
Besov Spaces and Outer Functions

Konstant in M. Dyakonov

1. Introduction

Let D denote the unit disk{ z ∈ C : |z| < 1}, T its boundary, andm the normal-
ized Lebesgue measure onT. For a functionf ∈Lp (:= Lp(T, m)), we define its
Lp modulus of continuity by

ωp(t, f ) := sup
−t≤h≤t

(∫
T
|f(eihζ)− f(ζ)|p dm(ζ)

)1/p

for 0 ≤ t ≤ π, and by

ωp(t, f ) := ωp(π, f ) for π < t <∞.
Further, given 0< s < 1, 0< p <∞, and 0< q <∞, theBesov spaceBspq =
B
s
pq(T) is introduced as follows:

Bspq :=
{
f ∈Lp :

∫ ∞
0

ωp(t, f )
q

t sq+1
dt <∞

}
.

We shall mainly be concerned with theanalytic subspace

ABspq := Bspq ∩Hp,

whereHp is the classical Hardy space in the disk (see [9, Chap.II]). Alterna-
tively, the classABspq can be described [15; 17] as the set of all analytic functions
f onD satisfying∫ 1

0
(1− r)(1−s)q−1

(∫
T
|f ′(rζ)|p dm(ζ)

)q/p
dr <∞. (1.1)

We remark that there is also a natural way to define the spacesB
s
pq andABspq with

s ≥ 1, but these are not considered in the present paper.
The problem we treat here is to characterize (the boundary values of ) the moduli

of functions inABspq. Thus, we consider a nonnegative functionϕ ∈Lp with∫
T

logϕ dm > −∞ (1.2)
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(it is well known that (1.2) characterizes the moduli of nonzeroHp functions) and
ask whether there exists anf ∈ABspq such that|f | = ϕ almost everywhere onT.
Equivalently, we have to ascertain when theouter functionOϕ, given by

Oϕ(z) := exp

(∫
T

ζ + z
ζ − z logϕ(ζ) dm(ζ)

)
, z∈D,

belongs toABspq. (The equivalence of the two settings is due to the fact that|Oϕ| =
ϕ a.e. onT and to the fact that the outer factor of a function inABspq must itself
belong toABspq. The latter can be established along the lines of [10]; see also [11,
Chap.III, Sec. 3.4].)

Yet another necessary condition, to be imposed onϕ along with (1.2), is

ϕ ∈Bspq (1.3)

( just note thatωp(t, |f |) ≤ ωp(t, f )). However, (1.2) and (1.3) together are far
from being sufficient to ensure thatOϕ ∈ABspq.

To make further discussion possible, we introduce some notation. Letµz stand
for the harmonic measure representing a pointz∈D, so that

dµz(ζ) = 1− |z|2
|ζ − z|2 dm(ζ), ζ ∈T,

and let9(z, ϕ) be the function associated with a givenϕ ∈ L1, ϕ ≥ 0, via the
formula

9(z, ϕ) :=
∫
T
ϕ dµz − exp

(∫
T

logϕ dµz

)
, z∈D

(in case (1.2) fails, it is understood that exp(−∞) = 0). Note that9(z, ϕ) ≥ 0
by Jensen’s inequality. Finally, for a givenϕ ∈L2, ϕ ≥ 0, we set

8(z, ϕ) := 9(z, ϕ2), z∈D.
In order to make the results of this paper look more natural, we now cite their

prototypes that were previously obtained by the author for the Lipschitz spaces
3α := Bα∞∞ with 0< α < 1. More precisely, the Lipschitz space is defined by

3α = { f ∈C(T) : ω∞(t, f ) = O(t α) },
where

ω∞(t, f ) := sup{ |f(eihζ)− f(ζ)| : ζ ∈T, |h| ≤ t }, 0 ≤ t ≤ π.
The following Theorems A and B (see [6; 7] for the proofs) provide explicit char-
acterizations of the outer functions in3α in terms of their moduli.

Theorem A. Let ϕ ∈ L2 be a nonnegative function satisfying(1.2). Then, for
0< α < 1

2, the following are equivalent:

(i.A) Oϕ ∈3α;
(ii.A) 8(z, ϕ) = O((1− |z|)2α), z∈D.
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Theorem B. Let0< α < 1, and letϕ ∈3α be a nonnegative function satisfying
(1.2). The following are equivalent:

(i.B) Oϕ ∈3α.
(ii.B) 9(z, ϕ) = O((1− |z|)α), z∈D.

When passing from3α to general Besov spacesBspq, it would be natural to ex-
pect that the desired membership criteria forOϕ might be obtained by replacing
the uniform estimates (ii.A) and (ii.B) by suitable integral conditions on8(z, ϕ)

and/or9(z, ϕ). Following the strategy of [6], we show that this is indeed the
case and exhibit the appropriate integral conditions. However, the passage from
“uniform smoothness” to the “smoothness in the mean” is no routine matter and
requires a great deal of effort.

The rest of the paper is organized as follows. In Section 2, we provide a
certain “BMO-type” characterization ofABspq in terms of the mean oscillation( ∫ |f − f(z)|σ dµz)1/σ , whereσ is a new parameter.

In Section 3, we use this characterization, withσ = 2, to derive an integral ver-
sion of Theorem A. It states that, in the case 0< s < 1

2 andp ≥ 2, the inclu-
sionOϕ ∈ ABspq is equivalent to the convergence of a certain integral involving
8(z, ϕ). Further, we briefly discuss the inner–outer factorization of analytic func-
tions in the Besov space. Also, combining our results with a lemma due to Ale-
man [1], we obtain, as a byproduct, the following fact: Givenp ≥ 2, 0< s < 1

2,

andq > 0, every function inABspq is the ratio of two bounded functions in the
same class. (The casep = q = 2 was treated in [1].)

In Section 4, we cite (a special case of) a recent result of Shirokov [14] which
gives an alternative description of outer functions inABspq, provided that

1< p <∞, 1≤ q <∞, and 1/p < s < 1. (1.4)

Shirokov’s result enables us to prove the following auxiliary assertion: Ifp, q,

ands satisfy (1.4), and iff is an outer function inABs/2
2p,2q such that|f |2 ∈Bspq,

thenf 2 ∈ ABspq. This last fact is in turn used, in conjunction with preceding re-
sults from Sections 2 and 3, to derive an integral analog of Theorem B. Namely,
oncep, q, ands are related by (1.4), the inclusionOϕ ∈ ABspq is shown to be
equivalent to an appropriate integrability condition on9(z, ϕ).

Finally, Section 5 contains a few concluding remarks and open questions.

2. BMO-Type Characterizations of Besov Spaces

Theorem 2.1. Let 1 ≤ σ ≤ p < ∞, 0 < q < ∞, and0 < s < 1/σ. Given a
functionf ∈Hp, the following are equivalent:

f ∈ABspq;(i) ∫ 1

0

{∫
T

(∫
T
|f(ζ)− f(rη)|σ dµrη(ζ)

)p/σ
dm(η)

}q/p
dr

(1− r)sq+1
<∞.(ii)
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Proof. (ii)⇒ (i). Forz∈D, Cauchy’s formula yields

|f ′(z)| = 1

1− |z|2
∣∣∣∣ 1

2πi

∫
T
(f(ζ)− f(z)) 1− |z|2

(ζ − z)2 dζ
∣∣∣∣

≤ 1

1− |z|
∫
T
|f(ζ)− f(z)| dµz(ζ)

≤ 1

1− |z|
(∫

T
|f(ζ)− f(z)|σ dµz(ζ)

)1/σ

.

Consequently,∫
T
|f ′(rη)|p dm(η) ≤ 1

(1− r)p
∫
T

(∫
T
|f(ζ)− f(rη)|σ dµrη(ζ)

)p/σ
dm(η).

Raising both sides to the powerq/p,multiplying by(1− r)(1−s)q−1, and integrat-
ing overr shows that condition (ii) implies (1.1) and hence also (i).
(i)⇒ (ii). For 0< r < 1, set

�(r) :=
{∫

T

(∫
T
|f(ζ)− f(rη)|σ dµrη(ζ)

)p/σ
dm(η)

}1/p

.

Minkowski’s inequality, applied twice, gives

�(r) ≤
{∫

T

(∫
T
|f(ζ)− f(η)|σ dµrη(ζ)

)p/σ
dm(η)

}1/p

+
{∫

T
|f(η)− f(rη)|p dm(η)

}1/p

=: #+ [. (2.1)

It is known [16] that
[ = O(ωp(1− r, f )), (2.2)

so we proceed by estimating the first term, #.

Oncer ∈ (0,1) andη ∈T are fixed, we have∫
T
|f(ζ)− f(η)|σ dµrη(ζ) =

∫
T
|f(ξη)− f(η)|σ dµr(ξ)

=
N+1∑
k=0

∫
Ik

|f(ξη)− f(η)|σ dµr(ξ), (2.3)

whereN = N(r) is the integer such that

2N <
π

1− r ≤ 2N+1,

while the subsetsIk ⊂ T are defined by

I0 := { eih : |h| < 1− r },
Ik := { eih : 2k−1(1− r) ≤ |h| < 2k(1− r) } (k = 1, . . . , N ),

IN+1 := { eih : 2N(1− r) ≤ |h| ≤ π }.
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Raising (2.3) to the power 1/σ and using the inequality‖ · ‖lσ ≤ ‖ · ‖l1, we obtain(∫
T
|f(ζ)− f(η)|σ dµrη(ζ)

)1/σ

≤
N+1∑
k=0

(∫
Ik

|f(ξη)− f(η)|σ dµr(ξ)
)1/σ

. (2.4)

Hölder’s inequality, together with the fact that

µr(Ik) ≤ const· 2−k, (2.5)

where the constant is independent ofr andk, yields(∫
Ik

|f(ξη)− f(η)|σ dµr(ξ)
)1/σ

≤ const· 2−k(1/σ−1/p)

(∫
Ik

|f(ξη)− f(η)|p dµr(ξ)
)1/p

. (2.6)

Substituting (2.6) into (2.4) gives(∫
T
|f(ζ)− f(η)|σ dµrη(ζ)

)1/σ

≤ const·
N+1∑
k=0

2−k(1/σ−1/p)

(∫
Ik

|f(ξη)− f(η)|p dµr(ξ)
)1/p

.

Passing toLp-norms with respect todm(η), we get

# ≤ const·
N+1∑
k=0

2−k(1/σ−1/p)

{∫
T
dm(η)

∫
Ik

|f(ξη)− f(η)|p dµr(ξ)
}1/p

. (2.7)

We now look at the double integral{ . . . } on the right:

{ . . . } =
∫
Ik

dµr(ξ)

∫
T
|f(ξη)− f(η)|p dm(η)

≤ µr(Ik) · ωp(2k(1− r), f )p ≤ const· 2−k · ωp(2k(1− r), f )p

(we have once again used (2.5)). Thus

{ . . . }1/p ≤ const· 2−k/p · ωp(2k(1− r), f ),
and so (2.7) implies

# ≤ const·
∞∑
k=0

2−k/σωp(2k(1− r), f ). (2.8)

Comparing (2.1), (2.2), and (2.8) yields a similar estimate for�(r):

�(r) ≤ const·
∞∑
k=0

2−k/σωp(2k(1− r), f ). (2.9)

Further, we must distinguish two cases.
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Case 1: 0< q < 1. Using (2.9) and the elementary inequality(∑
j

aj

)q
≤
∑
j

a
q

j (aj ≥ 0),

we obtain

�(r)q ≤ const·
∞∑
k=0

2−kq/σωp(2k(1− r), f )q .

Hence ∫ 1

0

�(r)q

(1− r)sq+1
dr ≤ const·

∞∑
k=0

2−kq/σ
∫ 1

0

ωp(2kt, f )q

t sq+1
dt

≤ const·
∞∑
k=0

2−kq/σ Jk, (2.10)

where

Jk :=
∫ ∞

0

ωp(2kt, f )q

t sq+1
dt. (2.11)

A change of variables gives
Jk = 2kqsJ0, (2.12)

whereas the integralJ0 converges by virtue of (i). In view of (2.12), (2.10) yields∫ 1

0

�(r)q

(1− r)sq+1
dr ≤ const· J0 ·

∞∑
k=0

2−kq(1/σ−s) <∞.

Case 2: 1≤ q <∞. Applying Minkowski’s inequality, we deduce from (2.9)
that (∫ 1

0

�(r)q

(1− r)sq+1
dr

)1/q

≤ const·
∞∑
k=0

2−k/σJ 1/q
k , (2.13)

whereJk is again defined by (2.11). Now (2.12) shows that the right-hand side of
(2.13) equals

const· J 1/q
0

∞∑
k=0

2−k(1/σ−s)

and is, therefore, finite (as long as (i) holds true).
Thus, in both cases we have∫ 1

0

�(r)q

(1− r)sq+1
dr <∞,

which proves (ii).

Having in mind some further applications, we point out two special cases of The-
orem 2.1.

Proposition 2.2. (a)Let 1 ≤ p <∞, 0 < q <∞, and 0 < s < 1. Givenf ∈
Hp, one hasf ∈ABspq if and only if
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0

{∫
T

(∫
T
|f(ζ)− f(rη)| dµrη(ζ)

)p
dm(η)

}q/p
dr

(1− r)sq+1
<∞. (2.14)

(b) Let 2 ≤ p <∞, 0< q <∞, and0< s < 1
2 . Givenf ∈Hp, one hasf ∈

AB
s
pq if and only if∫ 1

0

{∫
T

(∫
T
|f(ζ)|2 dµrη(ζ)− |f(rη)|2

)p/2

dm(η)

}q/p
dr

(1− r)sq+1
<∞.

(2.15)

Proof. To prove (a), apply Theorem 2.1 withσ = 1. To prove (b), setσ = 2 and
note that ∫

T
|f − f(z)|2 dµz =

∫
T
|f |2 dµz − |f(z)|2, z∈D.

Remarks. (1) In the casep = q = 2, Proposition 2.2(b) is implied by Proposi-
tion 2.4 in Aleman’s paper [1]. However, the techniques of [1] are quite different
from ours and do not appear suitable when dealing with the non-Hilbert case.

(2) Of course, Theorem 2.1 and Proposition 2.2 provide equivalent norms (or
quasinorms, if 0< q < 1) onABspq, which are obtained by raising the left-hand
sides of (ii), (2.14), and (2.15) to the power 1/q.

3. On the Multiplicative Properties of Functions in ABs
pq

In this section, we restrict ourselves to the case where

2 ≤ p <∞, 0< q <∞, and 0< s < 1/2 (3.1)

and derive several corollaries of Proposition 2.2(b). The first of these can be
viewed as an integral version of Theorem A (see Section 1).

Theorem 3.1. Let (3.1)hold, and letϕ ∈Lp be a nonnegative function satisfying
(1.2). The following are equivalent:

Oϕ ∈ABspq;(i) ∫ 1

0

(∫
T
8(rη, ϕ)p/2 dm(η)

)q/p
dr

(1− r)sq+1
<∞.(ii)

Proof. Apply Proposition 2.2(b) withf = Oϕ and note that∫
T
|Oϕ|2 dµz − |Oϕ(z)|2 = 8(z, ϕ), z∈D.

Before stating our next result, we recall that aninner functionis, by definition, an
H∞ function whose modulus equals 1 almost everywhere onT.



150 Konstant in M. Dyakonov

Theorem 3.2. Assume thatp, q, ands are as in(3.1),f ∈Hp, andθ is an inner
function. In order thatfθ ∈ ABspq, it is necessary and sufficient thatf ∈ ABspq
and ∫ 1

0

{∫
T
|f(rη)|p(1− |θ(rη)|)p/2 dm(η)

}q/p
dr

(1− r)sq+1
<∞. (3.2)

Proof. Forg ∈H 2, set

3g(z) :=
∫
T
|g|2 dµz − |g(z)|2, z∈D. (3.3)

Further, letXs
pq denote the set of all functionsh∈C(D), h ≥ 0, for which∫ 1

0

(∫
T
h(rη)p/2 dm(η)

)q/p
dr

(1− r)sq+1
<∞.

By Proposition 2.2(b), one hasfθ ∈ABspq if and only if

3fθ ∈Xspq. (3.4)

Writing
3fθ(z) = 3f (z)+ |f(z)|2(1− |θ(z)|2), (3.5)

we see that (3.4) is equivalent to saying that both functions3f and|f |2(1− |θ |2)
belong toXspq. The first of these inclusions means, by Proposition 2.2(b), thatf ∈
AB

s
pq, while the second one amounts to (3.2).

Our next result generalizes a theorem of Aleman [1]. The method of proof is
also borrowed from [1], except that the underlying Proposition 2.2(b) was proved
differently from its counterpart in [1].

Given a nonzerof ∈Hp, set

gf (z) := exp

{
−
∫
{|f |>1}

ζ + z
ζ − z log|f(ζ)| dm(ζ)

}
, z∈D,

so thatgf is the outer function with modulus min(1,1/|f |).
Theorem 3.3. Suppose(3.1) holds. Iff is a nonzero function of classABspq,
then so are the functionsgf , 1/gf , andfgf . Moreover, their norms are bounded
by a constant times the norm off. (Here “the norm” means any reasonable norm,
or quasinorm, onABspq.)

We require the following fact (see Lemma 2.7 in [1]).

Lemma A. Let (X,µ) be a probability space, and letϕ ∈ L1(X,µ) be a non-
negative function withlogϕ ∈L1(X,µ). Set

E(ϕ) :=
∫
X

ϕ dµ− exp

(∫
X

logϕ dµ

)
.

Then
E(min(1, ϕ)) ≤ E(ϕ) (3.6)
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and
E(max(1, ϕ)) ≤ E(ϕ). (3.7)

Proof of Theorem 3.3.Setg = gf and letf = Fθ be the canonical factorization
of f (hereF is outer andθ is inner). Using the notation of (3.3), we have

31/g(z) = 8(z,max(1, |f |)) ≤ 8(z, |f |) = 3F(z) ≤ 3f (z).
(We have used (3.7) withϕ = |f |2 and(X,µ) = (T, µz), and then (3.5) withf
replaced byF.) The resulting inequality

31/g(z) ≤ 3f (z), z∈D, (3.8)

shows, in view of Proposition 2.2(b), that the hypothesisf ∈ ABspq yields 1/g ∈
AB

s
pq.

This last inclusion implies, in turn, thatg ∈ABspq. To see why, use the identity

g′ = −g2(1/g)′, (3.9)

the fact that|g| ≤ 1 onD, and the characterization (1.1) ofABspq.
Finally, in order to check thatfg ∈ABspq, we write

3fg(z) = 3Fg(z)+ |F(z)|2|g(z)|2(1− |θ(z)|2). (3.10)

Since|g(z)| ≤ 1 and

3Fg(z) = 8(z,min(1, |f |)) ≤ 8(z, |f |) = 3F(z)

(this time we have employed (3.6)), the relation (3.10) yields

3fg(z) ≤ 3F(z)+ |F(z)|2(1− |θ(z)|2) = 3Fθ(z) = 3f (z).
Eventually, we obtain

3fg(z) ≤ 3f (z), z∈D, (3.11)

and so, by Proposition 2.2(b), the hypothesisf ∈ABspq is seen to imply thatfg ∈
AB

s
pq.

The required inclusions are now verified, and the corresponding norm inequal-
ities are, in fact, established as well. Actually, in light of Remark (2) at the end of
Section 2, these inequalities are immediate from (3.8), (3.9), and (3.11).

Corollary 3.4. Under the assumption(3.1),every function inABspq is the ratio
of two bounded functions inABspq.

Proof. Given a nonzerof ∈ ABspq, write f = fgf /gf ; observe that|fgf | ≤ 1
and|gf | ≤ 1.

Remarks. (1) Forp > 2, Corollary 3.4 gives a nontrivial result only if 0< s ≤
1/p; otherwise we haveBspq ⊂ C(T).

(2) In the casep = q = 2, Theorem 3.3 and Corollary 3.4 are due to Ale-
man; see Theorem 2.6 and Corollary 2.8 in [1]. In fact, Aleman’s results pertain to
a somewhat more general situation (not encompassing, however, the non-Hilbert
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spacesABspq). The Dirichlet spaceAB1/2
2,2 was considered earlier by Richter and

Shields [12].
(3) In connection with Theorem 3.2, we remark that “multiplication criteria”

similar to (3.2) were obtained, by a different method, in [2, Sec. 3.3]. The topic
involved (i.e., preservation of smoothness when multiplying or dividing by inner
factors) is treated, among other places, in [3; 4; 5; 7]. See also the monograph
[13] and the references therein.

4. Shirokov’s Result and a Passage to
Smaller p and Larger s

Let p > 0 andq > 0. In accordance with [14], we denote byQp
q the set of all

functionsg(ζ, h) ≥ 0, defined onT× (0,1), that have the following properties:

(a) For everyh∈ (0,1), one hasg(·, h)∈Lp and, moreover,

sup

{ ∫
T
g(ζ, h)p dm(ζ) : h∈ (ε,1)

}
<∞

whenever 0< ε < 1;

(b)
∫ 1

0

(∫
T
g(ζ, h)p dm(ζ)

)q/p
dh

h
<∞.

Further, given a functionϕ ∈C(T), ϕ ≥ 0, and a pointz∈D, we set

Mϕ(z) := max{ϕ(ζ) : ζ ∈T, |ζ − z| ≤ 2(1− |z|) }.
The next result is due to Shirokov (in fact, a more general version is contained

in Theorems 1, 2, and 3 of [14]).

Theorem C. Let

1< p <∞, 1≤ q <∞, and 1/p < s < 1. (4.1)

Given a nonnegative functionϕ ∈ Bspq satisfying(1.2), the following are equiva-
lent:

(i.C) Oϕ ∈ABspq.
(ii .C) There exist a functionF ∈Qp

q and a constantC > 0 such that∫
T

∣∣∣∣ log
ϕ(ζ)

Mϕ(z)

∣∣∣∣ dµz(ζ) ≤ C (4.2)

wheneverz is a point inD \ {0} for which

Mϕ(z) ≥ (1− |z|)sF
(
z

|z| ,1− |z|
)
.

From Theorem C we derive the following auxiliary proposition, to be employed
later on.
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Corollary 4.1. Let p, q and s be as in(4.1). If f is an outer function in
AB

s/2
2p,2q such that|f |2 ∈Bspq, thenf 2 ∈ABspq.

Proof. Setϕ := |f |, so thatf = Oϕ. By Theorem C, the hypothesisf ∈ABs/2
2p,2q

can be restated by saying that (4.2) holds true for the pointsz∈D \ {0} satisfying

Mϕ(z) ≥ (1− |z|)s/2F

(
z

|z| ,1− |z|
)
,

whereF is a suitable function inQ2p
2q . The latter condition is obviously equivalent

to the requirement that ∫
T

∣∣∣∣ log
ϕ2(ζ)

Mϕ2(z)

∣∣∣∣ dµz(ζ) ≤ 2C

for thosez∈D \ {0} for which

Mϕ2(z) ≥ (1− |z|)sF 2

(
z

|z| ,1− |z|
)
.

Sinceϕ2 ∈Bspq (by assumption) andF 2 ∈Qp
q (becauseF ∈Q2p

2q), another appli-
cation of Theorem C yieldsf 2 = Oϕ2 ∈ABspq.
We now combine Corollary 4.1 with preceding results from Sections 2 and 3 to
obtain an integral version of Theorem B (see Section 1), stated in terms of the
quantity

9(z, ϕ) :=
∫
T
ϕ dµz − exp

(∫
T

logϕ dµz

)
, z∈D.

Theorem 4.2. Assume that(4.1)holds and thatϕ ∈Bspq is a nonnegative func-
tion satisfying(1.2). Then the following are equivalent:

Oϕ ∈ABspq;(i) ∫ 1

0

(∫
T
9(rη, ϕ)p dm(η)

)q/p
dr

(1− r)sq+1
<∞.(ii)

Proof. (i) ⇒ (ii). Apply Proposition 2.2(a) withf = Oϕ and observe that, for
z∈D,∫

T
|Oϕ(ζ)−Oϕ(z)| dµz(ζ) ≥

∫
T
(|Oϕ(ζ)| − |Oϕ(z)|) dµz(ζ) = 9(z, ϕ).

(ii)⇒ (i). Setϕ1 := √ϕ and rewrite (ii) in the form∫ 1

0

(∫
T
8(rη, ϕ1)

2p/2 dm(η)

)2q/2p

(1− r)−(s/2)·2q−1 dr <∞. (4.3)

Since 2p > 2 ands/2< 1
2, Theorem 3.1 tells us that condition (4.3) is equivalent

to the inclusionOϕ1 ∈ABs/2
2p,2q . Recalling also that
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|Oϕ1|2 = ϕ ∈Bspq
and applying Corollary 4.1 withf = Oϕ1, we obtain

O2
ϕ1
= Oϕ ∈ABspq,

as desired.

As before, the characterization we have just obtained enables us to derive certain
information on the truncations of the functions in question.

Corollary 4.3. If p, q, ands satisfy(4.1),and iff is an outer function of class
AB

s
pq, then the three outer functions with modulimax(1, |f |), min(1, |f |), and

min(1,1/|f |) are also elements ofABspq.

The proof again relies on Lemma A and is completely similar to that of Theo-
rem 3.3.

In order to state our final result, we introduce some more notation. Givenp, q,

ands as in (4.1) (so thatBspq ⊂ C(T)), we define the spaceBspq(D) to be the set of
functionsf ∈C(closD) having boundary values inBspq = Bspq(T) and satisfying∫ 1

0

(∫
T
|f(η)− f(rη)|p dm(η)

)q/p
dr

(1− r)sq+1
<∞.

Proceeding as in Section 2, it is not hard to show that the Poisson integral of a
B
s
pq function always belongs toBspq(D). In other words, harmonic functions in
B
s
pq(D) are precisely the harmonic extensions of functions inB

s
pq, and that makes

the notation reasonable.
This said, we are able to restate Theorem 4.2 in a very natural way.

Theorem 4.4. Supposep, q, and s are related by(4.1), and letϕ ≥ 0 be a
function inLp satisfying(1.2). Consider the extension ofϕ intoD given by

ϕ(z) := exp

(∫
T

logϕ dµz

)
, z∈D.

In order thatOϕ ∈ABspq, it is necessary and sufficient thatϕ ∈Bspq(D).
Proof. Setf = Oϕ; observe thatϕ = |f | everywhere onD and almost every-
where onT. Now if f ∈ ABspq, thenf is the Poisson integral off |T ∈ Bspq and
hencef ∈Bspq(D). The latter clearly implies thatϕ ∈Bspq(D).

Conversely, ifϕ ∈Bspq(D) then we write

9(rη, ϕ) =
∫
T
ϕ dµrη − ϕ(rη)

≤
∣∣∣∣∫
T
ϕ dµrη − ϕ(η)

∣∣∣∣+ |ϕ(η)− ϕ(rη)|
=: h1(r, η)+ h2(r, η), (4.4)

whereh1,2(r, η) are just meant to denote the two terms, respectively. It remains
to notice that
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0

(∫
T
hj(r, η)

p dm(η)

)q/p
dr

(1− r)sq+1
<∞, j = 1,2. (4.5)

Indeed, forj = 1, (4.5) actually means that the Poisson integral of the function
ϕ|T ∈ Bspq lies in Bspq(D). For j = 2, (4.5) is due to the assumption thatϕ ∈
B
s
pq(D).
Combining (4.4) and (4.5), we arrive at condition (ii) of Theorem 4.2, and the

theorem tells us thatf ∈ABspq.

5. Concluding Remarks and Open Questions

(1) Throughout, we did not consider the endpointsp = ∞ andq = ∞. However,
most of the above results remain true in these cases also, provided that we make
some natural adjustments in the formulas involved.

Let us consider the caseq = ∞ and describe the arising modifications, always
assuming thatp ands live in the same range as before (depending on the context).
First of all, the spaceBsp∞ is defined by

Bsp∞ := { f ∈Lp : ωp(t, f ) = O(t s) },
while (1.1) should be changed to(∫

T
|f ′(rζ)|p dm(ζ)

)1/p

= O((1− r)s−1).

In Theorem 2.1, one replaces condition (ii) by∫
T

(∫
T
|f(ζ)− f(rη)|σ dµrη(ζ)

)p/σ
dm(η) = O((1− r)sp) (5.1)

(whenσ = 1 or σ = 2, (5.1) gives the required version of condition (2.14) or
(2.15), respectively, in Proposition 2.2). In Theorem 3.1, condition (ii) should be
written in the form ∫

T
8(rη, ϕ)p/2 dm(η) = O((1− r)sp),

while Theorem 3.2 becomes valid forq = ∞ if one replaces (3.2) by∫
T
|f(rη)|p(1− |θ(rη)|)p/2 dm(η) = O((1− r)sp).

Further, Theorem 3.3 and Corollary 3.4 hold true forq = ∞, no special changes
being required, and so do Theorem C (with the appropriate interpretation ofQp

∞)
and Corollary 4.1. Finally, theq = ∞ version of condition (ii) in Theorem 4.2
reads ∫

T
9(rη, ϕ)p dm(η) = O((1− r)sp),

while Corollary 4.3 and Theorem 4.4 remain intact.
In the casep = ∞, the results of Sections 2 and 3 become true if one simi-

larly replaces theLp-norm by the sup-norm. The Lipschitz casep = q = ∞ was
studied in [6] and [7].
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(2) Although Theorems 3.1 and 4.2 look quite similar, we note the following
point of distinction between them: In Theorem 4.2 we assumed thatϕ ∈ Bspq
(which is obviously necessary to ensure thatOϕ ∈ ABspq), whereas in Theorem
3.1 there were no a priori hypotheses on the smoothness ofϕ.

(3) The author suspects that Theorems 4.2 and 4.4 would remain valid if (4.1)
were replaced by the wider range of indices

1≤ p ≤ ∞, 1≤ q ≤ ∞, and 0< s < 1. (5.2)

The question would be settled if we could verify, under the assumptions (5.2),
the statement of Corollary 4.1. This last task might probably be accomplished by
means of thē∂-techniques of Dyn’kin [8] (and without recourse to Shirokov’s re-
sults). However, the author knows how to do it only in the Lipschitz case, where
p = q = ∞ (see [6] and [7]).

(4) Assuming that (4.1) holds, it would be interesting to find a direct proof
of the equivalence between condition (ii.C) in Theorem C and condition (ii) in
Theorem 4.2.
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