Pluricomplex Green Functions and
the Dirichlet Problem for the
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0. Preliminaries

Let us recall some important notions which will be used here. Let D be an open

subset in C”, and denote by PSH(D) the cone of plurisubharmonic functions

u: D — [—o0, +o0o[ on D not identically equal to —oo on any component of D.
Let u €e PSH(D).Forae D and 0 < r < d, := dist(a; C" \ D), we set

My(a,r) := [ u(a+ré&)do(§), (0.1)
|&]=1

where do (&) is the normalized area measure on the unit Euclidean sphere in C”.
It is well known that the function r — M, (a, r) is increasing and convex in log r.
Then the following limit exists:
M,(a, ,
(s a) = lim el 0.2)
r—0+t logr
By [Kil], (0.2) coincides with the following definition [L1]:

ou(B(a, r))

v(u; a) := lim , 0.3
( ) r—>0+ 0)2,,_21‘2"_2 )
where w;,_, is the volume of the unit ball in C*~! and o, := %Auﬂn =

i%ddcu A Ba_1; B is the standard Kilherian form of C” and 8,_1:= 8"~ !/(n—1)!.

The number defined by (0.3) is called the Lelong number of the current dd‘u at
the point a, or the density of u at the point a. It is well known that the Lelong num-
ber is independent of holomorphic changes of coordinates [S; D3]. Thus it is pos-
sible to define this number for plurisubharmonic functions on complex manifolds.
In fact, the definition (0.3) is meaningful in this case.

The function v(u; -): a — v(u; a) defined by (0.3) is upper semicontinuous on
D, with values in R;. If u(a) > —oo then v(u; a) = 0. If u = log| f|, where f
is a holomorphic function such that f(a) = 0 and not identically zero on a neigh-
borhood of a, then v(log| f|; a) is an integer equal to the multiplicity of the zero
of f at the point a.
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Although we will not need to use it in the sequel, it is interesting to recall the
following deep theorem of Siu [S; Kil].

THEOREM. Let u € PSH(D). Then, for any c > 0, the set
A(u,c) :={zeD; v(u;a) = c}

is an analytic subset of D. In particular, if u"'(—o0) € D then the sets A(u, c)
(¢ > 0) are finite subsets of D.

We only need to use this particular case, which will be proved independently in
Section 3 (see Lemma 3.2).

1. Hyperconvex Manifolds and Admissible
Plurisubharmonic Functions

Let us recall some definitions that will be needed later. The following definition
is due to Stehlé [St].

DEFINITION 1.1. A complex analytic manifold D is called a hyperconvex man-
ifold if there exists a plurisubharmonic function p: D — [—1, O[ such that, for
every € > 0, D, := {z € D; p(z) < —e} € D. Such a function will be called a
bounded exhaustion of D.

After Kerzman and Rosay [KeR], any bounded pseudoconvex domain of C”* with
smooth boundary is hyperconvex. More generally, Demailly [D2] has proved that
any bounded pseudoconvex domain of C” of Lipschitz boundary is hyperconvex.

DEFINITION 1.2. Let D a hyperconvex manifold of pure dimension . A plurisub-
harmonic function ¢: D — [—o00, +oo[ will be called an admissible plurisubhar-
monic function on D if it satisfies the following conditions:

(i) the function e? is continuous on D and the pluripolar set of ¢ defined by

S, :={z € D; ¢(z) = —o0} (1.1)
is compact;
(ii) the density set of ¢ defined by
Ay, :={aeD; v(p;a) > 0} (1.2)

is dense in S, and meets each component of D.

The need for condition (ii) in this definition will be explained after the proof of
Theorem 2.1. For now, let us show that it is always possible to construct such a
function on any pseudoconvex domain of C". More precisely, we have the follow-
ing result.

LEMMA 1.3. Let Q C C” be a pseudoconvex domain and let K be a closed com-
plete pluripolar subset of §2. Then, given any sequence (a;j)je;s (J C N) of points
of K and any sequence (vj)je; of positive numbers such that ) jes Vi < +o0o,
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there exists a continuous plurisubharmonic function ¢ on Q such that S, = K
and v(@; aj) = vj forany j € J.

Proof. Itis well known [Z1] that there exists a continuous plurisubharmonic func-
tion ¥: Q2 — [—o0, +oo[ such that S, = K. Let x:R — R be any increasing
convex function such that lim;_, _o, x(t) = —oo and lim,_, _,, x(z)/t = 0. We
may take, for example, the following function: x(¢) = —log(1 —¢) ift < C and
x(t) =t if t > 0. Then the function x o ¥ is plurisubharmonic and continuous on
2, Syop = K, and v() o ¥; z) =0 on 2.

On the other hand, consider the function

u(z) = Z vjloglz —a;|, ze€f.
jeJ

This function is clearly plurisubharmonic on €2 and continuous on €2 \ K. Let us
prove that v(u; a;) = v; forany j € J. Indeed, it is clear that v(u; a;) > v; for any
J € J.If n = 1 then the equality is an easy consequence of the formula v(u; g;) =
(1/2m)Au({a;}) = vj, where A is the Laplace operator in C. To prove the same
result in C”, observe first that if £ € C" \ {0} and j € J are fixed then the one
complex variable function A — u;(A) := u(a; + A¢), which is the restriction
of u to the corresponding domain of the complex line L; := {a; + A¢; A € C},
is subharmonic and satisfies v(u;; 0) = v;, where v(u;; 0) is the point mass of
the Laplacian of the subharmonic function u; at 0. Now our claim follows from a
result of Siu that asserts that v(u; a;) = v(u,; a;) for almost all { € C” (see
[S; H]).

Now, to get a function ¢ satisfying the conditions of the lemma, it is enough
to put ¢ := x(¥) + u. W

2. Pluricomplex Green Function
on Hyperconvex Manifolds

Introduced in [Z2] was a generalized pluricomplex Green function associated with
any admissible plurisubharmonic function on a hyperconvex domain in C”, to-
gether with some applications to the problem of interpolation-approximation of
holomorphic functions. Here we want to study in more detail the properties of
the pluricomplex Green function and its connection with the degenerate Dirichlet
problem for the complex Monge—Ampére operator.

From now on, D will be a hyperconvex manifold of pure dimension n, and
¢: D — [—00, +o00o[ will be an admissible plurisubharmonic function on D (cf.
Definition 1.2).

We can define a generalized pluricomplex Green function given by

Gp(z; ) == sup{u(z); ue Py(D,¢p)}, ze€D, (2.1

where Py(D, ¢) denotes the class of PSH functions # on D such that # < 0 on
D and v(u; -) > v(g; ) on D. The function defined by (2.1) will be called the
weighted pluricomplex Green function of D associated to the admissible plurisub-
harmonic function ¢.
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We now state the following result [Z2].

THEOREM 2.1. The weighted pluricomplex Green function G := Gp(-; @) satis-
fies the following properties:

G €PSH(D)N L}, (D \ K), 2.2)

where K := S,
G(z) >0 as z— 0D; (2.3)
v(G,a) =v(p,a) VYaeD, 2.4)

in particular, G(a) = —o0 if v(p,a) > 0; and
dd°G)" =0, (2.5)

in the sense of currents on D \ K.

Proof. First let us prove that Py(D, ¢) # 0. Indeed, let p: D — [—1,0[ be a
bounded exhaustion of D and let @ be an open set such that A, € w. Choose c|
and ¢ such that sup; p < ¢ < ¢2. Then, if w, := {z € D; p(z) < c} we have
w € w, € w:.Choose o > 0, and B € R such that ap + B < ¢ on dw,, and
ap + B = ¢ on dw,,. Then the function defined by

p)—p if ze€ o,
@(2) := { sup{ap(z), 9(z) — B} if z€w,, \ @, (2.6)
ap(z) if ze D\ w,,

is plurisubharmonic on D, ¢ < 0 on D, and v(@; -) = v(p;-) on D. Thus ¢ €
Po(D, @) and we have
¢ < Gp(-,¢) on D, 2.7)

This proves that Po(D, ¢) # @ and gives a subsolution. Let us write G :=
Gp(-; ¢). By a classical result of Lelong, its upper semicontinuous regularization
G* is PSH on D. From (2.7) and the fact that ¢ + 8 = ¢ on a neighborhood of
Sy, we see that v(G; ) < v(p;-) on D.

By a classical result of Choquet (see [L.1]), there exists a sequence {u;} j>; from
the class Py(D, @) such that

u:=supu; < Gp and u* = Gj}, on D\ K. (2.8)
j=1
Observe that the class Py(D, @) has the following lattice property:
u,v e Py(D, ¢) = sup{u, v} e Py(D, ¢).

From this property it follows that we can suppose the sequence {u;};>1 to be
increasing.

Fix a € D. For each j > 1, the function r — Muj (a, r) is a convex function of
log r; hence, for 0 < r < rg < d,, we have

Muj (a, r) - Muj (a3 rO)
logr —logry

> v(uj,a) = v(p, a). 2.9)
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Because #; 1 u* = G* on D \ X where X := {u < u*}, and since (by [L1]) the
intersection of X with each sphere of C” is of zero area, we deduce from (2.9)
that, for 0 < r < rg < d,, the following formula holds when j — +4o0:
Mg+(a,r) — Mg+«(a, ro)
logr —logro

> v(p, a).

From this inequality it follows that, when r — 0, we have
v(G*,-) > v(p,-) on D. (2.10)

From (2.8) and (2.10) we deduce that G* € Po(D, ¢), G* = G, and v(G; ‘) =
v(g; ) on D.

This immediately implies (2.4), whence (2.2) and (2.3) are a consequence of
(2.7). The property (2.5) can be proved in a classical way by showing that the
function G is maximal on D \ K (see [BT2] for this kind of argument). A more
general property will be proved later. 0

Let us explain why we need condition (ii) in Definition 1.2 of “admissibility”.

REMARK. Itis clear that (2.1) makes sense for any plurisubharmonic function ¢
on D such that K,, := S, is compact. Then Theorem 2.1 is valid in this situation
and so the pluricomplex Green function G := Gp(-; ¢) associated to ¢ by (2.1)
satisfies the equality Ag = A,. Hence G(z) = —oo forany z € A,.

On the other hand, let a continuous function ¢ plurisubharmonic on D be given
such that S, € D. Then, as we will prove in Lemma 3.2, the set A, is countable.
Therefore, applying Lemma 1.3, we obtain an admissible plurisubharmonic func-
tion ¢’ on D such that A,y = A,. Then Gp(-; ¢') = Gp(:; ¢) on D. Because (by
Theorem 2.1) the function Gp(; ¢) is locally bounded on D\ S, = D \ A,, the
pluripolar set of the Green function associated to ¢ is contained in 747), which may
be smaller than the pluripolar set S, of the given function ¢.

Since we are mainly interested in obtaining a pluricomplex Green function with
a prescribed compact complete pluripolar set K, it is natural to consider an ad-
missible plurisubharmonic function ¢ with A, = S, = K. We will make this
question more precise in what follows, after the proof of Theorem 2.6.

We now give a generalized version of the classical Schwarz lemma, which is an
easy consequence of the definition of the Green function.

PROPOSITION 2.2. Let u € PSH(D) such that v(u; -) > v(p;-)on D andu < M
on D. Then

u(z) <M+ Gp(z; 9) VzeD.

ExAaMpLE 2.3. Let D be a hyperconvex domain in C”, a € D, and ¢,(z) :=
log|z — a|. Then the function Gp(-; ¢,) coincides with the pluricomplex Green
function Gp(-; a) with a logarithmic pole at the point @, which has been studied
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by several authors [L1; L2; K1; D2]. For example, if || - || is a norm on C" and
B, :={z€C" |zl < r}, r > 0, then

Z
Gp,(z; 0) = log g, Z€ B,.
More generally, let A := {(a1, v1), ..., (@p, vp)} C D x R%_ and set

j=p
pa(z) == Zvj log|z —aj|, ze€D.
j=l1

Then the weighted pluricomplex Green function Gp (-, ¢4) =: Gp(-; A) associ-
ated to this admissible function is nothing more than the pluricomplex Green func-
tion with a finite number of weighted poles considered earlier in [L2; Po; Za]. For
more examples and interesting geometric applications of the pluricomplex Green
function, see [JP; K3].

By [D2; L2], the function Gp (-, A), is continuous and satisfies the following
complex Monge—Ampéere equation:

p
(dd°Gp (-, A))" = 2m)" ) " v'S,, (2.11)
j=1

in the sense of currents on D.
Let us now give a generalization of the preceding example.

ExXAMPLE 2.4. Let (a;)j> be an infinite sequence of distinct points in C" \ {0}
converging to 0. Then K := {a;; j > 1}U {0} is a compact set. Let D be a hyper-
convex domain of C” such that K C D. Consider a sequence (¢&;);>o of positive

numbers such that ;L__(_’?) gj < +00, and define the following function:

+o0
¢(z) == eologlz| + ) _e;loglz —a;l, zeD.
j=l1

It is clear that ¢ is continuous and plurisubharmonic on D. Moreover, as in the
proof of Lemma 1.3, one can show that v(¢; a;) = ¢; for j > 1 and that v(¢; 0) =
go. This means that A, = K = §,. Thus ¢ is an admissible plurisubharmonic
function on D and, by Theorem 2.1, the corresponding weighted pluricomplex
Green function G := Gp(-; @) satisfies the property S¢ = K. Moreover, by Re-
mark 2.7, G is a continuous function on D.

ExXAMPLE 2.5. Let D be a bounded domain in C, regular with respect to the clas-
sical Dirichlet problem, and let K be a polar compact subset of D. By a classical
result [T], there exist a sequence {a;} j>; of extremal points in K and a sequence
{€j}j>1 of positive real numbers such that the function defined by

+oo
V(z) = Zej log|z — aj,
j=1

J
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is subharmonic on C, harmonic on C \ K, and satisfies Sy := ¥ ~1(—00) = K
(Evans’s potential of K). Hence the Green function G := Gp(-; ¥) of D associ-
ated to the admissible subharmonic function Y coincides with

+00
G'(z) == Z ¢jGplz,a;), z€D,
j=1

and satisfies S¢ 1= {z € D; G(z) = —o0} = Sy = K.

Indeed, it is clear that AG’ = jﬁ‘{ €j8a; = Ay and that v(¥, a;) = ¢; forany
Jj > 1.Ttis easy to see that AG = ZaeA¢ v(¥, a)d,. Hence AG = AG’ = Ay in
the sense of measures on D. This means that G — G’ and G’ — ¢ are harmonic on
D. Hence S¢ = S; = Sy = K and since G and G’ tend to zero at the boundary
of D, it follows by the maximum principle that G = G’. Hence Sg = K, that is,
the polar set of the Green function coincides with the given polar compact set K.

The foregoing example shows that the situation is very simple in one complex vari-
able, since a weighted Green function with prescribed poles on a given polar com-
pact subset can always be constructed on a regular domain, thanks to the existence
of an Evans’ potential.

In the pluricomplex case, the situation is more complicated. Before discussing
this case, let us first prove the following result about the continuity of the Green
function. Denote by Py (D; ¢) the class of continuous PSH functions # such that
# < 0on D andv(u; -) > v(p; -) on D. Then we have the following fundamental
result.

THEOREM 2.6. Let D be a hyperconvex domain and ¢ an admissible plurisub-
harmonic function on D. Then

Gp(z; ¢) = sup{u(z); u € P§(D; ¢)} VzeD\S,. (2.12)

In particular, Gp(-; @) is continuous on D \ S,,.

Proof. Let G := Gp(-; ) and G’ := sup P§(D; ¢). Then we see that G’ < G on
D. To prove the converse inequality, consider the continuous exhausting plurisub-
harmonic function ¢ defined from ¢ by (2.6), and consider its open sublevel sets
Dy :={z€D; ¢(z) < —a} € D fora > 0. Let u € Py(D; ¢). By the fundamen-
tal approximation theorem of Demailly [D3], there exists a sequence (i, )men Of
continuous plurisubharmonic functions on D satisfying the following estimates:

u(z) — — <up(2) < sup u@)+ —log— VzeDY, (2.13)
m [E—z|<r m re

where D@ := {z € D; dist(z, D) > r}; and
(U5 2) — — < V(um; 2) < v(w;z) VzeD. (2.14)
m

Fix ¢ > 0 and & > 0 small enough. By upper semicontinuity, there exists r > 0
such that r < dist(Dy, dD). Choose mg > 0 so large that (1/m)log(c,/r) < ¢



586 AHMED ZERIAHI

and (1/m)c; < ¢ for m > myg. Then it follows from (2.13) that the following

estimate holds:
uz) —e <uy(z) <e VzeD,. (2.15)

Define the following two functions:

V(@) i=u,n(2) + %@(z) —¢&, z€D; (2.16)
0 (@) = { S~UP{vm(z), ¢(2) +a}, z€D,, 2.17)
@(2) + «a, z€D\ D,.

Since vy, is plurisubharmonic continuous on D and negative on D,, it follows
from (2.17) that w,, is plurisubharmonic on D.

Therefore, by (2.14) and (2.15), w,, — a € P5(D; ¢). Hence, by (2.15)—(2.17)
we have u + %(ﬁ — 2 —a < w, —a <G’ on D, form > my. This yields the
following estimates:

n _
u(z) + Ego(z) <G @) +2¢e+a VzeD,, Ym > my.

As m tends to infinity and ¢, € tend to zero, we obtain the required inequality and
the theorem is proved. ]

REMARK 2.7. The continuity of the Green function on D \ K (K := §,) has
been proved using a deep theorem of Demailly. It is interesting to observe that,
under the condition ) _ A, v(p; a) < +oo (which is always satisfied in one vari-
able; see also Example 2.4), we can give an elementary proof of continuity using
only the theorem of Demailly—Lelong [D2; 1.2] about the continuity of the Green
function for a finite number of weighted poles.

Indeed, let (4;);>1 be an increasing sequence of finite nonempty subsets of A,
such that A, = | ;5 A;. Foreach j €N, let

Yi(z) = Z vp;a)log|z —al|, ze€D.

acAp\A;

Then it follows from our hypothesis that v; is plurisubharmonic on D. Let us
prove that the sequence {G;} ;> converges uniformly on each compact subset of
D\ K. Indeed, let E be a compact subset of D \ K. Modifying v; in a neighbor-
hood of the boundary of D, as in (2.6), we get a plurisubharmonic function 1/71— for
which the following inequalities hold:

Gi(2) + ¥j(z) < G(z) < Gj(z) VzeD, Vj > 1. (2.18)
Put p := dist(E; K). Then p > 0 and, by (2.18), we conclude that

0<Gix)~G@) <—logp Y v(gia) VzeE, Vjz1.
acAy\Aj

From this estimate it follows that the sequence {G;};>1 converges uniformly on
each compact subset of D \ K. Because each function G; is continuous on D, we
deduce that G is continuous on D \ K.
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Theorem 2.6 and Examples 2.4 and 2.5 suggest the following question.

QUESTION 1. Let D be a hyperconvex manifold, K a complete pluripolar com-
pact subset of D, and ¢ an admissible plurisubharmonic function on D such that
S, = K. Under what extra condition on ¢ is the weighted pluricomplex Green
function G := Gp(-; @) continuous on D?

Observe that (by Theorem 2.6) it is enough to have S¢ = §, and (by Theo-
rem 2.1) this is always the case if the admissible function ¢ satisfies the condition
A, = §,; see Example 2.4.

When the weighted pluricomplex Green function is continuous on D, we will say
that G := Gp(-; @) is a pluricomplex Green potential for the pair (K, D). In one
complex variable, as Example 2.5 shows, such a function always exists and can be
constructed from an Evans potential (see [T]) for any polar compact set K C C.

In several complex variables, we do not know if an analog of the Evans potential
exists. More precisely, we want to ask the following question.

QUESTION 2. Let D be a Stein manifold and K a complete pluripolar compact
subset of D. Does there exists a continuous plurisubharmonic function ¥ on D
such that Sy, = K and (dd°¢¥)" = Q)" ) v(yr; a)"é, in the sense of mea-

sures in D?

acAy

When such a function exists, we will call it a pluricomplex Evans’s potential for
(K, D).

As in the one-dimensional case, we can always construct a pluricomplex Green
potential for (K, D) if it is known that a pluricomplex Evans potential exists. More
precisely, we can use Theorem 3.3 from the next section to show the following
result, which implies that the two problems are equivalent.

PROPOSITION 2.8. Let D be a hyperconvex manifold, and let K C D be a com-
plete pluripolar compact subset of D such that the pair (K, D) has an Evans
potential . Then the weighted pluricomplex Green function G := Gp(-; ¥) is
continuous on D and S¢ = K.

Proof. Consider for small n > 0 the openset D,, := {z € D; ¥(z) < n}. Then D,,
is hyperconvex and, by Theorem 3.3 (to be proved in the next section), we have
Gp,(z; ¥) = ¥ (z) — n for z € D. By Proposition 2.2, it follows that Gp(z; ¥) <
¥ (2) — n for z € D,,. This implies that Gp (z; ¥) = —oo for z € K and proves that
Gp(+; ¥) is continuous on each point of K. Therefore, the conclusion of the the-
orem follows from Theorem 2.6. U

Examples 2.4 and 2.5 and the following result will permit us to construct more
examples of pairs (K, D) having a pluricomplex Green potential.

PROPOSITION 2.9. Let {K;} be a sequence of complete pluripolar compact sub-
sets of a hyperconvex manifold D such that K := | J ; Kj is compact. If each
pair (Kj, D) has a pluricomplex Green potential, then the pair (K, D) has also a
pluricomplex Green potential.
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Proof. We already know from [Z1] that K is a complete pluripolar subset of D. For
each j € N, let G; be a pluricomplex Green potential of the pair (K;, G;). Choose
an increasing sequence {E;} of compacts in D suchthat D\ K = ; Ej and a de-
creasing sequence {s;} ; of real numbers decreasing to 0 such that ) iSi infg, G; >
—00. Put ¢(z) = ) iSi G;(z), z € D. Then ¢ is an admissible plurisubharmonic
functionon D and S, = K.

Now denote by G the pluricomplex Green function of D associated to the ad-
missible function ¢. Then, since ¢ < G < 5;G; on D, we have Sg = K, which
implies by Theorem 2.6 that G is a pluricomplex Green potential for the pair
(K, D). 0

3. Comparison Theorems for a Class
of Unbounded Functions

Comparison theorems involving various classes of unbounded PSH functions have
been obtained in connection with the extension of the definition of the complex
Monge—Ampere operator (see [B; C2; P]).

In this section we will prove a maximum principle for the following class of
unbounded plurisubharmonic functions:

P(D) :={uePSH(D); 3E € D, u € L*(D \ E)}, (3.0)

where D is an arbitary Stein manifold. It is well known that the complex Monge—
Ampere operator is well-defined for the class (3.0) and is continuous under de-
creasing sequences of plurisubharmonic functions (see [D1; Sil]).

Before stating the maximum principle for the class (3.0), we need some pre-
liminary results for this class. The following result is well known [BT2; C2] for
bounded plurisubharmonic functions.

LEMMA 3.1. Letu, v € P(D) such that liminf,_, 3p (u(z) — v(z)) > 0. Then the
following properties hold:

(1) ifu = v near the boundary of D then

/(ddcv)" =/(ddcu)"; 3.1)
D D

(2) ifu <von D then
f (ddv)* < f(ddcu)”. (3.2)
D D
Recall that the hypothesis lim inf,_, 5p (#(z) —v(z)) > 0 means that, forany ¢ > 0,
there exists £ € D such that u(z) — v(z) > —¢cforallze D\ E.

Proof. The first assertion follows immediately, exactly as in the case of locally
bounded plurisubharmonic functions, since the Monge—Ampere operator has the
same inductive definition [C3].

To prove the second assertion, assume that # < v on D and define the function
v, := sup{u + ¢, v} for ¢ > 0. Then v, is plurisubharmonic on D and satisfies
v, = u + ¢ in a neighborhood of the boundary of D; hence, by the first assertion,
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/ (dd°v,)" = f (dd°u)". (3.3)
D D

Because v, decreases to v as € — 0, from (3.3) and the convergence theorem of
Demailly we deduce that

f (ddv)" <lim inf/ (ddve)" = / (ddu)". (3.4
D -0 D D
Inequality (3.4) implies (3.2), and thus the lemma is proved. 1

The next lemma is also known [D1], but for completeness we give a direct proof
of it based on Lemma 3.1.

LEMMA 3.2. Letue IS(D). Then we have the estimate

Q)" Z v(u; a)" < f (dd‘u)". (3.5)

acAy

In particular, ) .4 v(u; a)" < 400 and the set A, is countable.

Proof. By modifying u on the complement of a compact subset of D containing
S, we can always assume that there exists a domain D’ € D such that u tends to
zero at the boundary of D’.

Let A C A, be a finite subset. Consider the function defined by

¢az) := Y v(u;a)loglz —al, zeD.
acA

For fixedt > 0, let D, := {z € D’; u(z) < —t}. Then D, € D. Thus, setting
G := Gp,(-; pa) and applying Proposition 2.2, we see that u + ¢t < G, on D;.
Therefore, by applying Lemma 3.1, we obtain the estimates

/(dch,)n < dd°G)" < ddu)". (3.6)
A D; D,

By (2.11), the left-hand side of (3.6) is equal to (27)" ) ., v(u; a)". Since A is
an arbitrary finite subset of A,, (3.5) of the lemma follows by passing to the limit
in (3.6) when ¢ tends to 4o0. O

By Lemma 3.2, to each function u € 15(D) we can associate an atomic Borel
measure on D defined by

O, (1) := 27)" Z v(u; a)"s,. (3.7)
acA,

For any compact subset E € D we set
P(D; E) :==PSH(D)NLX(D \ E). (3.8)

Itis well known that the Monge—Ampére mass and the boundary value do not char-
acterize the functions from the class (3.8) (see Example 3.4). However, one can
prove the following comparison theorem for this class, which is a generalization
of the comparison theorem of Demailly [D1; D2].
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THEOREM 3.3. Let E be a compact subset of Lebesgue measure zero in D, and
let u be a plurisubharmonic function on D that satisfies

(1) ue P(D; E) and
2) [pddu)* = Q)" Y en, v(u; a)".
Let v be a plurisubharmonic function on D that satisfies the following proper-

ties:

(3) ve P(D; E);

(4) liminf,_, 5p(u(z) — v(z)) = 0;

(5) (dd°v)* > (ddu)" in the sense of measures on D \ E; and

(6) ®©,(w) > O,(u) in the sense of measures on D.

Thenv <uon D.

Proof. Let y be a stictly plurisubharmonic exhaustion on D (see [H]) and put
D. := {z € D; y(z) < c}. First fix positive numbers § > 0 and co > 0 so large
thatu > v— 8 on D\ D, for ¢ > c¢. Now, for ¢ > 0 and ¢ > ¢ fixed, consider
the function v, := sup{v + e(y — ¢), u + 8}. Then v, is plurisubharmonic on D,
u < v on D., and—by (4)—we have liminf,_, yp_(u(z) — v:(z)) = 0. Hence, by
Lemma 3.1,

ddv)" < (ddu)". 3.9
D, D,

From (1) and (3) it follows that # and v, are locally bounded plurisubharmonic
functions on the open set 2 := D, \ E. Then, by a result of Demailly [D3], the
following inequality holds in the sense of measures on 2:

(ddcve)n > 1{u+8_<_u+s(y—c)}(ddc(v + gy — SC))n
+ 1{u+6>v+€(y—c)}(‘ddcu)n- (310)

Because, in the sense of measures on D, we have
(dd°(v+ey))" = (ddv)" + &"(dd y)",
it follows from (3.10) and (5) that

/(ddcva)” > f(ddcu)"+8"/ ddcy)". (3.11D)
Q Q QN{ut-s<vte(y—o)}

Now we claim that the inequality (3.11) holds with €2 replaced by D.. Indeed,
since the set E is of Lebesgue measure zero, it is enough to compare the masses
of the two measures (dd€v.)" and (ddu)” on the set E containing S, U S,. From
(6) it is easy to deduce that ®,(v.) = O, (u) in the sense of measures on D. Then,
applying Lemma 3.2 and taking (2) into account,

f ddv)" = [ (@ddvs)" = f O, (ve) = / Onu) = / (dd<uy",
E Svg Avg u E

which proves our claim.
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Therefore, from the previous claim and (3.9), we deduce the following estimates:

(ddu)" + &" f dd°y)" < | (ddu)". (A.12)

D, {fut+d<v+e(y—c)IND, D,

Since D, € D, it follows from the Chern-Levine—Nirenberg inequalities that
fDC(ddCu)" < 400 (see [D2; Sil]). Then, from (3.12), it follows that the set
{u+8 <v+e(y —c)} N D, is of Lebesgue measure zero in D for any ¢ > 0,
8 > 0, and ¢ > ¢¢, which implies that v < u on D. This proves the theorem. [

It is important to observe that—as the following example shows—the theorem is
not true without condition (6), even if in condition (5) we assume that (dd‘u)" =
(dd€v)" in the sense of measures in D.

EXamMPLE 3.4. For A := (Aq,...,A,) withO < Ay < Ay < -.- < A,, the func-
tion ¢, (z) := log max{lzjl"f ; 1 < j < n}is plurisubharmonic on the unit polydisc
U,. It is well known that ¢, satisfies the complex Monge—Ampere equation

(dd p))" = Q2m)" A1+ Aydo

in the sense of currents on U, (see [D4]). Moreover, it is clear that v(g,; 0) =
A1. Thus, if A;--- A, = 1 then all functions ¢, satisfy the same complex Monge—
Ampere equation on U, and have the same boundary values. Therefore, when
n>2,ifu = ¢q,. 1 and v := ¢, with A; < 1 then all conditions of the theo-
rem but (6) are satisfied and it is clear that v £ u on U,.. Observe that in this case
Guy,(; 91) = )\.1@(1,._.,1) onU, forany A = (A1, ..., A,) WithO < A < ... <A,.

4. The Pluricomplex Green Function
and the Dirichlet Problem

We are now interested in the following Dirichlet problem for the complex Monge—
Ampere operator.

DiriCHLET PROBLEM. Let D € C” be a strictly pseudoconvex domain. Given a
Borel measure i on D, find a suitable class of plurisubharmonic functions P(D)
on which the complex Monge—Ampere operator (dd€)” is well-defined and such
that, for any continuous function 2 on dD, the following problem has a unique

solution:
u € P(D),

(ddu)" = u, (1)
lim,,; u(z) = h(¢) V¢ € dD.

The Dirichlet problem for plurisubharmonic functions was first considered by
Bremermann [Br], who used the method of Perron to solve it. Bedford and Taylor
[BT1] subsequently introduced the complex Monge—Ampere operator and solved
the Dirichlet problem (I) when P(D) = PSH(D) N L, (D) and the measure p
is absolutely continuous (with continuous density) with respect to the Lebesgue

measure. Since then, several authors [C1; CK; CP; P; Bl; Ko4] have endeavored to
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solve the problem without assuming the continuity of the density of u. Kolodziej
[Ko1l; Ko2; Ko4] has given interesting sufficient conditions on u to belong to the
range of the complex Monge—Ampere operator on the class PSH(D) N L (D)
and has solved the Dirichlet problem for such measures. For a nice and complete
survey on this problem, we refer to [Ko4].

For singular measures, much less is known about the solvability of the Dirichlet
problem; see [Lm2; D2; L2].

In this section, we will solve the Dirichlet problem (I) for the singular measure
© = O, (¢p) associated to an admissible plurisubharmonic function ¢ on D. First
we shall prove the following result for the pluricomplex Green function.

THEOREM 4.1. Let D be a hyperconvex open subset of C" and ¢ an admissible
plurisubharmonic function on D. Then the Green function G = Gp(-; @) associ-
ated to the admissible plurisubharmonic function @ is the unique plurisubharmonic
function on D satisfying the following properties.

(i) GePSH(D)NLYZ.(D\ K), where K :=§,.

(ii) G(z) > O0asz — oD.
(iii) v(G;a) = v(p; a) foralla € D.

(iv) G satisfies the complex Monge—-Ampére equation

dd°G)" = 2m)" Y v(p; a)"s, (4.1)

acA,

in the sense of measures on D, where §, is the Dirac measure at the point a.

Proof. From Theorem 2.1, it follows that G satisfies properties (i), (ii), and (iii).

Let us prove (iv). Let {A;};>; be an increasing sequence of nonempty finite
subsets of A, such that A, = szl A;. For each j > 1, define the functions
@i (2) = ZaeAj v(p; a)log|z — a| (z € D) and G; := Gp(:; ¢;). Then {Gj} > is
a decreasing sequence of plurisubharmonic functions satisfying G < G; < O on
D. The limit function G := lim; i +00 Gj 18 hence a plurisubharmonic function on
D, and G < G < 0 on D. Moreover, it is easy to see that v(G ) >v(p;-)on D
and so G < G on D. This proves that G = G on D.

By the convergence theorem (see [D1; Sil}), we deduce that

(dd°G)" = lim (dd“G))"
j—+oo

in the sense of currents on D; (iv) then follows from (2.11). The uniqueness of
the pluricomplex Green function is an immediate consequence of Theorem 3.3.

We conclude this section by solving a more general Dirichlet problem for the
complex Monge—Ampere equation.

THEOREM4.2. Let D € C" be a pseudoconvex open set with Lipschitz boundary,
let h be a continuous real function on D that is plurisubharmonic on D, and let ¢
be a continuous admissible plurisubharmonic function on D. Then the following
Dirichlet problem has a unique solution:
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U e P(D), v(U; -) = v(g; -,
dd°U)" = 0,(p), 4.2)
lim,,, U(z) = h(¢) V¢ € dD.

Moreover, the solution is continuous on D \ S,,.

Proof. Consider the following upper envelope on D:
U(z) := sup{u(z); u€ Py(D; 9)}, z€D, 4.3)

where 13;, (D; ¢) is the class of PSH functions u € IS(D) such thatv(u; -) > v(g; )
on D and lim,_,; U(z) = h(¢) for all ¢ € 3D. It is well known that D is regular
with respect to the Dirichlet problem for the Laplace operator on C”. Hence there
exists a real harmonic function H on D with boundary values . By [D2], D ishy-
perconvex; it then follows from Theorem 2.1 that ug := Gp(-; @)+ h € P, (D; ¢)
and g < U < H on D. By proceeding in the same way as in the proof of Theo-
rem 2.1, we conclude that U € P, (D; )N LE (D \ S,). It remains to prove that

loc
U satisfies the complex Monge—Ampere equation

dd°U)" = 0,(p) 4.4)

in the sense of measures on D. Toward this end, we proceed exactly as in the proof
of Theorem 4.1. Let (A;);>1 be an increasing sequence of finite subsets of A,
such that A, = ;| A; and set ;(2) := }_ ¢4, loglz — al. Let U; denote the
upper envelope of the class Pj,(D; ®;). Then it is clear from the definition that
(U;) is a decreasing sequence of plurisubharmonic functions on D satisfying U <
U; on D for any j > 1. Thus the limit V = lim;_, {, U; is plurisubharmonic on
D and satisfies the inequality U < V on D. Moreover, it is easy to see that V €
Py (D; ¢). This proves that V = U. It then follows from the convergence theorem
of Demailly [D1] that (4.4) is a consequence of

(dd°Up)" = 2n)" Y v(p; a)"s, (4.5)

aci;

in the sense of measures in D.

Let us prove (4.5). Since (dd°U;)" = 0 on D \ A}, for any j > 1 and for
any a € Aj we have U; ~ v(g; a)log|z — a|. When z — a, it follows from the
comparison theorem [D1; K2] that

(dd°Up)"({a}) = v(p; a)"(dd° log|z — a])*({a}) = 27)"v(g; a)".

Thus equation (4.5) follows.
The continuity of the solution on D \ S, can be proved in exactly the same way
as the proof of Theorem 2.6. L]

CoOROLLARY 4.3. Let D € C" be a strictly pseudoconvex domain and let h be
a continuous real function on dD. Then the Dirichlet problem (4.2) has a unique
solution. Moreover, this solution is continuous on D \ S,.

Proof. 1t is well known [Br] that, if D € C” is a strictly pseudoconvex domain
and & is a continuous boundary data, then there exists a continuous function H
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on D that is plurisubharmonic on D and coincides with / on 8D. The corollary is
then a consequence of Theorem 4.2. L]

The Dirichlet problem (4.2) can be solved for arbitrary continuous boundary data
on more general pseudoconvex domains, known as domains with B-regular bound-
ary (see [Si2]).

In connection with Theorem 4.2, it is interesting to ask the following question.

QUESTION 3. Given a discrete measure p with a complete pluripolar compact
support K C C”, does there exist a plurisubharmonic function ¢ on some open
neighborhood D of K such that ¢ € L, (D \ K) and ¢ satisfies

@m)" > v(p;a)'s, = p

D9 ach,
on !

Because the support K := Supp(u) of w is compact, the set A := {a € K;
n({a}) > 0} is countable. Let us order the points of A into a sequence (a;);>1,
and put p; := p({a;}) so that = > p;8,;. If the series ) _; p,}/" converges,
then the function ) i ,u}/ "log|z — a;| is plurisubharmonic on C" and satisfies the
required properties (see the proof of Lemma 1.3).
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