximal real tori over∂D close toT1 andT2,

respectively, the family of two-sheeted analytic varieties overD with boundaries
in T̃1 ∪ T̃2 that are close toV is a C1 submanifold of the space of two-sheeted
analytic varieties overD of dimension2(W(ν1) +W(ν2) +W(1)) + 2. These
manifolds depend smoothly oñT1 and T̃2.

There are two major cases of the positions of the toriT1 andT2 that one may con-
sider. One is the case whereT2 lies in the unbounded component of(∂D×C)\T1
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and the other is the case whereT2 lies in the bounded component of(∂D×C)\T1.

Of course the roles ofT1 andT2 can be exchanged, but this does not produce any
new different cases. We will first consider the second case under the assumption
that there exists a functionc ∈Aα(D) such that, for eachξ ∈ ∂D,

c(ξ)∈ Int T̂2,ξ ⊂⊂ Int T̂1,ξ . (10)

Here,T̂j,ξ denotes the closure of the bounded simply connected domain inC that
is bounded byTj,ξ ; that is, T̂j,ξ is the polynomial hull ofTj,ξ in C (j = 1,2).
Condition (10) is biholomorphically equivalent to the case

0∈ Int T̂2,ξ ⊂⊂ Int T̂1,ξ

(i.e.,c = 0). In this case we have the following equalities:

W(1) = W(α1) = W(ν1), W(α2) = W(ν2).

Becauseα1 andα2 are the boundary roots of a two-sheeted analytic variety over
D, their sumα1+α2 and their productα1α2 have holomorphic extensions intoD.
Thus

0 ≤ W(α1+ α2) = W(α1) = W(ν1) (11)

and
0 ≤ W(α1α2) = W(α1)+W(α2) = W(ν1)+W(ν2). (12)

Corollary 2. If the torusT2 lies in the bounded component of(∂D × C) \ T1

and there exists a functionc ∈Aα(D) such that(10)holds, then every two-sheeted
analytic varietyV overD with boundary inT1∪ T2 is regular. Also,W(ν1) ≥ 0
andW(ν1)+W(ν2) ≥ 0.

Here (and hereafter), the regularity is meant in the sense of Section 2. That is,
both associated partial indices are greater than or equal to−1, and not in the usual
sense of regularity of a variety.

Henceforth we assume that

T̂1,ξ ∩ T̂2,ξ = ∅ (13)

for everyξ ∈ ∂D. We also assume that there exists a functionc ∈Aα(D) with no
zeros on∂D such thatW(c) is an even integer and such that

γ1(ξ)∈ Int T̂1,ξ and γ2(ξ)∈ Int T̂2,ξ (14)

for everyξ ∈ ∂D.Here,γ1 andγ2 are the square roots ofc over∂D, that is, theCα

functions on∂D such thatγ1(ξ)
2 = γ2(ξ)

2 = c(ξ) andγ1(ξ) = −γ2(ξ) for every
ξ ∈ ∂D.
Remarks. (1) It is enough to assume thatc is from the disc algebra.

(2) The assumption on the existence of such a functionc is biholomorphically
equivalent to the assumption that there exists a two-sheeted analytic varietyVo
overD defined by functions from the disc algebra and with boundary rootsγ1 and
γ2 such that, for eachξ ∈ ∂D we haveγj(ξ)∈ Int T̂j,ξ (j = 1,2).
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(3) Using a biholomorphism we may even assume thatc is a finite Blaschke
product.

We write
α1= γ1+ α̃1 and α2 = γ2 + α̃2 (15)

for some nonzeroCα functionsα̃1 andα̃2 for whose winding numbers we have

W(α̃1) = W(ν1) = n1 and W(α̃2) = W(ν2) = n2,

respectively. Furthermore, forj = 1,2 we have

α2
j = γ 2

j + α̃j(2γj + α̃j ).
Because (13) holds, the functions

ξ 7→ 2γj(ξ)+ α̃j(ξ) (j = 1,2)

are nonzero on∂D. Condition (13) actually implies much more; given that the
winding number is homotopy invariant, we conclude forj = 1,2 that

W(2γj + α̃j ) = W(2γj ) = 1
2W(c). (16)

DenoteAj := α̃j(2γj + α̃j ), j = 1,2. ThenA1 andA2 are nonzeroCα functions
on ∂D such that, forj = 1,2,

α2
j = γ 2

j + Aj = c + Aj (17)

and
W(Aj) = W(νj )+ 1

2W(c). (18)

Sinceα1 andα2 represent the boundary roots of a two-sheeted analytic variety
overD, (17) implies that the functions

ξ 7→ A1(ξ)+ A2(ξ) and ξ 7→ A1(ξ)A2(ξ)

have holomorphic extensions intoD. Thus

W(A1A2) = W(A1)+W(A2) = W(ν1)+W(ν2)+W(c) ≥ 0.

Also, the homotopy invariance of the winding number implies that

W(1) = W(γ1− γ2) = 1
2W(c). (19)

Proposition 2. If conditions(13)and(14)hold, thenW(ν1)+W(ν2)+W(c) ≥
0 andW(1) = W(c)/2. Also, the partial indicesk1 andk2 of an irreducible two-
sheeted analytic varietyV overD with boundary inT1∪ T2 satisfy the following
inequalities:

−W(c) ≤ W(ν1)+W(ν2) ≤ k1, k2 ≤ W(ν1)+W(ν2)+W(c).
More can be said when the holomorphic functionc has a holomorphic square root.
Adding and multiplying equations (15), we see that the functions

α̃1+ α̃2 and γ1(α̃2 − α̃1)+ α̃1α̃2
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on ∂D have holomorphic extensions intoD. Multiplying the first function byγ1

(which has a holomorphic extension intoD) and adding and subtracting it from
the second function, we get that the functions

α̃2(2γ1+ α̃1) and α̃1(−2γ1+ α̃2)

holomorphically extend intoD.We observe that these two functions have no zeros
on ∂D and that condition (13) implies (16). Hence

W(α̃2(2γ1+ α̃1)) = W(α̃2)+ 1
2W(c) ≥ 0

and
W(α̃1(−2γ1+ α̃2)) = W(α̃1)+ 1

2W(c) ≥ 0.

Proposition 3. If, in addition to condition(14),the functionc has a holomorphic
square root, then

W(ν1) ≥ − 1
2W(c) and W(ν2) ≥ − 1

2W(c).

Proposition 4. If W(c) = 0 then every two-sheeted analytic variety overD

with boundary inT1∪ T2 is reducible.

Proof. Let V be a two-sheeted analytic variety overD with boundary inT1∪ T2.

We know from (19) that
W(1) = 1

2W(c) = 0.

Therefore, the winding number of the discriminant12 of the varietyV is 0 and so
it has a holomorphic square root. HenceV is reducible.

4. Examples

Example 1. Leta1 6= a2 be two positive real numbers and letT1= ∂D×a1(∂D)

andT2 = ∂D×a2(∂D). Letn∈Z be a nonnegative integer and letV be the variety
given by

V = { (z, w)∈ D̄ × C; w2 − (a1+ a2)z
nw + a1a2z

2n = 0 },
whereV is a variety with boundary inT1∪ T2. The winding numbers of the corre-
sponding normals areW(ν1) = W(ν2) = n andW(1) = n. Also, a short calcula-
tion shows that the partial indices are 2n and 4n. Thus the total index is 6n and, for
each pair of maximal real tori close toT1∪ T2, there exists a(6n+ 2)-parameter
family of two-sheeted analytic varieties overD close toV. Each reducible two-
sheeted analytic variety overD close toV with boundary inT1 ∪ T2 is given by
an equation of the form

(w − a1e
iϕB1(z) · · ·Bn(z))(w − a2e

iψC1(z) · · ·Cn(z)) = 0,

whereϕ,ψ ∈R andB1, . . . , Bn andC1. . . , Cn are automorphisms of the unit disc
D close to the identity with the leading factor equal to 1. Hence the family of re-
ducible two-sheeted analytic varieties overD with boundary inT1∪ T2 is a sub-
manifold of the codimension 2n = (6n+2)−(1+1+2n+2n) of the manifold of
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all two-sheeted analytic varieties overD with boundaries inT1∪ T2 that are close
to V. Thus, most of the two-sheeted varieties overD with boundaries inT1∪ T2

and close toV are irreducible.

Example 2. Let c ∈ A2(D) be such that it has no zeros on∂D and its winding
numberW(c) is an even integer. Leta > 0 be a positive constant such thata <
min∂D|c(z)|, and let

T1∪ T2 = { (ξ, w)∈ ∂D × C; |w2 − c(ξ)| = a }.
LetB be a finite Blaschke product, and let varietyV with boundary inT1∪ T2 be
given by the equation

w2 = c(z)+ aB(z).
The winding numbers of the normals to the fibers ofT1∪T2 along the boundary of
V are thenW(ν1) = W(ν2) = W(B)− 1

2W(c) andW(1) = 1
2W(c). The partial

indices are 2W(B)−W(c) and 2W(B), and the total index is 4W(B)−W(c).
Example 3. LetT1= { (ξ, w)∈ ∂D×C; |w| = 1

2 } andT2 = { (ξ, w)∈ ∂D×C;
|w| = 1}. Let p be a disc algebra function such that

p(∂D) ⊆ { (x, y)∈R2 = C; 4
9x

2 + 4y2 = 1},
and letV be given by the equation

w2 − p(z)w + 1
2 = 0. (20)

The solutions of the equation (20) over∂D are

α1= 4
3(p − 1

2p̄) and α2 = 1
2α1.

Also,

α1α1 = 16
9 (p − 1

2p̄)(p̄ − 1
2p)

= 4
9(Rep)2 + 4(Imp)2 = 1.

HenceV is a two-sheeted analytic variety overD with boundary inT1∪ T2. The
winding numbers of the corresponding normals to the fibers are

W(ν1) = W(p) and W(ν2) = −W(p).
Thus, one of the winding numbers of the normals to the fibers can be an arbitrary
negative integer—that is, there is no lower bound as in Proposition 3. Recall that
Corollary 2 implies that every two-sheeted analytic variety overD with boundary
in T1∪ T2 is regular and that it is always the case thatW(ν1)+W(ν2) ≥ 0.

Example 4. Let T1 ∪ T2 = { (ξ, w) ∈ ∂D × C; |w2 − ξ2| = 1
2 }. Let V =

{ (z, w)∈D×C; w2 = z2+ 1
2 } be a variety with boundary inT1∪ T2. As shown

in Example 2, the winding numbers of the corresponding normals are both−1 and
the partial indices are 0 and−2 (varietyV is not regular!). On the other hand,
if we just slightly perturb one of the tori closer to its center (i.e., for1

2 > ε > 0
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let T̃1 be the component ofT1 ∪ T2 closer to the curveξ 7→ (ξ, ξ) and letT̃2 be
the component of{ (ξ, w) ∈ ∂D × C; |w2 − ξ2| = 1

2 − ε } closer to the curve
ξ 7→ (ξ,−ξ)), then there is no two-sheeted analytic variety overD with bound-
ary in T̃1∪ T̃2 close toV. Indeed, letṼ be a two-sheeted analytic variety overD
with boundary inT̃1∪ T̃2. Then, on∂D, we have

α̃2
1(ξ) = ξ2 + Ã1(ξ) and α̃2

2(ξ) = ξ2 + Ã2(ξ),

whereÃ1 andÃ2 areCα functions on∂D such that|Ã1(ξ)| = 1
2 and|Ã2(ξ)| =

1
2 − ε for everyξ ∈ ∂D. Hence

W(Ã1) = W(Ã1− Ã2) = W(α̃2
1 − α̃2

2)

= W(α̃1− α̃2)+W(α̃1+ α̃2) ≥ 1+ 0= 1.

On the other hand, we know from (18) thatW(Ã1) = W(ν̃1)+ 1 and thus

W(ν̃1) ≥ 0; (21)

that is, at least one of the winding numbers of the normals to the fibers ofT̃1∪ T̃2

along the boundary roots of̃V is greater than or equal to 0. Hence whatever12 >
ε > 0 we choose, none of the varietiesṼ can be uniformly close toV.Observe also
that the inequality (21), together with Proposition 3, shows that every two-sheeted
analytic varietyṼ overD with boundary inT̃1∪ T̃2 is regular.

Example 5. LetT be a maximal real torus in∂D × C such that, for eachξ ∈
∂D, the fiberTξ = π2(T ∩ ({ξ} × C)) of T overξ is a disjoint union of two Jor-
dan curvesJ 1

ξ andJ 2
ξ in C. LetV be a two-sheeted variety overD with boundary

in T—that is, there exist functionsp andq fromAα(D) such that

V = { (z, w)∈ D̄ × C; w2 − p(z)w + q(z) = 0 }
and such that, for everyξ ∈ ∂D, each curveJ 1

ξ andJ 2
ξ contains exactly one root

of the equationw2 − p(ξ)w + q(ξ) = 0. Similarly as before, one defines a 3-
dimensional maximal real manifold6(T ) ⊆ ∂D×C2 whose each fiber6(T )ξ =
π3(6(T )∩ ({ξ} ×C2)) is a maximal real 2-torus inC2 as well as an analytic disc

z 7→ (
p(z), 1

2(p(z)
2 − 4q(z))

)
(22)

with boundary in the maximal real fibration{6(T )ξ }ξ∈∂D. One can again define
the partial indices of a two-sheeted varietyV overD with boundary inT as the
partial indices of the disc (22) with boundary in{6(T )ξ }ξ∈∂D.

Let F : C2 → C2 be defined asF(z,w) := (z2, w). Then the preimage
F−1(T ) = T o1 ∪ T o2 is the union of two disjoint maximal real tori over∂D. Also,
V o := F−1(V ) is a two-sheeted variety overD with boundary inT o1 ∪ T o2 . Let
k1 ≥ k2 be the partial indices of the varietyV with boundary inT and letko1 ≥ ko2
be the partial indices ofV o with boundary inT o1 ∪ T o2 . Then the form of the map
F implies that

ko1 = 2k1 and ko2 = 2k2,
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and one can easily prove statements similar to those before. For example, if there
exists a functionc ∈Aα(D) with no zeros on∂D such thatW(c) is an odd integer
and such that, for everyξ ∈ ∂D,√

c(ξ)∈ Int Ĵ 1
ξ and −

√
c(ξ)∈ Int Ĵ 2

ξ ,

then
k1 ≥ −W(c) and k2 ≥ −W(c).

These inequalities imply that whenW(c) = 1—for example, ifc(ξ) = ξ, which
is (modulo a biholomorphism) a canonical case forW(c) = 1—then every two-
sheeted variety overD with boundary inT is regular. Together with the area
bounds, which are not too hard to obtain, we may apply Gromov’s compactness
theorem [10; 12, Thm. 4.2.1, p. 247] to obtain the existence of a two-sheeted ana-
lytic varietyV overD with boundary inT . This, however, is nothing new! The
result of Forstnerǐc [7] implies that there exists an analytic functiona ∈ Aα(D)
such thata(ξ) ∈ T o1,ξ for everyξ ∈ ∂D. Let 0(a) be the graph ofa. ThenV =
F(0(a)) is a two-sheeted variety overD with boundary inT .
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