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1. Introduction

LetneN, n > 2, andy € R". Let K(y) be a Calder6n—Zygmund kernel, that is,

Q)
K(y) = —2, (1.1)
|yl
wheref is homogeneous of degree 0 and satisfies
/ . Q(y)do(y) =0. (1.2)
S

Let B(0, 1) denote the unit ball centered at the originRf, letd € N, and let
®: B(0,1) — R be aC> mapping. Define the singular integral operafgron
R? by
(To f)(x) = p-V-f fx —@(y)K(y)dy. (1.3)
B(0,1)
The following L? boundedness theorem can be found in Stein [7].

THEOREM A. LetTy be given as above. Suppose that

(i) @ is of finite type a0, and

(i) Qecks.

Then, forl < p < oo, there exists a constait, > 0 such that

1To fllLerey < Cpll fllLr(ra) (1.4)
for every f € LP(RY).

It is well known thatTs, may fail to be bounded oh? for any p if condition (i)

is removed (the precise definition of a finite type mapping will be reviewed in the
next section). The purpose of this paper is to establisiitheoundedness dfy
when condition (ii) is replaced by the following weaker condition:

(i") Qe LS 1) for someg > 1.

This yields the following theorem.
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THEOREM B. LetTq be given as before. Suppose that

(i) @ is of finite type ab, and
(i") Qe LS 1) for someg > 1.

ThenTy is a bounded operator fromh?(R?) to itself forl < p < co.

We shall also establish the” boundedness for the corresponding maximal trun-
cated singular integrals.

THEOREM C. Let

(Tg f)(x) = sup

>0

/ S SO (1.5)
e<|yl<

Supposeb and 2 satisfy conditiongi) and (ii’), respectively. Then the operator
T4 is bounded fronL”(RY) to itself for1 < p < oo.

We shall first establish an estimate for some oscillatory integrals.

2. Oscillatory Integrals
We shall begin with a definition.

DEeFINITION 2.1, LetU be an open set iR” and¢: U — R a smooth map-
ping. Forxp € U we say that is of finite typeat xq if, for each unit vecton e
R4, there is a multi-index: with || > 1 so that

8f[¢(x) : 77]|x=x0 #0. (21)
The following lemma is a special case of Lemma 3.2 in [5].

LEmMA 2.2. Lety € C*(R), ¢ € C°(R), a < b, andk € N. Assume that
W ®(x)| <r < Mforx e [a,b] and [y *tV(x)| < M forx e [a —r, b + r].
Then there exists a positive const@htvhich depends only oy M, and ¢ such
that

b
/ e o(x) dx

a

b+r
< C|A|~** f [y ()|~ HYP ax (2.2)

r

holds fori e R ande €0, 1].

Lemma 2.3. Let ®: B(0,1) — R? be a smooth mapping and €t be a ho-
mogeneous function of degréeSuppose tha® is of finite type at zero ane
L9(S"1) for someg > 1. Thenthere aré, C > 0, N €N, and jo € Z_ such that

/ g0 ) o
2i-t<|y|<2J

<c@Migp? (2.3)
[y|"

forall j < joand& e R,
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Proof. For anyng € S?~1, there exists a nonzero multi-index = «(17¢) such
that

dy°[no - ®(M]ly=0 # 0. (2.4)
Letk = |ao| and defingGy: B(0, 1) x S~ — R by
Ge(y.m =Y [n-9F@(»]y*. (2.5)
|a|=k

Then, by (2.4) and (2.5) we have

340Gy, PG
0, 0 and
oy (0, m0) # oy
forall g with |8] <k — 1.

Let V, be the space of homogeneous polynomials of deginee variables and
letd (k) = dim(V;). Then there aré (k) vectorsey, . . ., eqx) € S"* such that

B={(e1- 0 (e2- 0 ..., (eawy - M)
forms a basis o¥;. Thus there exists ane {es, . . ., e, } such that
(e V'Gr(y. Moy =0 for 0<I<k—1;
{ (e- V) Gr(y, 099 # O

By using a rotation if necessary, we may assume ¢hat (1,0, ...,0). Let
y' = (y2,...,y,). Then, by (2.6) and the Malgrange preparation theorem [4],
there exist: > 0, an open neighborhoo®, c S?! of 5o, smooth functions
ao(y',n), . ..,ar—1(y', n) on [=h, h]"~1 x Wy, and a nonzero smooth function
c(y,n) on [—h, h]" x W such that

£0,1m0) =0

(2.6)

Gr(y.m) =c(y.mOf + a1y, mys H+ - +aoy . m)  (2.7)
for (y, n) € [—h, h]" x Wo. Thus, for anye < 1/k and any open neighborhodd
of no satisfyingW c Wy, we have

sup |Gy, )™ dy = C(h, e, W) < o0. (2.8)

new Jiyl<h/2

By the compactness &1, there existig € (0, 1/4), 8o, A > 0, andkg € N
such that, for any) € S771,

/ IGi(y, | *°dy < A (2.9)
Iyl<ho
holds for someé € {1, 2, . . ., ko}.
Let
B = max P and
max m‘;J fo )l

jo=max jeZ |2 <min[(4B)7L, ho/4]}.
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For £ € R%\{0}, choosek € {1, ..., ko} so that (2.9) holds for, = £/|£|. By
lettinge = §0/(2¢") and applying Lemma 2.2, we obtain for gli< jg

: N9
/ o6 (Z) dy‘
2i-1<|y|<2J [yl

5/4 4
< ClE / |s2<y>|[ / |Gk<2fry,n>|“””’”dr]do(y)
-1 1/4

< Co e g ek / QWG (y. )™ dy

[yI<ho

< ClIQIl Laesr-1, (2N g /K,

whereN = [¢7Yk(1+ (n — 1)/q")] + 1. By letting 8 = ¢/ko we see that (2.3)
holds when 27|£| > 1. Because (2.3) always holds whelf 2| < 1, Lemma 2.3
is proved. O

LEmMA 2.4. Letm € N and letR(-) be a real-valued polynomial oR" with
deg(R) < m — 1. Suppose

P(y)= ) auy*+ R(), (2.10)

|la|=m

Q is homogeneous of degréeand Q e L4(S""1) for someg > 1. Then there
exists aC = C(m, n) > 0such that

f eip(y)Q()’) dy
2i-1<|y|<2/ |)’|”

holds for anyj € Z and {a,} C R.

A —1/2g'm
< cnsznq[zw > |aa|} (2.11)

|la|=m

Proof. Let
! . , dt
I1(y) = / exp{i[(zft)’” Z agy® + R(21ty)“ e
1/2 la|=m
Then|I(y)| < 1. By van der Corput’s lemma [8] we also have
. —1/m
DI =C27 Y agy®| .
|la|=m
which implies
—1/2q'm

11(y)| < 277/

Y any*

|a|=m

Thus
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/ RILCY Q(y) dy‘
2i-1<|y|<2i |Y|”

< [ Jeo)mldery

< C2j/2q’||g2”q|:/ . Z aaya
Sﬂ*

loe|=m

) —1/2mq’
< cnsznq[sz > w} :

loe|=m

—1/2m 1/q’
do (Y)]

where the lastinequality follows from a result of Ricci and Stein [6, p. 183, Cor. 2].
U

3. Maximal functions and Singular Integrals
We shall need the following result from [2] (see also [1] and [3]).

Lemma 3.1. Letl,m e Nandlet{o,, : 0 <s <landk € Z} be a family of
measures oR™ withog, = 0 foreveryk e Z. Let{o,; : 1 <s <landl<j <
2} CRT, {n,:1<s<I}CRMN1},{N;:1<s<Il}CN,andL;: R" —
R" be linear transformations fot < s < /. Suppose

(i) llogll <lforkezZandl<s <I;

(i) 16548 < CnfILE) 2 forE eR™, keZ, andl <s <I;
(iii) 1654(8) — 6s-14(5) < C(nf|LEN*  for E eR™, keZ, andl <s <

and
(iv) for someg > 1there existsA, > O such that

< Ayl fllarm
La(Rm)

sup|log.«| * f|
keZ

forall feL4(R™")and1l<s <.

Then, for every € (qz—fl qz—_"l> there exists a positive constafi such that
> o f < Cpll fllLowm (3.1)
kez LrR™)

and

1/2
H ( > o f|2> < Cpll Fllerwm) (3.2)
kez LP(R™)

hold for all f € L?(R™). The constanC, is independent of the linear transfor-
mations{L,}'_;.

For given® and2 we define the maximal operatdrlg ¢ by

Q
(Ma.o)00) = sup| [ fa—om gyl @3
2k=1<|y| <2k |)’|

keZ _
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The next lemma follows immediately from [9, p. 477, Prop. 1] (see also [10]).

LeEMMA 3.2. LetP = (P, ..., P;), whereP; is a real-valued polynomial oR”
and deg(P) = max< ;<4 deg(P;). Suppose thaf2 € L(S"~1). Then the opera-
tor Mg p is bounded orL.?(R?) for 1 < p < oco. The bound for| Mg 7|, »
may depend on, d, ||2]|1, and deg(P), but it is independent of the coefficients
of the polynomialsP; (-).

In what follows we shall establish the” boundedness for the maximal operator
Maq. o WhenQ e L7 (¢ > 1) and® is a smooth mapping of finite type. This can

be viewed as an extension of [9, p. 476, Thm. 1] (which corresponds to the case
Qe L>®).

TueoreM 3.3. Suppose tha®: B(0, 1) — R? is smooth and of finite type &t
and that$2 is homogeneous of degr@avith Q € L¢(S"1) for someg > 1. Then
the operatorMg._ ¢ is bounded or.”(RY) for all p satisfyingl < p < .

Proof. Without loss of generality we may assume tkat- 0. Fork € Z_, we
define the measures, ; onR? by

Q
/ Fdoes = / f@on = gy, (34)
Rd 2k—l<|y|<2k [yl
By Lemma 2.3, there exist C > 0, N € N, andkg € Z_ such that
6.1 (&) < CV¥ &) (3.5)

for all £ € R? andk < kg. For® = (®4,..., %) we letP = (P, ..., Py),
where

1 98,
Pi(y) = ——L(0)y” (3.6)
! |ﬂ\§—1ﬂ! dy?

for 1 < j <d. Then we have

60,1(8) — 6p x(§)] < C(2N¥|&)]), (3.7)

whereop ; is given by (3.4) with® replaced byP.
We now choose & € S(R?) such thatj(§) = 1 for |£] < 1/2 andy(§) = 0
for |&] > 1. Lety, (x) = t~“v(x/t) for t > 0 and define the measurgsg} by

Vi =0,k —OPpk * 1/[2Nk. (38)
Then, by (3.5) and (3.7), we obtain
1§ < € min{2"*|g)~°, 2V¥|€]) (3.9)
for £ e R? andk < ko. If we let Sf denote the square function
1/2
(SHH(x) = ( D lvex f(X)IZ) : (3.10)
k<ko

then we have
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kSlipKUcb,k * (X)) < (SH)(x) + C(MapMuL f)(x) (3.11)
and

kSL]I(p‘(WH * )(x0)] < (SF)(x) + 2C (Mo pMuL f)(x) (3.12)
where My, denotes the Hardy-Littlewood maximal operator®h By (3.9),

(3.10), and Plancherel’s theorem,

1Sf1l2 < Cll fll2s (3.13)
when combined with Lemma 3.2 and (3.12), this implies that

sup| [ve| * fIH <Cllfl2- (3.14)
k<ko 2

By (3.9), (3.14), and Lemma 3.1, we get

I1S£1, < Cpll £y (3.15)

for all p satisfying 43 < p < 4. By repeating the arguments in (3.13)}
(3.14)— (3.15) withp = 2 replaced by = 4/3 + ¢ (¢ — 0™), we obtain that

1S£1, = Coll £l (3.16)
for 8/7 < p < 8. By such arguments we eventually obtain t§as bounded on
L? for1 < p < oo, which implies that

= Gpllfllp 3.17)
p

suplos i * f|
k<ko

for1 < p < oo. This shows thaiM, ¢ is bounded orL? for 1 < p < oo. Since
IMa.oflloo < Cllflloo holds trivially, the proof of Theorem 3.3 is complete.

O
We shall now give a proof of our main result.

Proof of Theorem BLet 8, N, andP be given as in the proof of Theorem 3.3.
Forl< j <dweletaj = (1/8)3f ®;/9y?(0). For0< s < N we defineQ* =
(QS’ ey ij) by
Qi =Y apyf. j=1....d (3.18)
1BI<s

when0<s < N—1andQ" = &. Leto, = ogs ;. Then, by (3.18) and Lemma
2.4, we have

d
|65,k (8) — G5—1k(8)] < C<25k Z Zajﬂéj ) (3.19)
1pl=s ! j=1
and
d —1/2¢'s
16,4 (&)] < C[Z“ DD apg ] (3.20)

[Bl=s'j=1
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fork <kpandl<s < N — 1. By (1.2), (3.5), (3.7), (3.19)—(3.20), Lemmas
3.1-3.2, and Theorem 3.3, we obtain that

> oenxf

k<ko

= Gl fllp

p

for 1 < p < co. ThereforeTy, is a bounded operator div(R9) for 1 < p < oo.

O
Finally, we point out that Theorem C can be proved by combining the estimates
obtained here and the techniques in [1] and [3]. We omit the detalils.
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