Standard Forms of 3-Braid 2-Knots and their Alexander Polynomials

Seiichi Kamada

By a *surface link* we mean a closed oriented locally flat surface F in 4-space \mathbb{R}^4 . It is called a *closed 2-dimensional braid* of degree m if it is contained in a tubular neighborhood $N(S^2) \cong D^2 \times S^2$ of a standard 2-sphere S^2 in \mathbb{R}^4 such that the restriction to F of the projection $D^2 \times S^2 \to S^2$ is a degree-m simple branched covering map from F to S^2 . Viro [V; cf. K2; CS] proved that every surface link is ambient isotopic to a closed 2-dimensional braid of degree m for some m. The *braid index* of F, denoted by Braid(F), is the minimum degree among all closed 2-dimensional braids ambient isotopic to F.

By definition, Braid(F) = 1 if and only if *F* is an unknotted 2-sphere (i.e., ambient isotopic to the standard 2-sphere in \mathbb{R}^4). It is easily seen that Braid(F) = 2 if and only if *F* is an unknotted surface link in \mathbb{R}^4 that is a connected surface with nonnegative genus or a pair of 2-spheres; cf. [K1]. (A surface link is *unknotted* if it bounds mutually disjoint locally flat 3-balls or handlebodies in \mathbb{R}^4 . This condition is equivalent to its being isotoped into a hyperplane of \mathbb{R}^4 ; see [HK].) In particular, there exist no 2-knots of braid index 2.

Our interest is 3-braid 2-knots, that is, 2-spheres in \mathbb{R}^4 of braid index 3. The spun 2-knot of a (2, q)-type torus knot is a 3-braid 2-knot unless $q = \pm 1$. Of course, there exist infinitely many 3-braid 2-knots which are not spun 2-knots.

Few results on 3-braid 2-knots are known. For example, all 3-braid 2-knots and all surface links of braid index 3 or less—are ribbon [K1]. (A surface link is said to be *ribbon* if it is obtained from a split union of unknotted 2-spheres by surgery along some 1-handles attached to them.) Thus the 2-twist spun 2-knot of a trefoil knot is not a 3-braid 2-knot.

The purpose of this paper is to prove that a 3-braid 2-knot can always be deformed into a certain kind of configuration, called a *standard form* (Section 1). In Section 2 we investigate Alexander polynomials of 3-braid 2-knots by use of standard forms. Our main theorem (Theorem 2.3) regards a strong relationship between standard forms and the spans of the Alexander polynomials. (The *span* means the maximal degree minus the minimal.) Using it, we obtain some results on Alexander polynomials of 3-braid 2-knots; for instance, nontriviality of them. Standard forms (and Alexander polynomials) are quite useful for distinguishing

Received April 1, 1997. Revision received July 1, 1997.

This research is supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

Michigan Math. J. 45 (1998).

the knot types (Section 3). As an application, we shall give a complete table of 3-braid 2-knots whose Alexander polynomials have spans less than 10. There are 1 + 1 + 2 + 3 + 7 + 12 + 24 + 45 = 95 knot types up to mirror images. They are completely classified by standard forms. Moreover, standard forms bring us plenty of (and a series of) examples of 2-knots, most of which are not spun 2-knots; these would be helpful for research on 2-knot theory.

Standard forms (and Alexander polynomials) are also useful for examining whether or not a 3-braid 2-knot is amphicheiral-that is, ambient isotopic to the mirror image of itself (Section 3). (Recall that a 3-braid 2-knot is ribbon, so it is amphicheiral if and only if it is invertible.)

In order to present a ribbon-closed 2-dimensional braid we shall use a notation due to Rudolph [R1; R2] and Viro [V]. Then the standard forms are defined in terms of Murasugi's principal 3-braids, which are used in [Mu] for investigation of closed 3-braids in 3-space \mathbf{R}^3 . He proved that 3-braids are decomposed into principal parts (so-called alternating parts) and torus-like parts, and calculated Alexander polynomials of them. For further investigation on closed 3-braids in \mathbb{R}^3 , refer to [B2; BM; T].

For the sake of argument, we treat not only 3-braid 2-knots but also all surface links F with the Euler characteristic $\chi(F) = 2$ and Braid(F) < 3. Such a surface link is an unknotted 2-knot, a 3-braid 2-knot or a 3-braid surface link that is a union of a 2-sphere and a torus in \mathbf{R}^4 . In the last case, each component is unknotted, for its braid index is 1 or 2. We work in the piecewise linear (or smooth) category.

1. Standard Forms of 3-Braid 2-Knots

First we introduce Rudolph and Viro's notation to present a ribbon-closed 2dimensional braid. The 4-space \mathbf{R}^4 is regarded as the union of parallel hyperplanes \mathbf{R}_{t}^{3} ($t \in \mathbf{R}$). Let b_{1}, \ldots, b_{n} be *m*-braids and

$$c_1,\ldots,c_n\in\{\sigma_1,\sigma_1^{-1},\ldots,\sigma_{m-1},\sigma_{m-1}^{-1}\},\$$

where $\sigma_1, \ldots, \sigma_{m-1}$ are standard generators of the *m*-braid group B_m (cf. [B1]). Consider a closed 2-dimensional *m*-braid *F* satisfying the following conditions.

(1) $F \cap \mathbf{R}_t^3$ is empty for $t \in (-\infty, -2)$. (2) $F \cap \mathbf{R}_{-2}^3$ consists of *m* disks.

(

- (3) For each $t \in (-2, -1)$, $F \cap \mathbf{R}_t^3$ is a trivial closed *m*-braid. In addition, if *t* is near -1, it is a closed *m*-braid *l* represented by $b_1 b_1^{-1} \dots b_n b_n^{-1}$.
- (4) $F \cap \mathbf{R}^3_{-1}$ is *l* together with *n* saddle bands each of which is a half-twisted band corresponding to c_i located between b_i and b_i^{-1} .
- (5) For $t \in (-1, 0]$, $F \cap \mathbf{R}_t^3$ is a closed *m*-braid represented by $b_1 c_1 b_1^{-1} \dots$ $b_n c_n b_n^{-1}$.
- (6) *F* is symmetric with respect to the hyperplane \mathbf{R}_0^3 .

(The case of m = 3, n = 2, and $c_1 = c_2 = \sigma_1^{-1}$ is illustrated in Figure 1.) We denote this closed 2-dimensional *m*-braid by $F[b_1, c_1| \dots |b_n, c_n]_m$. If n = 0, let

Figure 1

 $F[\emptyset]_m$ denote a trivial closed 2-dimensional *m*-braid, namely, *m* parallel copies of the standard 2-sphere in \mathbb{R}^4 .

The following theorem was proved by Rudolph [R1; R2]. (The surface link $F[b_1, c_1| \dots | b_n, c_n]_m$ is the double of a braided surface in the lower half-space \mathbf{R}^4_- associated with a band representation $S(b_1c_1b_1^{-1}, \dots, b_nc_nb_n^{-1})$ in the sense of [R1; R2]. An alternative proof is given in [K1; K2].)

THEOREM 1.1. A surface link is ribbon if and only if it is ambient isotopic to a closed 2-dimensional m-braid $F[b_1, c_1| \dots |b_n, c_n]_m$ for some m.

Let τ be the automorphism of B_m with $\tau(\sigma_i) = \sigma_{m-i}$ for i = 1, ..., m - 1. We shall denote it by $F \cong F'$ if two surface links F and F' are ambient isotopic.

LEMMA 1.2. For $F = F[b_1, c_1| \dots | b_n, c_n]_m$, the following statements hold:

- (1) $F \cong F[b_2, c_2| \dots |b_n, c_n|b_1, c_1]_m;$
- (2) $F \cong F[bb_1, c_1| \dots |bb_n, c_n]_m$ for any $b \in B_m$;
- (3) $F \cong F[b_1, c_1| \dots |b'_i, c'_i| \dots |b_n, c_n]_m$ for any $i \in \{1, \dots, n\}$ and $b'_i \in B_m$ and $c'_i \in \{\sigma_1, \sigma_1^{-1}, \dots, \sigma_{m-1}, \sigma_{m-1}^{-1}\}$ with $b_i c_i b_i^{-1} = b'_i c'_i b'_i^{-1}$;
- (4) $F \cong F[\tau(b_1), \tau(c_1)| \dots |\tau(b_n), \tau(c_n)]_m;$
- (5) $F \cong F[b_1, c_1| \dots |b_i, c_i^{-1}| \dots |b_n, c_n]_m$ for any $i \in \{1, \dots, n\}$.

Proof. Statements (1)–(4) are easily verified from the definition. Assertion (5) follows from the fact that a surface G in a 4-ball $B^3 \times [-2, 2]$, illustrated as in

Figure 2

(a) of Figure 2, is ambient isotopic to a surface G' as in (b). For let T be a trivial 2-braid in B^3 and let B (resp. B') be a half-twisted band in B^3 corresponding to σ_1 (resp. σ_1^{-1}). Then G and G' are obtained from $T \times [-2, 2]$ by surgery along 1-handles $B \times [-1, 1]$ and $B' \times [-1, 1]$ respectively. Because these 1-handles have the same core, they are ambient isotopic [Bo; HK].

For a 3-braid *b* we denote by F(b) the surface link $F[1, \sigma_1^{-1} | b, \sigma_1^{-1}]_3$ (see Figure 3). Let μ be an automorphism of B_3 with $\mu(\sigma_i) = \sigma_i^{-1}$ (i = 1, 2).

Lемма 1.3.

- (1) Every surface link F with $\chi(F) = 2$ and Braid $(F) \le 3$ is ambient isotopic to F(b) for some $b \in B_3$.
- (2) $F(b) \cong F(b^{-1}).$
- (3) $F(b) \cong F(b')$ if $b\sigma_1^{-1}b^{-1} = b'\sigma_1^{-1}b'^{-1}$.
- (4) The mirror image of F(b) is equivalent to $F(\mu(b))$.

Proof. (1) Since Braid(F) \leq 3, F is ribbon and hence ambient isotopic to some $F[b_1, c_1| \dots | b_n, c_n]_3$ (Theorem 1.1). Since $\chi(F) = 2$, we have n = 2. By Lemma 1.2 it is deformed into F(b) for some $b \in B_3$. Assertions (2)–(4) are easily verified by Lemma 1.2.

For a surface link *F* with $\chi(F) = 2$ and Braid(*F*) ≤ 3 , we denote by J(F) the subset of B_3 consisting of all 3-braids *b* with $F(b) \cong F$. By Lemma 1.3(1), this subset is not empty (it actually consists of infinitely many elements).

The *length* of a 3-braid *b* is the minimum length of a word expression of *b* on $\{\sigma_1, \sigma_1^{-1}, \sigma_2, \sigma_2^{-1}\}$. A 3-braid word $s(1) \dots s(n)$ is *principal* if all $s(1), \dots, s(n)$ are either in $\{\sigma_1^{-1}, \sigma_2\}$ or in $\{\sigma_1, \sigma_2^{-1}\}$. In other words, the corresponding link (tangle) diagram is alternating. An *oddly principal* 3-braid word is a principal one whose initial and terminal letters are σ_2 or σ_2^{-1} . We call a 3-braid *b* a *principal*

Figure 3

(resp. *oddly principal*) 3-braid if it has a word expression that is principal (resp. oddly principal). We assume that the empty word is oddly principal and so is the identity element $1 \in B_3$.

LEMMA 1.4. Let b be a principal 3-braid, and let $s(1) \dots s(n)$ be a word expression of b. The word expression is principal if and only if n is the length of b.

Proof. Every element of B_3 is expressed uniquely in the form

 $x^{2n}x^{a_1}y^{b_1}x^{a_2}y^{b_2}\dots x^{a_k}y^{b_k}$

in an alternative group presentation $\{x, y \mid x^2 = y^3\}$ of B_3 with $\sigma_1 \leftrightarrow y^{-1}x$ and $\sigma_2 \leftrightarrow x^{-1}y^2$, where $n, a_1, \ldots, a_k, b_1, \ldots, b_k$ are integers satisfying a certain condition (cf. [MKS, p. 46]). Using this condition, we obtain the result. \Box

LEMMA 1.5. Let F be a surface link with $\chi(F) = 2$ and Braid $(F) \le 3$. If $b \in J(F)$ has the minimum length among J(F), then it is oddly principal.

This is our key lemma, which is strengthened as Theorem 2.3 in the next section. We say that a surface link *F* with $\chi(F) = 2$ and Braid(*F*) ≤ 3 is in a *standard form* if it is *F*(*b*) for some $b \in J(F)$ as in Lemma 1.5 (or Theorem 2.3).

Proof of Lemma 1.5. Let α be the length of b. If $\alpha = 0$ then b = 1. If $\alpha \neq 0$, put $b = s(1) \dots s(\alpha)$ where $s(i) \in \{\sigma_1, \sigma_1^{-1}, \sigma_2, \sigma_2^{-1}\}$ $(i = 1, \dots, \alpha)$. By

Lemma 1.3(2)(3) and the minimality of α , we see that $s(1), s(\alpha) \in \{\sigma_2, \sigma_2^{-1}\}$. The case $\alpha = 1$ is trivial. Assume $\alpha \ge 2$. We assert that if $s(1) = \sigma_2$ then $s(1), \ldots, s(\alpha) \in \{\sigma_1^{-1}, \sigma_2\}$. Suppose that there exists an integer k with $1 \le k < \alpha$ such that $s(1), \ldots, s(k) \in \{\sigma_1^{-1}, \sigma_2\}$ and $s(k + 1) \in \{\sigma_1, \sigma_2^{-1}\}$. Put $x = s(1) \ldots s(k + 1)$ and $y = s(k + 2) \ldots s(\alpha)$. There are three cases,

(1)
$$x = \sigma_2^{a_1} \sigma_1,$$

(2) $x = \sigma_2^{a_1} \sigma_1^{-a_2} \sigma_2^{a_3} \sigma_1^{-a_4} \dots \sigma_1^{-a_{n-1}} \sigma_2^{a_n} \sigma_1 \ (n > 1, \text{ odd}),$
(3) $x = \sigma_2^{a_1} \sigma_1^{-a_2} \sigma_2^{a_3} \sigma_1^{-a_4} \dots \sigma_2^{a_{n-1}} \sigma_1^{-a_n} \sigma_2^{-1} \ (n > 0, \text{ even}),$

where a_1, \ldots, a_n are positive integers. According to (1)–(3), let x' be a 3-braid expressed by

(1)
$$x' = \sigma_2^{-1} \sigma_1^{a_1 - 2} \sigma_2^{-1},$$

(2) $x' = \sigma_2^{-1} \sigma_1^{a_1 - 1} \sigma_2^{-a_2} \sigma_1^{a_3} \sigma_2^{-a_4} \dots \sigma_2^{-a_{n-1}} \sigma_1^{a_n - 1} \sigma_2^{-1},$
(3) $x' = \sigma_2^{-1} \sigma_1^{a_1 - 1} \sigma_2^{-a_2} \sigma_1^{a_3} \sigma_2^{-a_4} \dots \sigma_1^{a_{n-1}} \sigma_2^{-a_n + 1} \sigma_1.$

Since $x^{-1}\sigma_1^{-1}x = x'^{-1}\sigma_1^{-1}x'$, by Lemma 1.3 we have $x'y \in J(F)$. Note that the length of x'y is smaller than α unless $x = \sigma_2\sigma_1$. Hence $x = \sigma_2\sigma_1$, $\alpha \ge 3$, and s(3) is σ_1 or $\sigma_2^{\pm 1}$. Put $z = s(4) \dots s(\alpha)$. If $s(3) = \sigma_1$ then $b^{-1}\sigma_1^{-1}b = (\sigma_2^{-1}z)^{-1}\sigma_1^{-1}(\sigma_2^{-1}z)$ and hence $(\sigma_2^{-1}z) \in J(F)$. This is a contradiction, for the length of $\sigma_2^{-1}z$ is smaller than α . If $s(3) = \sigma_2^{\pm 1}$ then

$$b^{-1}\sigma_1^{-1}b = (\sigma_2\sigma_1 z)^{-1}\sigma_1^{-1}(\sigma_2\sigma_1 z),$$

which also yields a contradiction. Thus we have the assertion. For the case $s(1) = \sigma_2^{-1}$, apply the above argument to the mirror image $F(\mu(b))$ of F(b) (Lemma 1.3).

2. Alexander Polynomials

In this section, we investigate Alexander polynomials of 3-braid 2-knots by use of standard forms.

Let *F* be a surface link and let $E = \mathbb{R}^4 \setminus F$. A homomorphism $H_1(E; \mathbb{Z}) \to \mathbb{Z}$ sending each oriented meridian of *F* to $1 \in \mathbb{Z}$ determines an infinite cyclic covering $\tilde{E} \to E$, and $H_1(\tilde{E}; \mathbb{Z})$ is a Λ -module in a natural way where $\Lambda = \mathbb{Z}[t, t^{-1}]$. The *Alexander polynomial* of *F* is the greatest common divisor of the elements of its zeroth elementary ideal, which is unique up to multiplication of units of Λ . (In case the polynomial is zero, we assume the span is -1.)

Let $\lambda \in \Lambda$ and let $A = (a_{ij})$ be an (m, n)-matrix over Λ . We denote it by $A \in L_{m \times n}(\lambda)$ if there exists a not necessarily strictly increasing function $f: \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}$ such that $a_{ij} = \lambda$ if i = f(j) and $a_{ij} = 0$ otherwise.

LEMMA 2.1. Let $b = s(1) \dots s(n)$ be an oddly principal 3-braid such that $s(1), \dots, s(n) \in \{\sigma_1^{-1}, \sigma_2\}$ and $n \ge 2$. Let u and v be numbers of σ_1^{-1} 's and σ_2 's appearing in b. Then, for any surface link F with $F \cong F(b)$, $H_1(\tilde{E}; \mathbb{Z})$ has a square Λ -presentation matrix

of size n (= u + v), where $A_1 \in L_{(u+1)\times(v-2)}(-t)$ and $A_2 \in L_{(v-1)\times u}(-1)$.

Proof. Let *R_j* (*j* = 1, 2, 3) be a rectangle { (*x*, *y*, *z*) ∈ **R**³₊ | 0 ≤ *x* ≤ 1, *y* = *j*, 0 ≤ *z* ≤ 1} in **R**³₊ = { (*x*, *y*, *z*) ∈ **R**³ | *z* ≥ 0 }. Let *h*₀, *h*₁, ..., *h*_{*n*+1} be half-twisted bands attached to the *x* = 1 boundary of *R*₁ ∪ *R*₂ ∪ *R*₃ in this order (from the top) such that each band *h_i* corresponds to *s*(*i*) if *i* ∈ {1,...,*n*} and to σ_1^{-1} if *i* ∈ {0, *n* + 1}. For example, in case *b* = $\sigma_2 \sigma_1^{-1} \sigma_2 \sigma_2$, the bands *h*₀,...,*h*₅ are as in Figure 4. For *θ* ∈ (−*π*, *π*], let ρ_{θ} : **R**³₊ → **R**⁴ be a map with $\rho_{\theta}(x, y, z) = (x, y, z \cos \theta, z \sin \theta)$. Put $M_0 = \bigcup_{\theta \in (-\pi, \pi]} \rho_{\theta}(R_1 \cup R_2 \cup R_3)$, *H_i* = $\bigcup_{\theta \in (-\pi, \pi]} \rho_{\theta}(h_i)$ for *i* ∈ {1,...,*n*}, and *H_i* = $\bigcup_{\theta \in [-\varepsilon, \varepsilon]} \rho_{\theta}(h_i)$ for *i* ∈ {0, *n* + 1}, where *ε* is a small positive number. Then *F* is ambient isotopic to the boundary of a 3-manifold $M = M_0 \cup H_0 \cup \cdots \cup H_{n+1}$. Let *j*₊, *j*₋: *H*₁(*M*; **Z**) → *H*₁(**R**⁴ *M*; **Z**) be homomorphisms obtained by sliding 1-cycles in *M* in the postive and negative normal directions of *M*, respectively. By the Mayer–Vietoris theorem, we have a Λ-isomorphism

$$H_1(\bar{E}; \mathbf{Z}) \cong H_1(\mathbf{R}^4 \setminus M; \mathbf{Z}) \otimes_{\mathbf{Z}} \Lambda / (j_+ \otimes t - j_- \otimes 1) (H_1(M; \mathbf{Z}) \otimes_{\mathbf{Z}} \Lambda).$$

Let Σ be $R_1 \cup R_2 \cup R_3 \cup h_0 \cup \cdots \cup h_{n+1}$. Rename bands h_0, \ldots, h_{n+1} by $A_1, \ldots, A_{u+2}, B_1, \ldots, B_v$ as in Figure 4 such that A_1, \ldots, A_{u+2} (resp. B_1, \ldots, B_v) are attached to $R_1 \cup R_2$ (resp. $R_2 \cup R_3$). Define 1-cycles $a_1, \ldots, a_{u+1}, b_1, \ldots, b_{v-1}$ in Σ as follows: For each $i = 1, \ldots, u + 1$ (resp. $j = 1, \ldots, v - 1$), the 1-cycle a_i (resp. b_j) consists of cores of A_i and A_{i+1} (resp. B_j and B_{j+1}) and two straight segments in $R_1 \cup R_2$ (resp. $R_2 \cup R_3$) connecting end-points of the cores. Assign a_i (resp. b_j) an orientation whose restriction to the core of A_i (resp. B_j) is from R_1 to R_2 (resp. R_2 to R_3); see Figure 4. Then $H_1(\Sigma; \mathbb{Z})$ is a free abelian group with basis $\{a_1, \ldots, a_{u+1}, b_1, \ldots, b_{v-1}\}$, where we use the same symbols for 1-cycles and their homology classes. Let $\{\alpha_1, \ldots, \alpha_{u+2}, \beta_1, \ldots, \beta_v\}$ be a basis of $H_1(\mathbb{R}^3_+ \backslash \Sigma; \mathbb{Z})$ such that α_i ($i = 1, \ldots, u + 2$) and β_j ($j = 1, \ldots, v$) are represented by small loops around A_i and B_j with $lk(\alpha_i, a_i) = 1$ and $lk(\beta_j, b_j) = 1$ respectively, where $lk(\cdot, \cdot)$ is the linking number. Let $k_+, k_-: H_1(\Sigma; \mathbb{Z}) \rightarrow 0$

Figure 4

 $H_1(\mathbf{R}^3_+ \setminus \Sigma; \mathbf{Z})$ be homomorphisms obtained by sliding 1-cycles in Σ in the positive and negative normal directions of Σ . By construction, the following statements hold.

- (I₁) For each i (i = 1, ..., u + 1), α_i is involved in $k_+(a_i)$ and never in $k_+(a_{i'})$ for $i' \neq i$. α_{u+2} does not appear in $k_+(a_i)$ for any i.
- (I₂) For each j (j = 1, ..., v), the term on β_j appears as $-\beta_j$ in $k_+(a_i)$ for a unique i = i(j). If $j_1 < j_2$ then $i(j_1) \le i(j_2)$.
- (I₃) $k_+(a_1)$ involves $-\beta_1$ and $k_+(a_{u+1})$ involves $-\beta_v$.
- (II) For each j (j = 1, ..., v 1), $k_+(b_j) = \beta_{j+1}$.
- (III) For each *i* (*i* = 1, ..., *u* + 1), $k_{-}(a_i) = -\alpha_{i+1}$.
- (IV₁) For each j (j = 1, ..., v 1), the term on β_j appears as $-\beta_j$ in $k_-(b_j)$ and never in $k_-(b_{j'})$ for $j' \neq j$. β_v is not involved in $k_-(b_j)$ for any j.
- (IV₂) For each i (i = 2, ..., u + 1), α_i appears in $k_-(b_j)$ for a unique j = j(i). If $i_1 < i_2$ then $j(i_1) \le j(i_2)$.
- (IV₃) α_1 and α_{u+2} are not involved in $k_-(b_i)$ for any j.

The map $\rho_0: \mathbf{R}^3_+ \to \mathbf{R}^4$ induces homomorphisms

$$\rho_{0*}$$
: $H_1(\Sigma; \mathbf{Z}) \to H_1(M; \mathbf{Z})$

and

$$\rho_{0*}: H_1(\mathbf{R}^3_+ \setminus \Sigma; \mathbf{Z}) \to H_1(\mathbf{R}^4 \setminus M; \mathbf{Z}).$$

We use the same symbols for the images of $a_i, b_j, \alpha_i, \beta_j$ under ρ_{0*} . By construction of M, $H_1(M; \mathbb{Z})$ and $H_1(\mathbb{R}^4 \setminus M; \mathbb{Z})$ are free abelian groups with basis $\{a_1, \ldots, a_{u+1}, b_1, \ldots, b_{v-1}\}$ and $\{\alpha_2, \ldots, \alpha_{u+1}, \beta_1, \ldots, \beta_v\}$. Notice that

$$\rho_{0*}(\alpha_1) = \rho_{0*}(\alpha_{u+2}) = 0$$

From the commutative diagram

$$\begin{array}{ccc} H_1(\Sigma; \mathbf{Z}) & \xrightarrow{k_+, k_-} & H_1(\mathbf{R}^3_+ \backslash \Sigma; \mathbf{Z}) \\ & \cong & & & \downarrow^{\rho_{0*}} \\ & & & & \downarrow^{\rho_{0*}} \\ H_1(M; \mathbf{Z}) & \xrightarrow{j_+, j_-} & H_1(\mathbf{R}^4 \backslash M; \mathbf{Z}), \end{array}$$

we see that $H_1(\tilde{E}; \mathbf{Z})$ has the desired Λ -presentation matrix.

EXAMPLE. Let $b = \sigma_2 \sigma_1^{-1} \sigma_2 \sigma_2$ and F = F(b), with Σ as in Figure 4. Then

$$\begin{aligned} k_{+}(a_{1}) &= \alpha_{1} - \beta_{1}, & k_{-}(a_{1}) &= -\alpha_{2}, \\ k_{+}(a_{2}) &= \alpha_{2} - \beta_{2} - \beta_{3}, & k_{-}(a_{2}) &= -\alpha_{3}, \\ k_{+}(b_{1}) &= \beta_{2}, & k_{-}(b_{1}) &= \alpha_{2} - \beta_{1}, \\ k_{+}(b_{2}) &= \beta_{3}, & k_{-}(b_{2}) &= -\beta_{2}, \end{aligned}$$

and

$$tj_{+}(a_{1}) - j_{-}(a_{1}) = t(-\beta_{1}) - (-\alpha_{2}),$$

$$tj_{+}(a_{2}) - j_{-}(a_{2}) = t(\alpha_{2} - \beta_{2} - \beta_{3}) - 0,$$

$$tj_{+}(b_{1}) - j_{-}(b_{1}) = t\beta_{2} - (\alpha_{2} - \beta_{1}),$$

$$tj_{+}(b_{2}) - j_{-}(b_{2}) = t\beta_{3} - (-\beta_{2}).$$

Thus we obtain the presentation matrix

$$\begin{bmatrix} 1 & -t & \\ t & -t & -t \\ \hline -1 & 1 & t \\ & & 1 & t \end{bmatrix};$$

the determinant, which is the Alexander polynomial of *F*, is $t^4 - t^3 + 2t^2 - t$. Hence it is not a spun 2-knot.

COROLLARY 2.2. Let F be a surface link with $\chi(F) = 2$ and $\text{Braid}(F) \leq 3$. If $b \in J(F)$ is oddly principal then the length of b is the span of the Alexander polynomial of F plus one.

Proof. If b = 1 then *F* is the unknotted surface link $S^2 \amalg T^2$ whose Alexander polynomial is zero. If $b = \sigma_2$ or σ_2^{-1} , then *F* is an unknotted 2-knot whose Alexander polynomial is unity. In case the length *n* of *b* exceeds unity, by Lemmas 1.3(4) and 1.4 we may assume that *F* and *b* are as in Lemma 2.1. The Alexander polynomial of *F* is the determinant of a square matrix of size *n*, as in the lemma, whose span is n - 1.

Our main theorem is as follows.

THEOREM 2.3. Let *F* be a surface link with $\chi(F) = 2$ and Braid(*F*) ≤ 3 . For $b \in J(F)$, the following three conditions are mutually equivalent.

- (1) *b* is oddly principal.
- (2) *b* has the minimum length among J(F).
- (3) The length of b is the span of the Alexander polynomial of F plus one.

Proof. It is a consequence of Lemma 1.5 and Corollary 2.2.

THEOREM 2.4. Every 3-braid 2-knot has a nontrivial Alexander polynomial.

Proof. By Theorem 2.3, a 3-braid 2-knot with a trivial Alexander polynomial is ambient isotopic to $F(\sigma_2)$ or $F(\sigma_2^{-1})$. It is an unknotted 2-knot of braid index 1, a contradiction.

THEOREM 2.5. For any 3-braid 2-knot, the coefficients of the terms of the Alexander polynomial of maximal and minimal degree are ± 1 .

Proof. This follows from Lemmas 1.3(4), 1.5, and 2.1.

THEOREM 2.6. The number of 3-braid 2-knot types such that the spans of their Alexander polynomials are the same is finite.

Proof. Since there are finitely many oddly principal 3-braids with a given length, the result follows from Theorem 2.3. \Box

3. Tabulation of 3-Braid 2-Knots

Throughout this section, *F* denotes a surface link with $\chi(F) = 2$ and Braid(*F*) \leq 3. Let $\alpha(F)$ stand for the length of $b \in J(F)$ as in Theorem 2.3, which is the span of the Alexander polynomial of *F* plus one. We shall denote by [*F*] (resp. [*F*]*) the knot type—that is, the ambient isotopy class—of *F* (resp. the knot type modulo mirror images).

For each nonnegative integer α , let H_{α} (resp. H_{α}^{*}) be the set of knot types (resp. knot types modulo mirror images) of *F*'s such that $\alpha(F) = \alpha$. Both H_0 and H_0^{*} consist of the class of an unknotted surface link being $S^2 \amalg T^2$. H_1 and H_1^{*} consist of the class of an unknotted 2-knot.

For each integer $\alpha \ge 2$, let G_{α} be the power set of $\{1, 2, ..., \alpha - 2\}$ and define a map

$$\varphi \colon G_{\alpha} \to B_3$$

by $\varphi(g) = s(1) \dots s(\alpha - 2)$ with $s(i) = \sigma_1^{-1}$ if $i \in g$ and $s(i) = \sigma_2$ otherwise. By Theorem 2.3 and Lemma 1.3(4) we have a surjection,

$$G_{\alpha} \to H_{\alpha} \to H_{\alpha}^{*}, \quad g \mapsto [F(\sigma_{2}\varphi(g)\sigma_{2})] \mapsto [F(\sigma_{2}\varphi(g)\sigma_{2})]^{*};$$

in other words, if $\alpha = \alpha(F) \ge 2$ then *F* is ambient isotopic to $F(\sigma_2 \varphi(g) \sigma_2)$ for some $g \in G_{\alpha}$ or its mirror image.

For $g \in G_{\alpha}$, let $g^{co} = \{1, \ldots, \alpha - 2\} \setminus g$ and $g^{op} = \{\alpha - 1 - j \mid j \in g\}$.

LEMMA 3.1. For any $g \in G_{\alpha}$ ($\alpha \ge 2$), both $F(\sigma_2 \varphi(g^{co})\sigma_2)$ and $F(\sigma_2 \varphi(g^{op})\sigma_2)$ are ambient isotopic to the mirror image of $F(\sigma_2 \varphi(g)\sigma_2)$.

Proof. Note that

$$\varphi(g^{\text{co}}) = \tau \circ \mu(\varphi(g)) \text{ and } \varphi(g^{\text{op}}) = \mu(\varphi(g))^{-1}$$

where τ and μ are as before. By Lemma 1.3, the mirror image of $F(\sigma_2 \varphi(g) \sigma_2)$ is $F(\sigma_2^{-1} \mu(\varphi(g)) \sigma_2^{-1})$. By Lemma 1.2,

$$F(\sigma_2^{-1}\mu(\varphi(g))\sigma_2^{-1}) = F[1, \sigma_1^{-1} | \sigma_2^{-1}\mu(\varphi(g))\sigma_2^{-1}, \sigma_1^{-1}]$$

$$\cong F[\sigma_1\sigma_2, \sigma_1^{-1} | \sigma_1\mu(\varphi(g))\sigma_2^{-1}, \sigma_1^{-1}]$$

$$\cong F[1, \sigma_2^{-1} | \sigma_1\mu(\varphi(g))\sigma_1, \sigma_2^{-1}]$$

$$\cong F[1, \sigma_1^{-1} | \sigma_2\tau \circ \mu(\varphi(g))\sigma_2, \sigma_1^{-1}]$$

$$= F(g^{co})$$

and

$$F(\sigma_2^{-1}\mu(\varphi(g))\sigma_2^{-1}) = F[1, \sigma_1^{-1} | \sigma_2^{-1}\mu(\varphi(g))\sigma_2^{-1}, \sigma_1^{-1}]$$

$$\cong F[\sigma_2^{-1}\mu(\varphi(g))\sigma_2^{-1}, \sigma_1^{-1} | 1, \sigma_1^{-1}]$$

$$\cong F[1, \sigma_1^{-1} | \sigma_2\mu(\varphi(g))^{-1}\sigma_2, \sigma_1^{-1}]$$

$$= F(g^{\text{op}}).$$

COROLLARY 3.2. If $g = g^{op}$ then $F(\sigma_2 \varphi(g) \sigma_2)$ is amphicheiral.

Define an equivalence relation \sim on G_{α} by $g \sim g^{co} \sim g^{op} \sim g^{coop} = g^{opco}$. We denote by $[g]^*$ the equivalence class of g and by G_{α}^* the quotient set of G_{α} . By Lemma 3.1, the surjection $G_{\alpha} \rightarrow H_{\alpha}^*$ induces a surjection

$$\Phi_{\alpha} \colon G_{\alpha}^* \to H_{\alpha}^*, \quad [g]^* \mapsto [F(\sigma_2 \varphi(g) \sigma_2)]^*.$$

We provide a list of H_{α}^* for $\alpha \leq 10$ in Tables 1–5. (All surface links in the list are distinguished by their Alexander polynomials except three pairs: 9₅ and 9₁₁; 10₁₉ and 10₃₂; 10₄₄ and 10₅₇. For a surface link *F* and a positive integer *d*, let $I_d(F)$ be the number of S_d -conjugacy classes of transitive representations of $\pi_1(\mathbf{R}^4 \setminus F)$ to the symmetric group S_d on *d* letters. Using the computer program "Knot" by Dr. Kouji Kodama, we have a partial list of $I_d(F)$ as in Table 6, which shows 9₅ \cong 9₁₁, 10₁₉ \cong 10₃₂, and 10₄₄ \cong 10₅₇. To determine whether or not each

	g		Alexander Polynomials	nder Polynomials		
01	_	$T_{0,1}$	0	Α		
1_1		$S_{1,1}$	1	А		
21	{}	$T_{2,1}$	1, -1	А		
31	{}	$S_{3,1}$	1, -1, 1	А		
41	{}	$T_{4,1}$	1, -1, 1, -1	А		
42	{1}	$S_{4,1}$	1, -1, 2, -1	Ν		
51	{}	$S_{5,1}$	1, -1, 1, -1, 1	А		
5 ₂	{1}	$S_{5,2}$	1, -1, 2, -2, 1	Ν		
5 ₃	{2}	$T_{5,1}$	1, -2, 2, -2, 1	Α		
61	{}	$T_{6,1}$	1, -1, 1, -1, 1, -1	Α		
62	{1}	$S_{6,1}$	1, -1, 2, -2, 2, -1	Ν		
63	{2}	$S_{6,2}$	1, -2, 2, -3, 2, -1	Ν		
64	$\{1, 2\}$	$T_{6,2}$	1, -1, 2, -3, 2, -1	Ν		
65	{1, 3}	$S_{6,3}$	1, -2, 3, -3, 3, -1	Ν		
66	{1,4}	$T_{6,3}$	1, -2, 3, -3, 2, -1	А		
71	{}	$S_{7,1}$	1, -1, 1, -1, 1, -1, 1	Α		
72	{1}	$S_{7,2}$	1, -1, 2, -2, 2, -2, 1	Ν		
7 ₃	{2}	$T_{7,1}$	1, -2, 2, -3, 3, -2, 1	Ν		
7_4	{3}	$S_{7,3}$	1, -2, 3, -3, 3, -2, 1	Α		
7 ₅	$\{1, 2\}$	$S_{7,4}$	1, -1, 2, -3, 3, -2, 1	Ν		
7 ₆	{1, 3}	$T_{7,2}$	1, -2, 3, -4, 4, -3, 1	Ν		
7 ₇	{1,4}	$S_{7,5}$	1, -2, 4, -4, 4, -3, 1	Ν		
7 ₈	{1,5}	$T_{7,3}$	1, -2, 3, -4, 3, -2, 1	Α		
7 ₉	{2, 3}	$S_{7,6}$	1, -2, 3, -4, 4, -2, 1	Ν		
7 ₁₀	$\{2, 4\}$	$S_{7,7}$	1, -3, 4, -5, 4, -3, 1	Α		

Table 1

F is amphicheiral, we use Corollary 3.2 and the fact that the Alexander polynomial of an amphicheiral surface link must be reciprocal; i.e., $f(t) = \pm t^n f(t^{-1})$ for some *n*.)

In the first column $\alpha(F) (= \alpha)$ is given. The subscript indicates the order of $[F]^*$ in H^*_{α} . In the second column an element $g \in G_{\alpha}$ with $\Phi_{\alpha}([g]^*) = [F]^*$ is given. Using it, one can recover the configuration of F. For the third column we divide H^*_{α} into two families, S^*_{α} and T^*_{α} . The symbol S (resp. T) means that F is a 2-knot (resp. a surface link that is a union of a 2-sphere and a torus). The first subscript indicates α and the second the order of $[F]^*$ in the subset S^*_{α} (resp. T^*_{α}). In the fourth column, the coefficients of an Alexander polynomial of $[F]^*$ are given. (The Alexander polynomial of $[F]^*$ should be considered up to *weak equivalence*: f(t) is *weakly equivalent* to g(t) if f(t) is $\pm t^n g(t)$ or $\pm t^n g(t^{-1})$ for

g			Alexander Polynomials				
81	{}	$T_{8,1}$	1, -1, 1, -1, 1, -1, 1, -1	A			
82	{1}	$S_{8,1}$	1 - 1, 2, -2, 2, -2, 2, -1	Ν			
83	{2}	$S_{8,2}$	1, -2, 2, -3, 3, -3, 2, -1	Ν			
84	{3}	$S_{8,3}$	1, -2, 3, -3, 4, -3, 2, -1	Ν			
85	{1, 2}	$T_{8,2}$	1, -1, 2, -3, 3, -3, 2, -1	Ν			
86	{1, 3}	$S_{8,4}$	1, -2, 3, -4, 5, -4, 3, -1	Ν			
87	{1, 4}	$T_{8,3}$	1, -2, 4, -5, 5, -5, 3, -1	Ν			
88	{1, 5}	$S_{8,5}$	1, -2, 4, -5, 5, -4, 3, -1	Ν			
89	{1, 6}	$T_{8,4}$	1, -2, 3, -4, 4, -3, 2, -1	Α			
810	{2, 3}	$T_{8,5}$	1, -2, 3, -4, 5, -4, 2, -1	Ν			
811	{2, 4}	$S_{8,6}$	1, -3, 4, -6, 6, -5, 3, -1	Ν			
812	{2, 5}	$T_{8,6}$	1, -3, 5, -6, 6, -5, 3, -1	Α			
813	{3, 4}	$T_{8,7}$	1, -2, 4, -5, 5, -4, 2, -1	Α			
814	{1, 2, 3}	$S_{8,7}$	1, -1, 2, -3, 4, -3, 2, -1	Ν			
815	$\{1, 2, 4\}$	$S_{8,8}$	1, -2, 3, -5, 5, -5, 3, -1	Ν			
816	$\{1, 2, 5\}$	$S_{8,9}$	1, -2, 4, -5, 6, -5, 3, -1	Ν			
817	$\{1, 2, 6\}$	$S_{8,10}$	1, -2, 3, -5, 5, -4, 2, -1	Ν			
818	$\{1, 3, 5\}$	$T_{8,8}$	1, -3, 5, -7, 7, -6, 4, -1	Ν			
819	$\{1, 3, 6\}$	$S_{8,11}$	1, -3, 5, -6, 7, -5, 3, -1	Ν			
820	$\{1, 4, 5\}$	$S_{8,12}$	1, -2, 5, -6, 6, -5, 3, -1	Ν			

Table 2

some n.) In the last column, "A" (resp. "N") denotes that F is amphicheiral (resp. non-amphicheiral).

Since the spun 2-knot of a figure-eight knot has Alexander polynomial $t^2 - 3t + 1$ which is out of the list, we see that it is not a 3-braid 2-knot.

CONCLUDING REMARKS. The surjection $\Phi_{\alpha}: G_{\alpha}^{*} \to H_{\alpha}^{*}$ is an injection (i.e. bijection) for $\alpha \leq 10$; in other words, the weak equivalence classes of 3-braid 2-knots whose Alexander polynomials have spans less than 10 are completely classified by standard forms. Is there an integer α such that Φ_{α} is not injective? For $\alpha \leq 10$, the converse of Corollary 3.2 holds; namely, standard forms determine amphicheirality of 3-braid 2-knots with $\alpha \leq 10$. Is this true for every α ?

Seiichi Kamada

	g		Alexander Polynomials			
9 ₁	{}	$S_{9,1}$	1, -1, 1, -1, 1, -1, 1, -1, 1	A		
9 ₂	{1}	$S_{9,2}$	1, -1, 2, -2, 2, -2, 2, -2, 1	Ν		
9 ₃	{2}	$T_{9,1}$	1, -2, 2, -3, 3, -3, 3, -2, 1	Ν		
9 ₄	{3}	$S_{9,3}$	1, -2, 3, -3, 4, -4, 3, -2, 1	Ν		
9 ₅	{4}	$T_{9,2}$	1, -2, 3, -4, 4, -4, 3, -2, 1	А		
9 ₆	{1, 2}	$S_{9,4}$	1, -1, 2, -3, 3, -3, 3, -2, 1	Ν		
9 ₇	{1, 3}	$T_{9,3}$	1, -2, 3, -4, 5, -5, 4, -3, 1	Ν		
9 ₈	{1, 4}	$S_{9,5}$	1, -2, 4, -5, 6, -6, 5, -3, 1	Ν		
9 ₉	{1, 5}	$T_{9,4}$	1, -2, 4, -6, 6, -6, 5, -3, 1	Ν		
9 ₁₀	$\{1, 6\}$	$S_{9,6}$	1, -2, 4, -5, 6, -5, 4, -3, 1	Ν		
9 ₁₁	$\{1, 7\}$	$T_{9,5}$	1, -2, 3, -4, 4, -4, 3, -2, 1	Α		
9 ₁₂	{2, 3}	$S_{9,7}$	1, -2, 3, -4, 5, -5, 4, -2, 1	Ν		
9 ₁₃	{2, 4}	$S_{9,8}$	1, -3, 4, -6, 7, -7, 5, -3, 1	Ν		
9 ₁₄	{2, 5}	$S_{9,9}$	1, -3, 5, -7, 8, -7, 6, -3, 1	Ν		
9 ₁₅	{2, 6}	$S_{9,10}$	1, -3, 5, -7, 7, -7, 5, -3, 1	Α		
9 ₁₆	{3, 4}	$S_{9,11}$	1, -2, 4, -5, 6, -6, 4, -2, 1	Ν		
9 ₁₇	{3, 5}	$T_{9,6}$	1, -3, 5, -7, 8, -7, 5, -3, 1	Α		
9 ₁₈	$\{1, 2, 3\}$	$S_{9,12}$	1, -1, 2, -3, 4, -4, 3, -2, 1	Ν		
9 ₁₉	$\{1, 2, 4\}$	$T_{9,7}$	1, -2, 3, -5, 6, -6, 5, -3, 1	Ν		
9 ₂₀	$\{1, 2, 5\}$	$S_{9,13}$	1, -2, 4, -6, 7, -7, 6, -3, 1	Ν		
9 ₂₁	$\{1, 2, 6\}$	$T_{9,8}$	1, -2, 4, -6, 7, -7, 5, -3, 1	Ν		
9 ₂₂	$\{1, 2, 7\}$	$S_{9,14}$	1, -2, 3, -5, 6, -5, 4, -2, 1	Ν		
9 ₂₃	$\{1, 3, 4\}$	$S_{9,15}$	1, -2, 4, -5, 7, -7, 5, -3, 1	Ν		
9 ₂₄	$\{1, 3, 5\}$	$S_{9,16}$	1, -3, 5, -8, 9, -9, 7, -4, 1	Ν		
9 ₂₅	$\{1, 3, 6\}$	$S_{9,17}$	1, -3, 6, -8, 10, -9, 7, -4, 1	Ν		
9 ₂₆	$\{1, 3, 7\}$	$S_{9,18}$	1, -3, 5, -7, 8, -8, 5, -3, 1	Ν		
9 ₂₇	$\{1, 4, 5\}$	$S_{9,19}$	1, -2, 5, -7, 8, -8, 6, -3, 1	Ν		
9 ₂₈	$\{1, 4, 6\}$	$T_{9,9}$	1, -3, 6, -9, 10, -9, 7, -4, 1	Ν		
9 ₂₉	$\{1, 4, 7\}$	$S_{9,20}$	1, -3, 6, -8, 9, -8, 6, -3, 1	А		
9 ₃₀	{1, 5, 6}	$S_{9,21}$	1, -2, 5, -7, 8, -7, 5, -3, 1	Ν		
9 ₃₁	{2, 3, 4}	$T_{9,10}$	1, -2, 3, -5, 6, -6, 4, -2, 1	N		
9 ₃₂	{2, 3, 5}	$S_{9,22}$	1, -3, 5, -7, 9, -8, 6, -3, 1	Ν		
9 ₃₃	{2, 3, 6}	$T_{9,11}$	1, -3, 6, -8, 9, -9, 6, -3, 1	Ν		
9 ₃₄	{2, 4, 5}	$T_{9,12}$	1, -3, 5, -8, 9, -8, 6, -3, 1	N		
9 ₃₅	$\{2, 4, 6\}$	$S_{9,23}$	1, -4, 7, -10, 11, -10, 7, -4, 1	A		
9 ₃₆	$\{3, 4, 5\}$	$S_{9,24}$	1, -2, 4, -6, 7, -6, 4, -2, 1	Α		

Table 3

g Alexander Polynomials				
101	{}	$T_{10,1}$	1, -1, 1, -1, 1, -1, 1, -1, 1, -1	A
102	{1}	$S_{10,1}$	1, -1, 2, -2, 2, -2, 2, -2, 2, -1	Ν
10_{3}	{2}	$S_{10,2}$	1, -2, 2, -3, 3, -3, 3, -3, 2, -1	Ν
10_{4}	{3}	$S_{10,3}$	1, -2, 3, -3, 4, -4, 4, -3, 2, -1	Ν
10_{5}	{4}	$S_{10,4}$	1, -2, 3, -4, 4, -5, 4, -3, 2, -1	Ν
10_{6}	$\{1, 2\}$	$T_{10,2}$	1, -1, 2, -3, 3, -3, 3, -3, 2, -1	Ν
10_{7}	{1, 3}	$S_{10,5}$	1, -2, 3, -4, 5, -5, 5, -4, 3, -1	Ν
10_{8}	{1, 4}	$T_{10,3}$	1, -2, 4, -5, 6, -7, 6, -5, 3, -1	Ν
109	{1,5}	$S_{10,6}$	1, -2, 4, -6, 7, -7, 7, -5, 3, -1	Ν
10_{10}	$\{1, 6\}$	$T_{10,4}$	1, -2, 4, -6, 7, -7, 6, -5, 3, -1	Ν
1011	$\{1, 7\}$	$S_{10,7}$	1, -2, 4, -5, 6, -6, 5, -4, 3, -1	Ν
10_{12}	$\{1, 8\}$	$T_{10,5}$	1, -2, 3, -4, 4, -4, 4, -3, 2, -1	А
10_{13}	{2, 3}	$T_{10,6}$	1, -2, 4, -5, 5, -5, 4, -3, 2, -1	Ν
10_{14}	$\{2, 4\}$	$S_{10,8}$	1, -3, 4, -6, 7, -8, 7, -5, 3, -1	Ν
10_{15}	{2, 5}	$T_{10,7}$	1, -3, 5, -7, 9, -9, 8, -6, 3, -1	Ν
10_{16}	$\{2, 6\}$	$S_{10,9}$	1, -3, 5, -8, 9, -9, 8, -6, 3, -1	Ν
10_{17}	$\{2,7\}$	$T_{10,8}$	1, -3, 5, -7, 8, -8, 7, -5, 3, -1	А
10_{18}	{3, 4}	$T_{10,9}$	1, -2, 4, -5, 6, -7, 6, -4, 2, -1	Ν
1019	{3, 5}	$S_{10,10}$	1, -3, 5, -7, 9, -9, 8, -5, 3, -1	N
10_{20}	{3, 6}	$T_{10,10}$	1, -3, 6, -8, 10, -10, 8, -6, 3, -1	A
10 ₂₁	{4, 5}	$T_{10,11}$	1, -2, 4, -6, 7, -7, 6, -4, 2, -1	Α
10 ₂₂	$\{1, 2, 3\}$	$S_{10,11}$	1, -1, 2, -3, 4, -4, 4, -3, 2, -1	N
10_{23}	$\{1, 2, 4\}$	$S_{10,12}$	1, -2, 3, -5, 6, -7, 6, -5, 3, -1	Ν
10 ₂₄	$\{1, 2, 5\}$	$S_{10,13}$	1, -2, 4, -6, 8, -8, 8, -6, 3, -1	Ν
10_{25}	$\{1, 2, 6\}$	$S_{10,14}$	1, -2, 4, -7, 8, -9, 8, -6, 3, -1	Ν
10 ₂₆	$\{1, 2, 7\}$	$S_{10,15}$	1, -2, 4, -6, 8, -8, 7, -5, 3, -1	Ν
10 ₂₇	$\{1, 2, 8\}$	$S_{10,16}$	1, -2, 3, -5, 6, -6, 5, -4, 2, -1	Ν
10 ₂₈	{1, 3, 4}	$S_{10,17}$	1, -2, 4, -5, 7, -8, 7, -5, 3, -1	Ν
10 ₂₉	{1, 3, 5}	$T_{10,12}$	1, -3, 5, -8, 10, -11, 10, -7, 4, -1	N
10 ₃₀	$\{1, 3, 6\}$	$S_{10,18}$	1, -3, 6, -9, 12, -12, 11, -8, 4, -1	N
10 ₃₁	$\{1, 3, 7\}$	$T_{10,13}$	1, -3, 6, -9, 11, -12, 10, -7, 4, -1	N
10 ₃₂	$\{1, 3, 8\}$	$S_{10,19}$	1, -3, 5, -7, 9, -9, 8, -5, 3, -1	N
10 ₃₃	$\{1, 4, 5\}$	$S_{10,20}$	1, -2, 5, -7, 9, -10, 9, -6, 3, -1	N
10 ₃₄	$\{1, 4, 6\}$	$S_{10,21}$	1, -3, 6, -10, 12, -13, 11, -8, 4, -1	N
10 ₃₅	$\{1, 4, 7\}$	$S_{10,22}$	1, -3, 7, -10, 13, -13, 11, -8, 4, -1	N
10_{36}	$\{1, 4, 8\}$	$S_{10,23}$	1, -3, 6, -9, 10, -11, 9, -6, 3, -1	Ν

<i>g</i>			Alexander Polynomials				
1037	{1, 5, 6}	S _{10,24}	1, -2, 5, -8, 10, -10, 9, -6, 3, -1	N			
10_{38}	$\{1, 5, 7\}$	$T_{10,14}$	1, -3, 6, -10, 12, -12, 10, -7, 4, -1	Ν			
1039	$\{1, 6, 7\}$	$S_{10,25}$	1, -2, 5, -7, 9, -9, 7, -5, 3, -1	Ν			
10_{40}	$\{2, 3, 4\}$	$S_{10,26}$	1, -2, 3, -5, 6, -7, 6, -4, 2, -1	Ν			
10_{41}	$\{2, 3, 5\}$	$S_{10,27}$	1, -3, 5, -7, 10, -10, 9, -6, 3, -1	Ν			
10_{42}	{2, 3, 6}	$S_{10,28}$	1, -3, 6, -9, 11, -12, 10, -7, 3, -1	Ν			
10_{43}	$\{2, 3, 7\}$	$S_{10,29}$	1, -3, 6, -9, 11, -11, 10, -6, 3, -1	Ν			
10_{44}	$\{2, 4, 5\}$	$S_{10,30}$	1, -3, 5, -8, 10, -11, 9, -6, 3, -1	Ν			
10_{45}	$\{2, 4, 6\}$	$T_{10,15}$	1, -4, 7, -11, 14, -14, 12, -8, 4, -1	Ν			
10_{46}	$\{2, 4, 7\}$	$S_{10,31}$	1, -4, 8, -12, 14, -15, 12, -8, 4, -1	Ν			
10_{47}	$\{2, 5, 6\}$	$S_{10,32}$	1, -3, 6, -10, 12, -12, 10, -7, 3, -1	Ν			
10_{48}	{3, 4, 5}	$S_{10,33}$	1, -2, 4, -6, 8, -8, 7, -4, 2, -1	Ν			
10_{49}	{3, 4, 6}	$S_{10,34}$	1, -3, 6, -9, 11, -12, 9, -6, 3, -1	Ν			
10_{50}	$\{1, 2, 3, 4\}$	$T_{10,16}$	1, -1, 2, -3, 4, -5, 4, -3, 2, -1	Ν			
10_{51}	$\{1, 2, 3, 5\}$	$S_{10,35}$	1, -2, 3, -5, 7, -7, 7, -5, 3, -1	Ν			
10_{52}	$\{1, 2, 3, 6\}$	$T_{10,17}$	1, -2, 4, -6, 8, -9, 8, -6, 3, -1	Ν			
10_{53}	$\{1, 2, 3, 7\}$	$S_{10,36}$	1, -2, 4, -6, 8, -9, 8, -5, 3, -1	Ν			
10_{54}	$\{1, 2, 3, 8\}$	$T_{10,18}$	1, -2, 3, -5, 7, -7, 6, -4, 2, -1	Ν			
10_{55}	$\{1, 2, 4, 6\}$	$S_{10,37}$	1, -3, 5, -9, 11, -12, 11, -8, 4, -1	Ν			
10_{56}	$\{1, 2, 4, 7\}$	$T_{10,19}$	1, -3, 6, -9, 12, -13, 11, -8, 4, -1	Ν			
10_{57}	$\{1, 2, 4, 8\}$	$S_{10,38}$	1, -3, 5, -8, 10, -11, 9, -6, 3, -1	Ν			
10_{58}	$\{1, 2, 5, 6\}$	$T_{10,20}$	1, -2, 5, -8, 10, -11, 10, -7, 3, -1	Ν			
1059	$\{1, 2, 5, 7\}$	$S_{10,39}$	1, -3, 6, -10, 13, -13, 12, -8, 4, -1	Ν			
10_{60}	$\{1, 2, 5, 8\}$	$T_{10,21}$	1, -3, 6, -9, 12, -12, 10, -7, 3, -1	Ν			
10_{61}	$\{1, 2, 6, 7\}$	$T_{10,22}$	1, -2, 5, -8, 10, -11, 9, -6, 3, -1	Ν			
10_{62}	$\{1, 2, 6, 8\}$	$S_{10,40}$	1, -3, 5, -9, 11, -11, 9, -6, 3, -1	Ν			
10_{63}	$\{1, 2, 7, 8\}$	$T_{10,23}$	1, -2, 4, -6, 8, -8, 6, -4, 2, -1	Α			
10_{64}	$\{1, 3, 4, 7\}$	$S_{10,41}$	1, -3, 7, -10, 13, -14, 12, -8, 4, -1	Ν			
10_{65}	$\{1, 3, 4, 8\}$	$T_{10,24}$	1, -3, 6, -9, 11, -12, 10, -6, 3, -1	Ν			
10 ₆₆	$\{1, 3, 5, 7\}$	$S_{10,42}$	1, -4, 8, -13, 16, -17, 14, -10, 5, -1	Ν			
10 ₆₇	{1, 3, 5, 8}	$S_{10,43}$	1, -4, 8, -12, 15, -15, 13, -8, 4, -1	Ν			
10 ₆₈	$\{1, 3, 6, 7\}$	$S_{10,44}$	1, -3, 7, -11, 14, -14, 12, -8, 4, -1	N			
10 ₆₉	$\{1, 3, 6, 8\}$	$T_{10,25}$	1, -4, 8, -12, 15, -15, 12, -8, 4, -1	A			
10 ₇₀	$\{1, 4, 5, 8\}$	$T_{10,26}$	1, -3, 7, -11, 13, -13, 11, -7, 3, -1	A			
10 ₇₁	$\{1, 4, 6, 7\}$	$T_{10,27}$	1, -3, 7, -11, 14, -14, 11, -8, 4, -1	N			
1072	$\{1, 5, 6, 7\}$	$S_{10,45}$	1, -2, 5, -8, 10, -10, 8, -5, 3, -1	Ν			

Table 5

F	I_2	I_3	I_4	I_5	I_6	I_7	I_8
95	3	7	22	37			
9 ₁₁	3	7	24	47			
1019	1	2	3	2	8	7	10
10_{32}	1	2	3	2	5	7	13
1044	1	2	3	3	9	9	17
10 ₅₇	1	2	3	3	9	10	17

Table 6

References

- [B1] J. S. Birman, *Braids, links, and mapping class groups, Ann. of Math. Stud.*, 82, Princeton Univ. Press, Princeton, NJ, 1974.
- [B2] —, On the Jones polynomial of closed 3-braids, Invent. Math. 81 (1985), 287–294.
- [BM] J. S. Birman and W. W. Menasco, *Studying links via closed braids III: Classi-fying links which are closed 3-braids*, Pacific J. Math. 161 (1993), 25–113.
 - [Bo] J. Boyle, Classifying 1-handles attached to knotted surfaces, Trans. Amer. Math. Soc. 306 (1988), 475–487.
- [CS] J. S. Carter and M. Saito, *Knotted surfaces, braid moves and beyond*, Knots and quantum gravity, pp. 191–229, Oxford Science Publishing, 1994.
- [HK] F. Hosokawa and A. Kawauchi, Proposals for unknotted surfaces in fourspaces, Osaka J. Math. 16 (1979), 233–248.
- [K1] S. Kamada, Surfaces in \mathbb{R}^4 of braid index three are ribbon, J. Knot Theory Ramifications 1 (1992), 137–160.
- [K2] ——, A characterization of groups of closed orientable surfaces in 4-space, Topology 33 (1994), 113–122.
- [MKS] W. Magnus, A. Karrass, and D. Solitar, *Combinatorial group theory*, Wiley, New York, 1966.
 - [Mu] K. Murasugi, On closed 3-braids, Mem. Amer. Math. Soc., 151, Amer. Math. Soc., Providence, RI, 1974.
 - [R1] L. Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58 (1983), 1–37.
 - [R2] ——, Special positions for surfaces bounded by closed braids, Rev. Mat. Iberoamericana 1 (1985), 93–133.
 - [T] M. Takahashi, Explicit formulas for Jones polynomials of closed 3-braids, Comment. Math. Univ. St. Paul. 38 (1989), 129–167.
 - [V] O. Ya. Viro, Lecture given at Osaka City University, September, 1990.

Department of Mathematics Osaka City University Sumiyoshi, Osaka 558 Japan

kamada@sci.osaka-cu.ac.jp

205