Maximal Gleason Parts faif *°

DANIEL SUAREZ

Introduction

It is well known that every Gleason part of the algelsf&, of bounded analytic
functions on the unit disk, is a maximal analytic disk or a single point [7]. Fur-
thermore, there are very different behaviors within the class of nontrivial Gleason
parts. For example, it is known that some analytic disks are homeomorphic to the
unit diskD, while some others are not.

Although the Gleason parts have been studied by several authors (see e.g. [2;
5; 6]), the information at our disposal is partial and fragmented. In particular, our
knowledge of the closures of Gleason parts is very limited. Far from giving the
whole picture, which is probably unreachable, the present paper intends to throw
some light on the behavior of the closures of Gleason parts.

First we give a criterion to check whether a point in the maximal ideal space of
H*® is or is not in the closure of a given Gleason part. This criterion is then used
to prove that if the closures of two Gleason parts have nonvoid intersection, then
one of them is contained in the closure of the other. This answers a question posed
by Gorkin in [5] and is the starting point of our study of maximal parts (not con-
tained into the closure of any other part except the @liskWe consider a class
of maximal parts that contains properly the thin parts (this generalizes a result of
Budde [2]) and we study the general properties of this class. Next we prove the
existence of maximal parts not belonging to this class. Finally, we pose three open
problems that we believe are fundamental to understanding the way in which the
Gleason parts relate to each other.

ACKNOWLEDGMENT. | am grateful to P. Gorkin for many valuable discussions
and for pointing out several misprints in the first sketch of this paper. Also, |
am indebted to the referee for improving the exposition with many thoughtful
suggestions.

1. Preliminaries

The maximal ideal space &> is defined by

M(H™) = {¢ : ¢is linear, multiplicative angh £ 0}
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provided with the weak topology induced by the dual space®f°. It is a com-
pact Hausdorff space. We can look at a functjoe H> as a continuous func-
tion on M (H*°) via the Gelfand transformf(go) = ¢(f) (p € M(H™)). Evalu-
ation at a point ofD is an element oM (H*°), soD is naturally imbedded into
M(H®), andf is an extension to the whole maximal space of the funcfidm
what follows we avoid writing the hat for the Gelfand transformyof
The pseudohyperbolic and hyperbolic metrics on the open unit disk are defined

by

I—w
p(z’w)zll—&)z’

and
14 p(z, w)

’ 1w€D7
1-pGw)

h(z, w) = log

respectively. Fox, y € M(H®), the formula

p(x,y) =sup{|f(MI:feH™, f(x)=0 |fl=<1}

provides an extension gfto M (H°). Therefore, the Schwarz—Pick (SP) inequal-
ity takes the formo(f(x), f(y)) < p(x,y) forx,y €e M(H®), f € H*, and

Il 1l < 1. Itwill be convenient to work with the metrie when dealing with the SP
inequality and with the metrig in calculations involving the triangular inequal-

ity. Of course, we can go from one metric to the other so long as we keep in mind
that p(z, w) — 1 if and only if h(z, w) — oco. We remark that the topology on

M (H®) induced byp does not coincide with the weaktopology. The Gleason
part ofx € M(H) isthen defined a®(x) = {y e M(H*®) : p(x, y) < 1}.ltis

well known that forx, y € M (H*) we haveP(x) = P(y) or P(x) N P(y) = .

A first classification of Gleason parts (see [7]) shows that there are only two
cases: eitheP (x) = {x} (x € M(H®)) or P(x) is an analytic disk. The former
case means that there is a continuous one-to-one and ontd.mdp — P(x)
such thatf o L, € H* for every f € H*. Reciprocally, any analytic disk is con-
tained in a Gleason part, and any maximal (not contained into another) analytic
disk is a Gleason part. fe D thenP(z) = D is dense inM (H*°) by the corona
theorem of Carleson [3]. This fact makes trivial all the statements of this paper for
this particular part, so from now on by a Gleason pari&alveaysmean a Gleason
part other than the open disk.

Let S = {z,} ¢ D be a sequence such thgt= 0 occursm times inS. Then
the product

by =" [] =2

2,70 |Zn| 1 - an
converges of if and only if

Y (L= lz < co. (1.1)

The functionb is called aBlaschke productlf the sequence satisfiess(S) =
8(b) = infy ]_[n#k,o(zn, zx) > 0 then (1.1) is automatically fulfilled an8l is
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called aninterpolating sequencéso, b is called an interpolating Blaschke prod-
uct). From the work of Hoffman [7] we know thatife M (H>) \ D thenP(x)
is an analytic disk if and only if belongs to the set

G={yeM(H*)\D: yisinthe closure of some interpolating sequehce

If x €e M(H*®) and f € H* are such thaff(x) = 0, then the multiplicity of

x as a zero off is defined as the maximum integ&rsuch thatf = f1... fx

with f;(x) = 0for 1 < j < N; the multiplicity is infinite if there is no suclv.

It is well known that the multiplicity is infinite if and only iff = 0 on P(x).

One of the features of interpolating sequences that we will use frequently is that
disjoint subsequences of the same sequence have disjoint closMe&#/1Y) [7,

Thm. 6.1].

2. Sequences and Parts

Letz e DandS, T c D. We write p(z, S) = inf,es p(z, w) andp(S,T) =
inf e wes p(z, w), With similar conventions for the metric.

DEFINITION.  Letx € G andE C D. We say thatr avoidsE if, for every in-
terpolating sequencg such thate € S and any number G< po < 1, there is a
subsequencs; C S such thatc € S; andp(S1, E) > po.

LEmMA 2.1. Letx € Gandy € M(H*) \ P(x). If U C M(H®) is an open
neighborhood o such thaty N P(x) = @, thenx avoidsU N D.

Proof. Becausey ¢ P(x), there exists an open neighborhobdof y such that
UNP(x)=0.LetS c Dbe ainterpolating sequence witte S. For an arbitrary
number O< pp < 1, consider the following subsequenceSf

So={wreS:plw,U) <po}. (2.1)

We shall prove that ¢ So. Clearly, this is the case K is either finite or the empty
set. Letz; € U N D such thato(wy, zx) < po. Thus,{zx} C U is disjoint from
P(x). Pute = (1 — po)/4. Combining the definition o (x) with the compact-

ness ofiz;}, we obtain finitely many functiong,, . . ., f, € H* such thai| f;|| <
1, fi(x)=0forl<j <n,and
max Ifi®)]>1—¢ forall &e{z]). (2.2)
=Jj=n

Suppose that € So. Since fj(x) = O for all j, we also have

x €{wr € So: | filw)] <eVj}={wx}.
By the SP inequality, for & j < n and eveng,

p(fi(zk,)s filor,)) < p(zk,, wk,) < Po.

An easy estimate shows thatzfw € D and|w| < € then|z| < ¢ + p(z, w).
Consequently,
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| fi(zi,)l <€+ po for 1< j<n andallz,.

On the other hand, (2.2) implies that for everthere exists ¥k j; < n such that
| fi,(zx,)| > L —¢e. Thus, 1— ¢ < £ + po, contradicting our choice af. Hence x
must belong to the closure of

Si={wreS:plw,U)=po},
and the lemma follows. OJ

The next two lemmas are easy consequences of Lemmas 1.4 and 1.5in [4, Ch. X],
respectively.

LEMMA 2.2. LetO < a < 1. Then there exist = o(a) > 0ands§ = §(a, 0) €
(0, 1) such that ifs is any interpolating Blaschke product witith) > §, then
|b(z)| > o for everyz in

K,(b) ={zeD: h(z,zx) > o forall zeroesz; of b}.

LEmma 2.3. Let S be an interpolating sequence aid< § < 1. Suppose that
x € S. Then there exists a subsequege- S such thatx € S; and §(S71) > 4.

Now we are ready to prove the main theorem of this section. The idea of the proof
comes from Gorkin's paper [5, Thm. 2.2]. L&t= {z,}.,>1 be a sequence ib.
By atail of S we mean a sequence of the fofm},>, for somek > 1.

THEOREM 2.4. LetS c D be an interpolating sequence and ket S \ S. Sup-
pose thatl ¢ Disasubsetandldd < 8 < 1.

() If x avoidsT then there is a Blaschke produgt such thath, = 0 on P(x)
and|b,(z)| > BforallzeT.
(1) If, in addition to(l), T is also an interpolating sequencee 7, andy avoids
S, then there is a Blaschke produgt such thatb, = 0on P(y), |b,(z)| >
g forall ze S, and

max{|b, (z)|, |by ()|} > B forall zeD.

Proof. (I) Fix « > B and taker; = o(«¥/?) as in Lemma 2.2. Since avoidsT
there is a subsequend&e C S such thati(R1, T) > 401 andx € R1. By Lemma
2.3 there is a subsequengecC R; such thatc € §; ands(S1) > §(aY?, o1). We
also can assume, by taking a tail$yfif necessary, that

1
l-|w) <= 1-—|wl).
gsjf jwl) < Za;( )
By Lemma 2.2, the interpolating Blaschke prodigtassociated t&; satisfies
bi(x) = 0 and|bi(z)| > a¥?forallze Ay = {zeD: h(z, S1) > o1}.

We can repeat this process wiih replaced by, = o(a'/*), S replaced by
S1, and so forth. At theVth step we haveV interpolating sequences O S; D
.-+ D Sy and the corresponding Blaschke produgts. . ., by, so that for any
1<n<N:



Maximal Gleason Parts fof * 59

(i) bu(x) =0 (i.e.,x €8S,);
(i) h(S,, T) > 4o,, whereo, = o(a¥/?");
(iii) 1ba(2)| > a2 foreveryze A, = {zeD: h(z, S,) > o, }; and
(V) Y s (L —lo) < (1/29)Y 51— |o]).
The product = [, b, converges because, by (iv),

ZZ(l |w|)<Z Z(l o) = (1 - |o]) < oo.

n=1weSs, = weS weS

Condition (i) implies thab has a zero of infinite multiplicity at, sob = 0 on
P (x). By (iii), foreveryz € A =, A, we have

b(z)| > Y22 = > B, (2.3)

Finally, (ii) implies thatT c A and then|b(z)| > B forz € T. Thus,b, = b
satisfies the conclusion of the theorem.

(11 We keep thenotation of (1). Furthermore, we repeat the previous construc-
tion with the pairs(y, T) and(x, S) interchanged, thereby obtaining a decreas-
ing sequence of interpolating sequendes> T; O --- and the corresponding
Blaschke produch,. PutB, = {z €D : h(z, Tx) > o }. By (I) we have

(i") by=00nP(y);
>ii")y h(S, Ty) = 4oy forall k > 1,
(ii") |by(z)| = p foreveryz e B =(,., Bx; and
(iv') S c B.
In particular, (i) and (iv) imply that|b, (x)| > B. By (2.3) and (iil),
max{|b, ()|, |by(2)|} = B forall ze AU B.

Thereforg(11) will follow if we show thatD = A U B. The complement oA U B

is
D\ (AUB) = [U(D\A»]m[U(D\B@]

n>1 k>1

- U [(D\ A,)N(D\ Byl

n, k>1

Letze (D\ A,)N(D\ By) forsomen, k > 1. Thenh(z, S,) < o, andh(z, Ty) <
or. Consequently, there exist, € S, andw, € T; such thati(z, ;) < o, and
h(z, w;) < o,. Hence,

h(Sna Tk) =< h(wm a)t) =< h(a)m Z) + h(Z, wt) < 0Oy + Ok
On the other hand, (ii) and ()iimply that
h(Sy, T) = maxth(S,, T), h(S, T)} = 4maxXo,, oy}

The last two inequalities imply that 4 mgs,, o} < o, + o, which is obviously
false. ThusD \ (A U B) = ¥ and we are done. O

We are able now to give a converse of Lemma 2.1.



60 DANIEL SUAREZ

CoroLLARY 2.5. Letx € G andy € M(H®). Then the following conditions are
equivalent.

(1) y ¢ Px).
(2) There is an open neighborhodd of y such thatr avoidsU N D.

Additionally, ify € G then there are two more equivalent conditions.

(3) For every interpolating sequende such thaty € T, there is a subsequence
T, C T such thaty € T; andx avoidsT;. _
(4) There is an interpolating sequeng such thaty € 7; andx avoidsT;.

Proof. (1) implies (2) is Lemma 2.1. Now assume that (2) holds, and/I&te

an open neighborhood gf such thatr avoidsU N D. By Theorem 24(1), there

is a Blaschke produdt such thath = 0 on P(x) and inf,cynp|b(z)| > 0. Thus,
every pointt € U N'D (in particulary) is not in P(x). Hence (2) implies (1). If

(2) holds andy e T with T an interpolating sequence, then it is clear that=

T N U satisfies (3). Obviously (3) implies (4). Now suppose that (4) holds. As
before, Theorem 2.4 says that there is a Blaschke product sepaPatiidrom

T1, so (1) holds. O

ForasetV ¢ D, write B,(V,0) ={zeD:h(z,V) <o}

CoroLLARY 2.6. Lety e M(H*)\Dandx € G. Theny € P(x) if and only if,
for every setV ¢ ID such thaty € V, there existsr = o(V) > 0 such thatx €
B, (V, ).

Proof. LetS ¢ I be an interpolating sequence such thatS. Suppose that there
is a setV ¢ D such thaty € V andx ¢ B, (V, o) foranyo > 0. Thenx € Sp =
{z, €8 :h(z,, V) = 0}, meaning thak avoidsV. By Theorem 24(l) there is a
Blaschke product separatimyx) from V.

Suppose now that ¢ P(x). By Corollary 2.5 there is an open neighborhood
U of y such thatc avoidsV = U N D. We will see that for any > 0, x also
avoidsB,(V, o). Let S ¢ D be an interpolating sequence, so that S. Sincex
avoidsV, for everyM > 1 there is a subsequenSg C S such thatx € So and
h(So, V) > Mo. Forz, € Sg andw € B, (V, o) we have

h(zn, @) = |h(zp, V) = h(V, )| = h(zn, V) = h(w, V) = (M — Do.

That is,h(So, By (V,0)) > (M — 1)o. Then, by Theorem 2.4, there is a Blaschke
productb such thab(x) = 0 and inf |b(w)| : w € By (V, o)} > 0. Thereforex ¢
B,(V,0). O

COROLLARY 2.7. Let P; and P, be nontrivial Gleason parts so thdt N P, #
#. Then one of them is contained into the closure of the other.

Proof. Suppose that the conclusion of the corollary does not hold. Then there are
x € P{\ P,andy € P,\ P1. By Corollary 2.5 there are two interpolating sequences

S andT such thatr € S, y € T, x avoidsT, andy avoidsS. Hence, Theorem 2.4
asserts that there are two Blaschke prodéctandb, such thai, = 0 on Py,
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b,=0 onP,, andinf.cp|by(2)|+ |by(z)|] > 0. So, by the corona theorem, the pair
(b, by) never takes the valu@, 0) on M (H>). ConsequentlyP; N P, = @. O

Corollary 2.7 allows us to define an equivalence relationVoiH ) \ D that is
weaker than Gleason’s relation. Fary € M(H*) \ D we say that is equiva-
lentto x if there is a Gleason paft such thatx, y € P. The equivalence class of
xeM(H®)\Dis

K(x)=|J{P : P isaGleason partande P }.

As is the case for Gleason parts, the cl&$s) can be very big or a single point.
Let us illustrate this situation with two extreme casesx # S(H°), the Shilov
boundary ofH> (see [4, p. 188]), then it is known thatdoes not belong to the
closure of any nontrivial Gleason pdtt The reason is that there exists a Blaschke
productb such thab = 0 on P while || = 1 onS(H*°), where the last condition
holds for every inner function (see [4, p. 194]). Henk&x) = {x} for everyx €
S(H®™). In the other extreme we have the closure of a thin part. An interpolating
sequence = {z;} is calledthin if

[T

n:n#k

Zk — Zn
1- ZnZk

— 1 whenk — oc.

If x e M(H*)\ D is in the closure of some thin sequence then so is every pointin
P(x). This makes it consistent to say thafx) is a thin part. Thin sequences and
thin parts have many special features. In particular, | learned from P. Gorkin that
in Budde’s dissertation [2] it is proved that no thin part is contained in the closure
of another Gleason part. A part with this characteristic is catedimal.If P is
a Gleason part, we say thAtis maximal if for every parQ such thatP ¢ Q we
haveP = Q. So, if P is a maximal part the® is a maximal closure of part. The
converse would hold if two different parts have different closures, which seems
to be unknown. My guess is that this is not true. It is clear thatdf M (H*)
then P (x) is maximal if and only ifK (x) = P(x). In particular, if P(x) is a thin
part thenk (x) = P(x) is homeomorphic ta/ (H*>) and thus, very big (see [7,
p. 107]).

Our next section is essentially devoted to study a particular class of maximal
parts that properly contains the class of thin parts.

3. Weakly Thin Sequences

DEeFINITION. An interpolating sequende;} C D satisfying
nli—>moop(zn’ {Zk}kyﬁn) =1 (31)

will be called aweakly thin(w-thin) sequence. We say that a Gleason Fars
w-thin if it contains a pointc in the closure of some w-thin sequence. As was
the case for thin parts, this definition does not depend on the particular choice of
x € P.
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Lemma 3.1. LetS be a w-thin sequence. §fis a finite union of thin sequences
thens is a thin sequence.

Proof. By induction it is enough to assume thfit= S1 U S», where eacts; is

a thin sequence and they are disjoint. kebe the Blaschke product with zero
sequence; (j = 1, 2). For an arbitrary O< « < 1 consider the constants =
o(x) ands = é(x, o) of Lemma 2.2. Since is w-thin there is a taill; of S;
such that the hyperbolic distance betwd&grand S is bigger tharv. Leta; be a
Blaschke product with zero sequerie SincesS; is a thin sequence we can also
assume that(a;) > 8. Thus, Lemma 2.2 implies that;(z,)| > « forall z, in S5.
Write b1 = aic1, Wwherec; is a finite Blaschke product with zero§g\ 7;. Then,
forz, €S>,

b1(za)| = las(zn)llca(zn)| > efcr(zn)| — @ Whenn — oo.
Because O< o < 1 is arbitrary,|b1(z,,)| tends to 1 whem — oo. Analogously,
|b2(zx)| = 1 whenn — oo for z,, € S1. ThenS is a thin sequence. O
We now turn toH > of the complex half plan€, = {z € C:Imz > 0}. In this
case,

, z,weC,.

p(z, @) = ‘ﬂ

—w

Let Q be a closed square 6f, (closed in the topology of ;) with base on the
real lineR. We write/ (Q) for the side length 0. A (positive) measurg onC
is called aCarleson measur# there exists a constarit > 0 such thaju(Q) <

Cl(Q) for every square as before.
Suppose thafz,,} C C, is aboundedsequence and consider the measure

n = Zynazn’
n

wheres, denotes the probability measure with mass concentrated at thezpoint
and wherey, is the imaginary part of,,. The pointsz,, will be called thelocal-
izationsof w. Itis well known [4, Ch. VII] that{z, } is a Blaschke sequence if and
only if u(C,) < oo, and that it is an interpolating sequence if and only i a
Carleson measure andz,, zx) > « > O foralln # k (i.e.,{z,} is separated).

THEOREM 3.2. There exist

(a) a non-Blaschke sequence satisfy{Bdl);

(b) a separated Blaschke sequence satisfyid) that is not interpolatingand
(c) aw-thin sequence that is not a finite union of thin sequences.

Proof of (a). We construct a family of closed intervals as follows; = [0, 1]
and for each integer > 2, we divide I ; into n! intervals of length %n!,
L1, ..., I, n. Denote byQ, ;the closed square i@, with baser, ;. The fam-
iy F={0Q,;:n>11<j<n!}isadecompositionof1; = [0, 1] x (0, 1].
For a square of the form®,, ,x+1, With 0 <k < (n — 1)! — 1, let z,, .x+1 denote
the midpoint of the upper side. We will say th@t, .1 is amarkedsquare (see
Figure 1). A straightforward calculation shows that the sequénee{ z,, x+1 :
n>10<k =< @m-1! -1} satisfies (3.1).
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1/2!

1/3!

VA T T T T T T T I T T T T T T T T

Figure 1

Let y,. .k+1 be the imaginary part of, x+1. Then

(n—1!-1 (n—-1!-1 1 1
MNP IEEES MO DI ES JEELS
n>1 k=0 n>1 k=0 ) n>1
Hence,S is not a Blaschke sequence. O

We will construct the examples for (b) and (c) as suitable subsequense#\of
auxiliary result is needed. For two integerslp < ¢, letv, , be the measure

(n—1)1-1

Up, q = E E yn,nk+181n_nk+1'

n=p k=0
LemmA 3.3. Let R be an arbitrary square of the decompositiGhwith [ (R) =
1/nl.
(i) fn > g theny, ,(R) =0.

(i) If p<n <gqthen
1 1 7.1
Vﬁ,q(R)=a + Z ;
j=n+1

whenR is a marked square, and

1 K1
Vp,q(R)=_ Z -

|
n j=n+1 J

whenR is not a marked square. The sum?_,,,1/j reduces to zero if
n+1l>gq.
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(ii) Ifn < pthen
q

1
vpg(R) =3 =
J

i—p 7]

=

Proof. If n > ¢ thenR lies below the localizations of, ,, so (i) follows.

If p <n < g andR is a marked square, then the middle point of its upper side
is a localization of the measurg ,. The contribution of this point te, ,(R) is
1/n! = I(R). Further,R contains: + 1 squares of* of length I/ (n + 1)!, where
only one of them is marked. Each one of these squares comtairs squares of
F of length ¥/ (n + 2)!, where only one is marked, and so forth. Moreover, the
points that contribute to, ,(R) are only those corresponding to square&iof
length at least Ag!. Therefore

R 1 1 n+1
B = el T 2
n+DHn+2) n+D...(¢g-1
(n+3)! q!

—11+ ! + ! + +1
ol n+l n+4+2 q)]

as claimed. WherR is not a marked square, the summaurid!idoes not appear
in the preceding expression.
Finally, if » < p then (ii) of the lemma says that

Vp,q(R) = Vn,q(R) - Vn,p—l(R)
1 1 1 1
=a<n+1+n—+z+“'+g>
1 1 1 1
‘a<n—+1+n—+z+"'+p—_1>

1(1 1 1)
- -+——+--+—,
n\p p+1 q

whetherR is marked or not (wheiR is marked we must add/%! to both quanti-
tiesv, ,(R) andv, ,_1(R), not affecting the difference). O

The Constructions fofb) and (c). Let{a;} C R be an arbitrary sequence, where
a; > 1 for all j. We define inductively two sequences of positive numbers as
follows,

1
+ot = >art.
q

Wl =

. 1
p1=1 and ¢g; =min q:§+
Supposing that the first numbeps, . . ., pj_1, g1, . . ., gj—1 are given, we choose

1
+
pi+1 pi+2

. 1
pi=qj-1+1 and qumln{q: +-~-+5>a]~}.
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Hence,
1:p1<q1<~-~<qj,1+1:pj<6]j<6]j+1:'--. (32)

Notice that sincép; +1)~* < 1/2forall j > 1, by the choice of;; we also have

1 1
+ +-+—>a Vj. (3.3)

ai +1>
! pi+1 pi+2 q;

Forj > 1 let R; be the first (at the left) square jA such thai(R;) = 1/p;!. We
consider the measur@s = xg; vy, 4; for j > Landu =3, ; ;, whereyg de-
notes the characteristic function of the ®etBecauser; is a marked square, by
Lemma 3.3 and (3.2) we have

1(Ry) = pj(R)) + tjra(R)) + - -
= Vpj.gj (Rj) + va+1,t1j+1(Rj+1) + -
1 1 1 1
=2 Vna(Ri) = —[1+ + +---+—}.
Zpqu ‘ ZPk! e+l pe+2 9k

k>j k>j

Thus, by (3.3),
1 1
Z—'(1+ak) < w(R)) < Z—I(Z—}-ak). (3.4)
k>j Pk: k>j Pk:

Moreover, sincepy11 = qx + 1 > pi + 1, it follows that p;q! > (pr + D! =
(pr + Dpi! = 2p,!. So, fork > j,

pj! pi' pi+i prd! 1

—_ = e < -,

pet pi+dd pjg2! p! T 2k

Obviously, this also holds for = j. Hence, by (3.4),

1 1 1
— (1 +gq R)) < — —(2 . 3.5
i) < k) < pjlgzk,j( +ay) (3.5)
The examples for (b) and (c) will be constructed by choosing different sequences
{a;}, and taking the localizations of the respective measures

Proof of (b). Takea; = j for everyj > 1, and letu be the associated measure.
Then, by (3.5),
1
W(C) = (R <Y 552 +K) < oo,

k>1

Therefore, the localizations of form a Blaschke sequence. By (3.5),

R.
( j) =p]|M(Rj) > 1+J — 0 Whenj—> Q.
[(R))
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Henceu is not a Carleson measure, and consequently its localizations do not form
an interpolating sequence. O

Proof of (c). Now takes; = 1forall j > 1. We claim that the associated measure
wis Carleson. LeQ c C, be an arbitrary square with baseRnWe can assume
without loss of generality tha® c [0, 1] x (0, 1] and that (Q) < 1/q4!. Let j

be the integer that satisfiegql,_1! > [(Q) > 1/q;!. Thenu(Q) = u2(Q) =

--- = pj—1(Q) = 0, because the localizations of all these measures lie afove
Thereforen(Q) = p;(Q) + Zkzj+1 ur(Q) where, by (3.5) and (3.2),

D m(@) < Y m(Cy) = u(Rysa)

k>j+1 k>j+1
1 3 6 6

pi+it St 2 Copisd (g5 + D)

<

< o < 6l(0).
q;!
Hence
w(Q) < w;(Q) + 61(Q). (3.6)
Letn be smallest integer such tha) > 1/n!. Thus,
gj-1<n=<gqj. (3.7)

Clearly, no localization ob,, ,, corresponding to a square of length bigger than
1/n! can lie in Q. Suppose thap meetss squares ofF of length ¥/n!, say
01,..., Q5. Then, eithes < 2 orl(Q) > (s — 2)/n!. By Lemma 3.3(ii), (3.7),
(3.2), and (3.3),

1 (Q) = vp; q;(Q) = v q;(Q1) 4+ -+ vp; 4, (Qs)

ol 2=l 2 ]

k=n+1 k=qj_1+2
qj
s 1 s 3s
= |1+ E | <= =1+2=—.
n! o k n! n!
=pj+1

Now, if s < 2 thenu;(Q) < 6/n! < 6I(Q), and ifs > 3 then

3(s —2)
n!

6
ni(Q) = +o < 3I(Q) + 61(Q) = 9(Q).

These estimates together with (3.6) show théP) < 15/(Q) for every squarg
such thaf(Q) < 1/¢4!. This proves our claim.

Finally, we will see that the sequen¢g,} of localizations ofu is not a thin
sequence, which together with Lemma 3.1 proves (c). By (3.5),

2
21(Rj) = — < w(R;) forall j. (3.8)
pj:
Letz,, be the middle point in the upper side Bf. By construction this point be-
longs to the sequende,} of localizations ofu. Let b be the Blaschke product
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with zeroes{z,}, and letb"/) be the same product with the point deleted. As
before,y, denotes the imaginary part gf. Then, by [4, p. 288] and (3.8),

i _ Ynj Yn Ynj Yn
09I (@)1 P 24 3 T 24

n:in#nj |Z”/ ~Zn n#n; |an ~Zn
ZnERj
Yn; Yn yn 4
>4 =2 = R;) — I(R;
; 57 ; o SZ(R)[M ) —L(R))]
n#n; n#n;

Zn€ R Zn€ Rj

4
21(R; I(R)] = =
51(R )[ (R)) — I(R))] 5
for all j. Thatis,|b"/(z,,)| < exp(—2/5) for everyj > 1, and then(z,,} is not a
thin sequence. O

ProposiTiON 3.4. LetT be an interpolating sequence and Jet T\T.IfPis
a Gleason part sothate P\ P, theny is in the closure off" N P. In particular,
T N P is an infinite set.

Proof. First we show tha’ N P # . Letx € G so thatP = P(x), and let

b be an interpolating Blaschke product whose zero sequeriEeG@onsider the
mapL,: D — P(x) mentioned in Section 1. By [6, Lemma 1.8]p L,(z) =
B(2)g(z), whereB is an interpolating Blaschke product (including constants of
modulus 1) ang is an invertible function inH>. Thus, if T N P = @ thenB is
constant. Therefore

inf{16(§)|:£eP}=inf{|g(z)]:zeD} >0,

and hencéb| > 0 on P. This is not possible becauses P andb(y) = 0.

Now suppose that € P \ P is not in the closureE of 7 N P. Then there is an
open neighborhoo#, of y such thaﬂ7y N E = . Therefore, the sequendg =
T NV, contains the poing in its closure bul; N P = @, contradicting the fact
just proved. O

My original proof of Proposition 3.4 was more complicated than the one given
here. | learned independently and almost at the same time of two different easier
proofs from P. Gorkin and R. Mortini. The proof given here is a combination of
their arguments.

CoroLLARY 3.5. Let S be an interpolating sequence. Then the following state-
ments are equivalent.

(1) Sisaw-thin sequence.
(2) Forevery Gleason parP, P N S has at most one point.
(3) For every Gleason parP, P N S has at most one point.

Proof. Suppose that is w-thin and letx, y € S\'S, x # y. Then there are dis-
joint subsequences;, S, C S such thatc € S, andy € S,. Sinces is w-thin, for
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any O< pg < 1there is a tail o5, whose pseudohyperbolic distancesias big-
ger thanpo. That is,x avoidssS, and, by Corollary 2.5y ¢ P(x). Trivially, (2)
implies (3). IfS is not w-thin, then limp(z,,, S\ {z.}) = po < 1. Hence there are
two disjoint subsequences = {w,} andS, = {&,} of S such thato(w,, &,) <
pé/z for all n. If (wy) is a subnet ofw, } that converges to a pointe M (H),
then there is a corresponding subrg}) of {£,} and we can assume that —
y € M(H*®). Thusx # y becauser € S; andy € S,. Sincep is lower semicon-
tinuous (see [7, Thm. 6.2]p(x, y) < lim, p(wy, &) < pé/z. Thus (3) does not
hold. O

CoroLLARY 3.6. No w-thin part is in the closure of another Gleason part.

Proof. Let x € M(H®*) be such thatP(x) is a w-thin part, and lef c D be a
w-thin sequence such thate S. If P(x) is contained properly in the closure of
another Gleason pa@, thenx € 0 \ Q. So, by Proposition 3.45 N Q is an infi-
nite set, contradicting Corollary 3.5. O

LetS, T c D be two sequences. Suppose that thererate0 and an integeN
such thatS N By, (z,, o) has no more thav points for every,,, € T, and such that

SC U By (z,, 0).

zneT

Then a routine argument (see [4, p. 310]) shows that wherféi®a finite union
of interpolating, thin, or w-thin sequences, then s8§,isespectively.

ProposiTION 3.7. Let S be an interpolating sequence aikl c S\ S a com-
pact set. If every point oK lies in a thin (w-thin) part, then there is an open
neighborhoodV of K such thatS N V is a finite union of thinw-thin) sequences,
respectively.

Proof. By compactness we can assume tKat= {x}. Let T be a thin (w-thin)
sequence such thate T, and letb be the corresponding Blaschke product. For
O<a <1, letc =0o(x) asinLemma 2.2. By Lemmas 2.2 and 2.3 we can also
assume that(7T) is so close to 1 so that the balk (z,,, o), z, € T, are pairwise
disjoint, and|b(z)| > a forall z ¢ B = Uz,,eT By (z,, 0). SincesS is interpolat-
ing, there exists some positive numkiérsuch thatS contains no more thaiw
points in each of the ballB,(z,, o). By the comment preceding the proposition,
S N B is a finite union of thin (w-thin) sequences, respectively. Thus; {y €
M(H®™) : |b(y)| < a}is an open neighborhood efandS NV c § N B satisfies
the proposition. O

CoroLLARY 3.8. LetS C D be an interpolating sequence. #f(x) is a thin (w-
thin) part for everyx € S\ S, thenS is a finite union of thinw-thin) sequences,
respectively.
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Proof. The same argument works for thin and w-thin parts, so let us assume that
every pointinS \ S lies in a thin part. By Proposition 3.7, there is an open neigh-
borhoodV of S\ S such thatS; = V N S is a finite union of thin sequences. The
corollary follows because the sgt\ S; has only finitely many points. O

CoroLLARY 3.9. There are w-thin partgand hence maximal paptshat are not
thin parts.

Proof. Every w-thin part is maximal by Corollary 3.6. The other assertion is an
immediate consequence of Theorem 3.2(c) and Corollary 3.8. O

4. Yet Another Kind of Maximal Parts

Although the next proposition is well known, | was unable to find it expressly
stated in the literature, so we give here a proof. The particulargase0 already
appeared in [7, Thm. 6.1].

ProprosITION 4.1. Letx,y € G. Thenp(x,y) < po € _[0, 1) if arld only if, for
every pair of interpolating sequencgsT such thatc € S andy € T, we have

lim o, T) < po. (4.1)

Notice that conditior{4.1)is symmetric inS and 7.

Proof. If (4.1) does not hold there are interpolating sequertcasdT such that
xeS, yeT, ansznes 0(z,, T) > po. S0, by taking tails off and7 we can
assume thap(z,, w;) > p1 > poforall z, € S andw, € T. Leta € (0, 1) such
thatap; > po, and takes («) andsy = 8(«, o) as in Lemma 2.2. By Lemma 2.3
there is a subsequende = {z;} C S such thatx € S1 ands(Sy) > & is close
enough to 1 so that the hyperbolic balig(z;, o) are pairwise disjoint. Hence, if
wy € T then there is at most one poif)t € S1 such thatv, € By (z;,, o). Letb be
the Blaschke product with zero sequeisgeSuppose first that there exists a point
z;, as before and writg;, for the Blaschke produétwith the zeraz;, deleted. By
Lemma 2.2, we have

[b(wi)| = |bj (0| p(zj,, k) > apa.
If there is no point;, then|b(wy)| > o > ap1. Sincew, € T is arbitrary, it fol-
lows that inf,c7 [b(w)| > apr > po. Thush(x) = 0 and|b(y)| > po, implying
thatp(x, y) > po.

Now suppose that(x, y) = p1 > po and take O< ¢ < p;. Then there isf €
H*, | fll <1, suchthatf(x) = 0and|f(y)| > p1 — &/4. Thus, if S andT are
interpolating sequences whose closures contain the poiaitgl y, respectively,
thenx is in the closure ob(e) = {z, €S : | f(z,)| < ¢/2}andy is in the closure
of T(e) ={wr €T : |f(wr)| > p1 — ¢/2}. The SP inequality then gives

| f(w)| —1f(zn)]
,O(Zm a)k) = p(f(zn)s f(wk)) = 1— |f(a)k)||f(zn)| =

for all z, € S(¢) andw; € T(¢) (see [4, p. 4] for the second inequality). Hence,
(4.1) does not hold fof (¢) andT (¢) if ¢ is small enough. O

pL— €&
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It seems natural to conjecture that every maximal part is a w-thin part. Our next
example inH* of C,. shows the existence of maximal parts that are not w-thin.
Forn > 1 let

n 2nk
Ty = U,>y S»» andS = Ty. The following list of properties can be verified by
direct (though tedious) computation.
(1) Sis separated.

(@) =73, 1 ni9,, is aCarleson measure.
(3) Given 0< « < 1, there exists aW = N(«) such that

1 .
S}lz{zn,k:_+ : kZZ}’

Iean p(z, Ty \ {z}) > «a.

(4) Given0< B8 < 1, foreveryN > 2 there is &g = ko(8, N) > 2 such that
0(@Znk, Ty) > Bforaln < N —1andk > ko.
B) pGu ks Znirr) = 2" =1)/(2" + 1) forall k = 2 and alln > 1.
By (1) and (2),S is an interpolating sequence. Pty = Ty and K =
(Mx-1 Kn. The property of finite intersection then implies ti#atis a nonempty
compact set il (H>*(C,)) \ C,.

Claim 1: If y € K thenP(y) is maximal. Otherwise there is some paptsuch
thaty € Q \ Q. By Proposition 3.4, the sé&tn Q has infinitely many points and
there arery, x, € SN Q such thap (x1, x») =« forsomeO< o < L.If L C Sis
an arbitrary subsequence whose closure contaiasdx,, then Proposition 4.1
implies that lim _, p(z, L \ {z}) < a. Thus, takingh = N(«) as in (3), we have
that at least one of the points or x,, sayxi, is notinTy.

On the other hand, by (4) every point{§ \ Ty) \ (S \ Ty) avoidsTy (it is
enough to take tails of \ Ty). Sincey € Ty andx; € S\ Ty, Corollary 2.5 says
thaty ¢ P(x1) = Q.

Claim 2: There exists a pointe K that is not in a w-thin part.If every point
of K belongs to a w-thin part, by Proposition 3.7 there exists some open neigh-
borhoodV of K such thatV N S is a finite union of w-thin sequences. Because
K = (y-1 Kn, Where{Ky} is a decreasing sequence of compact sets, there is
someN, such thatky, C V. Therefore,Ty, C V N S must be a finite union of
w-thin sequences. Bufy, C Ty, is not a finite union of w-thin sequences, by
property (5). O

5. Open Problems

ProBLEM 1. We already saw tha (x) = {x} for everyx in the Shilov bound-
ary S(H*). Is K(x) # {x} foreveryx e M(H*) \ (DU S(H*))? This question
is equivalent to a problem posed by Tolokonnikov [9, p. 139].

ProBLEM 2. Is there a reasonable characterization of maximal Gleason parts?
What about maximal closures of parts?
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ProBLEM 3. If x € G, is K(x) the closure of a Gleason part? An affirmative
answer means that everye G is in some maximal closure of Gleason part.

In [1], Alling conjectured that every nontrivial, nonmaximal closed prime ideal
of H* is formed by the functions that vanish identically on a given nontrivial
Gleason part (see [8] for an English exposition and further information). This con-
jecture is related to our problem in the following way. Supposedhigtan inter-
polating Blaschke product with zero seque§céVe can take tailsaf, S > S; D

S22 ---suchthab’,_;>". g (1—lz]) < oo. If b; denotes the Blaschke prod-
uct with zero sequencs;, thenbo = [],., b; converges ando = 0 on every
Gleason parP such thatS N P # @. If x € § \ S then Proposition 3.4 says that
SN P + ¢ for every partP such that € P. This means thai, = 0 on the whole
classK(x). Let I be the ideal of7* defined by

I={feH*: f=00nK(x)}.

Sincebg € 1, the ideal is not trivial. Clearly, itis closed and nonmaximal. In addi-
tion, I is prime. In fact, iffg € I and P is a Gleason part such that P, then f

or g vanishes identically o® (because functions iff * behave as analytic func-
tions onP). So, say thatf = 0 andg # 0 on P. Then, for every parf) such
thatP c Q, we haveg # 0 on Q and consequently = 0 on Q; thatis, f € I.
Suppose that Alling’s conjecture is true. Then the set

hulll ={yeM(H™): f(y)y=0forall fel}

has the formP for some Gleason pat. Sincex € K(x) C P, we haveP C
K(x). HenceP = K(x) and soP is a maximal closure of part. Thus, an affir-
mative answer to Alling’s conjecture implies an affirmative answer to Problem 3.
Although we have no valid argument to support the converse of this implication,
it is very likely that Problem 3 (or a variant of it) is one of the main obstacles in
proving Alling’s conjecture. In addition, we see that if the conjecture holds then
I is the intersection of all the closed prime nonmaximal and nontrivial idéals
such thatv € hull J. That is, is the minimum of such ideals.

Added in proof.After | finished writing this paper | received the prepriftvial
points in the maximal ideal space &f* by T. Ishii and K. lzuchi, where they
show that Problem 1 has a negative answer.
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