E^3 -Complete Timelike Surfaces in E_1^3 Are Globally Hyperbolic

SENCHUN LIN & TILLA WEINSTEIN

1. Introduction

A C^{∞} immersion \mathcal{Z} of a surface S into Minkowski 3-space E_1^3 can also be viewed as a C^{∞} immersion of S into Euclidean 3-space E^3 . If the metric I induced on S by $\mathcal{Z}: S \to E_1^3$ is Lorentzian, then $\mathcal{Z}: S \to E_1^3$ is called *timelike*. If the metric I_{ε} induced on S by $\mathcal{Z}: S \to E^3$ is complete, then $\mathcal{Z}: S \to E_1^3$ is said to be E^3 -complete.

In all results below, S is a surface provided with the Lorentzian metric I and the time orientation induced by a timelike C^{∞} immersion $\mathcal{Z}: S \to E_1^3$. Among the conformally invariant properties definable on a time-oriented Lorentzian surface are the causality conditions of interest in general relativity. Two of these conditions, stable causality and global hyperbolicity (defined in [1, pp. 63–65]) are dealt with in this paper.

Theorem 1 makes the elementary observation that S must be stably causal. In case Z is E^3 -complete, Theorem 2 states that S is globally hyperbolic. If $Z: S \to E_1^3$ is E^3 -complete from a simply connected S, Theorem 3 states that S is C^∞ -conformally diffeomorphic to a subset of the Minkowski 2-plane E_1^2 , and places strong restrictions on the conformal boundary $\partial_0 S$, which was defined by Kulkarni in [3] and studied in [7]. (This strengthens slightly a result announced without proof on p. 196 in [7].)

Under the hypotheses of Theorem 3, Theorem 4 states that S is C^{∞} -conformally diffeomorphic to E_1^2 provided that the mean curvature H for $\mathcal{Z}: S \to E_1^3$ vanishes outside a compact set on S. This generalizes the conformal Bernstein theorem from [4], which states that any entire timelike minimal surface in E_1^3 is C^{∞} -conformally diffeomorphic to E_1^2 .

Because global hyperbolicity is the most restrictive of the causality conditions on space-times discussed in [1], it may appear that the surface S in Theorems 2 and 3 has little room for variation in its global Lorentzian structure. To show that this need not be the case, we describe in Section 4 uncountably many C^0 - (and thereby C^{∞} -) conformally distinct simply connected, globally hyperbolic subsurfaces S_r of E_1^2 . Like all subsurfaces of E_1^2 , the S_r are C^{∞} isometrically imbedded in E_1^3

Received September 11, 1996.

when E_1^2 is identified with the (x, z) plane in E_1^3 . However, these are not E^3 complete imbeddings of the S_r . We do not yet know whether every globally hyperbolic time-oriented Lorentzian surface (even if simply connected) has an E^3 -complete conformal immersion in E_1^3 , or a C^∞ -inextendible conformal imbedding in E_1^3 (as defined in [7, Sec. 8.1]).

Familiarity with basic Lorentzian properties of E_1^2 and E_1^3 will be assumed throughout. In E_1^3 , we choose to make the vertical coordinate axis timelike. For background, see [7, Secs. 1.5 and 7.2].

2. The Main Result

Throughout this paper, a surface S is a connected (not necessarily oriented) C^{∞} 2-manifold. Suppose that $\mathcal{Z}: S \to E_1^3$ is a timelike C^{∞} immersion. Then the metric I induced on S by \mathcal{Z} is Lorentzian. For some neighborhood V of any point p on S, $\mathcal{Z}: V \to E_1^3$ is a timelike C^{∞} imbedding, with $\mathcal{Z}_*|_p$ a linear map from the tangent plane S_p to S at p onto the plane tangent to $\mathcal{Z}(V)$ at $\mathcal{Z}(p)$. A vector in S_p , or a 1-dimensional linear subspace of S_p , is given the causal type (spacelike, timelike, or null) of its image under $\mathcal{Z}_*|_p$. The two distinct 1-dimensional linear subspaces of S_p that are null are called *null directions* in S_p .

A C^{∞} curve λ : $(a, b) \to S$ is *spacelike* (resp. *timelike* or *null*) provided that its tangent vector $\lambda'(t)$ is spacelike (resp. timelike or null) for each t in (a, b). A C^{∞} curve λ : $(a, b) \to S$ is *causal* provided that $\lambda'(t)$ is either timelike or null for each t in (a, b). Since the zero vector is always spacelike, all C^{∞} causal curves on S are regular.

The usual time orientation is taken on E_1^3 , which prefers the upper half of the time cone at every point. Thus, any timelike C^{∞} immersion $\mathcal{Z}: S \to E_1^3$ induces a time orientation on S, making a timelike or null vector v in S_p future (resp. past) directed if and only if $\mathcal{Z}_*|_p(v)$ is future (resp. past) directed in $\mathcal{Z}_*|_p(S_p)$. A causal C^{∞} curve $\lambda: (a, b) \to S$ is future (resp. past) directed provided that $\lambda'(t)$ is future (resp. past) directed for one t value (and thereby for all t values) in (a, b).

The following elementary observation yields Theorem 1 as an obvious consequence.

LEMMA 1. If $\lambda: (a,b) \to S$ is a future directed C^{∞} causal curve for a timelike C^{∞} immersion $\mathcal{Z}: S \to E_1^3$ with

$$(\mathcal{Z} \circ \lambda)(t) = (x(t), y(t), z(t)),$$

then z'(t) > 0 on (a, b), so that z(t) is strictly increasing, λ is a simple nonclosed curve on S, and Z imbeds λ in E_1^3 .

Proof. The Euclidean angle $\theta(t)$ between $(\mathcal{Z} \circ \lambda)'(t) = (x'(t), y'(t), z'(t))$ and the positive z axis satisfies $0 \le \theta(t) \le \pi/4$, so that z'(t) > 0 for all t in (a, b). The remaining claims of the lemma follow directly from this fact.

A continuous function $f: S \to \mathbb{R}$ on a time-oriented Lorentzian surface S is a global time function if and only if f is strictly increasing on each future directed

causal curve. A time-oriented Lorentzian surface admits a global time function if and only if it is stably causal. (See [1, pp. 63-64] for references and for the definition of stable causality.) Thus Lemma 1 gives the following result.

Theorem 1. If $\mathcal{Z}: S \to E_1^3$ is a timelike C^{∞} immersion, then S provided with the Lorentzian metric and time orientation induced by \mathcal{Z} is stably causal.

Proof. By Lemma 1, the C^{∞} function $z: S \to \mathbb{R}$ given by

$$\mathcal{Z}(p) = (x(p), y(p), z(p))$$

for any point p on S is a global time function on the time-oriented Lorentzian surface S.

Given a C^{∞} immersion $\mathcal{Z}: S \to E_1^3$, the Riemannian metric I_{ε} induced on S by $\mathcal{Z}: S \to E^3$ can be used to parameterize any regular C^{∞} curve on S by its E^3 arclength. The parameterization of a future (resp. past) directed C^{∞} causal curve λ on S by E^3 arclength is always taken so that $\lambda'(s)$ is future (resp. past) directed.

A C^{∞} causal curve λ : $(a, b) \to S$ for a timelike C^{∞} immersion \mathcal{Z} : $S \to E_1^3$ is extendible provided that $\lambda(t)$ converges to a point on S as $t \to a^+$ or as $t \to b^-$. If λ is not extendible then it is inextendible (see [1, p. 61]). Note that the interval (a, b) on which λ is defined can be bounded or unbounded, so that a or b may each be finite or infinite.

LEMMA 2. Let $\lambda:(a,b)\to S$ be a future directed inextendible C^∞ causal curve parameterized by E^3 arclength for an E^3 -complete timelike C^∞ immersion $\mathcal{Z}:S\to E_1^3$. If

$$(\mathcal{Z} \circ \lambda)(s) = (x(s), y(s), z(s)),$$

then $a = -\infty$, $b = \infty$ and

$$\lim_{s \to -\infty} z(s) = -\infty, \qquad \lim_{s \to \infty} z(s) = \infty.$$

Proof. Suppose that b is finite. Then, for a fixed s_0 in (a, b), the I_{ε} length of $\lambda: (s_0, b) \to S$ is finite. Given any sequence of values s_n in (s_0, b) with $s_n \to b$, the points $\lambda(s_n)$ lie in a bounded set for the distance function d_{ε} defined on S by I_{ε} . Since I_{ε} is complete, so is d_{ε} . Thus, some subsequence $\lambda(s_{n_j})$ converges to a point q on S as $n_j \to \infty$. Since the curve $\lambda: (s_0, b) \to S$ has finite I_{ε} length, $\lambda(s) \to q$ as $s \to b^-$. This means $\lambda: (a, b) \to S$ is extendible, a contradiction. We conclude that $b = \infty$. But then

$$\infty = \int_{s_0}^b ds = \int_{s_0}^b \sqrt{x'(s)^2 + y'(s)^2 + z'(s)^2} \, ds$$

$$\leq \sqrt{2} \int_{s_0}^b z'(s) \, ds = \sqrt{2} \bigg(\lim_{s \to \infty} z(s) - z(s_0) \bigg),$$

so that

$$\lim_{s\to\infty}z(s)=\infty.$$

A similar argument shows that $a = -\infty$ with $\lim_{s \to -\infty} z(s) = -\infty$.

On a Lorentzian surface S, a Cauchy surface is a subset Γ that intersects each inextendible causal curve exactly once. A time-oriented Lorentzian surface S is globally hyperbolic if and only if it admits a Cauchy surface. (See [1, p. 65] for references.) Thus, Lemma 2 gives the following result.

THEOREM 2. If $\mathcal{Z}: S \to E_1^2$ is an E^3 -complete, timelike C^{∞} immersion, then S provided with the Lorentzian metric and time orientation induced by \mathcal{Z} is globally hyperbolic.

Proof. For each real constant c, let Γ_c be the set of all points on S that Z maps to the horizontal plane z = c in E_1^3 . By Lemma 2, each inextendible causal curve on S intersects Γ_c in exactly one point. It follows that Γ_c is a Cauchy surface and that S is globally hyperbolic.

Under the hypotheses of Theorem 2, the C^{∞} -global time function $z: S \to \mathbb{R}$ is a Cauchy time function, which means that the preimage under z of any real value c is a Cauchy surface Γ_c on S. In Section 3 we study the Cauchy surfaces Γ_c under the additional assumption that S is simply connected.

3. Extending the Conformal Bernstein Theorem

Fix a timelike C^{∞} immersion $\mathcal{Z}: S \to E_1^3$ and work with the Lorentzian metric I on S induced by \mathcal{Z} . Assume that S is oriented. Use on S only those C^{∞} coordinate pairs whose chart maps are orientation preserving. In each tangent plane S_p , label by X_p (resp. Y_p) the null direction that coincides with a spacelike (resp. timelike) 1-dimensional linear subspace when rotated in the positive sense by an arbitrarily small amount. A naturally ordered pair X, Y of C^{∞} null direction fields is obtained on S by having X (resp. Y) assign the value X_p (resp. Y_p) to any point P on P0. (See [7, Lemma 1].) An P1-line (resp. P1-line) on P2 is a maximal P2 integral curve of P3. A null line on P3 is either an P3-line or a P4-line. Note that any null line is an inextendible P3 causal curve on P3.

As in [3] and [7], the *Minkowski 2-space* E_1^2 is taken to be the (u, v) plane with the metric $du \, dv$. A C^{∞} orientation preserving diffeomorphism $\chi \colon V \to \chi(V) \subset E_1^2$ from an open set V on S is *conformal* if and only if $\chi^*(du \, dv) = \mu I$ for some C^{∞} function $\mu > 0$ on V. Every point p on S lies in the domain V of such a conformal C^{∞} orientation preserving diffeomorphism $\chi \colon V \to \chi(V) \subset E_1^2$, which is called a *proper null chart* on S. (See [7, Lemma 2].) One easily checks that a proper null chart $\chi \colon V \to E_1^2$ takes connected portions of X-lines (resp. Y-lines) onto horizontal (resp. vertical) line segments in $\chi(V)$.

A box U on S is the preimage under a proper null chart $\chi: V \to E_1^2$ of a bounded rectangular region $(a, b) \times (c, d)$ lying in $\chi(V)$. Since any point p on S lies in a box, a compactness argument shows that the image of any simple, nonclosed arc $\lambda: [\alpha, \beta] \to S$ along a null line lies in a box on S. If S is simply connected, the intersection of an X-line (resp. Y-line) with a box U is a single curve $\lambda: (\alpha, \beta) \to U$ that any proper null chart χ from U takes to a maximal horizontal (resp. vertical) line segment in $\chi(U) = (a, b) \times (c, d)$. (See [7, Lemma 13].)

If a regular C^{∞} spacelike curve $\lambda: (\alpha, \beta) \to S$ lies in the domain V of a proper null chart χ , then $(\chi \circ \lambda): (\alpha, \beta) \to E_1^2$ is a curve in $\chi(V)$ with positive slope. For any point p on λ , there is a box U in V containing p such that the portion of λ in U is connected, with $\chi(\lambda \cap U)$ crossing each maximal horizontal and vertical segment in $\chi(U)$ exactly once. Thus the set $sp_X(\lambda)$ (resp. $sp_Y(\lambda)$) containing all points on all X-lines (resp. Y-lines) on S that intersect λ contains U, as does $sp_X(\lambda)$ (resp. $sp_Y(\lambda)$) for any C^{∞} extension λ of λ on S.

Suppose now that S is simply connected. The existence of the Lorentzian metric I on S guarantees that S is C^{∞} diffeomorphic to \mathbb{R}^2 . (See [7, p. 53] or [1, p. 86].) Moreover, it is well known that any regular spacelike C^{∞} curve λ : $(a, b) \rightarrow S$ must be simple and nonclosed. (See [1, p. 90].)

The next result looks more closely at the Cauchy surface Γ_c defined in the proof of Theorem 2 in case S is simply connected. Because Z is an immersion rather than an imbedding, the set $Z(\Gamma_c)$ can have self-intersections. Nonetheless, one has the following description of the set Γ_c of all points on S that Z maps to the plane z = c.

LEMMA 3. Suppose $\mathcal{Z}: S \to E_1^3$ is an E^3 complete timelike C^{∞} immersion from a simply connected surface S. Then, for any real constant c, the Cauchy surface Γ_c is a simple, nonclosed spacelike curve that has a C^{∞} parameterization $\Gamma_c: (-\infty, \infty) \to S$ by E^3 arclength.

Proof. Fix c, and write $\Gamma = \Gamma_c$ for convenience. Choose a point p on Γ . Because the C^{∞} immersion \mathcal{Z} is timelike, \mathcal{Z} imbeds some neighborhood V of p as the graph $\mathcal{Z}(V)$ of a C^{∞} real-valued function over an open set in the (x, z) plane or the (y, z) plane. The horizontal plane z = c cuts $\mathcal{Z}(V)$ in a simple, nonclosed, C^{∞} spacelike curve in E_1^3 that can be parameterized by E^3 arclength. Thus, for some neighborhood V of any point p on Γ , the portion of Γ in V is a simple, nonclosed regular C^{∞} spacelike curve γ_p .

The connected component Γ_p of Γ containing γ_p is simple and nonclosed, since it is a regular C^{∞} spacelike curve on S. Fix an orientation on the simply connected surface S. Let $sp(\Gamma_p)$ be the set of all points on all X-lines on S that intersect Γ_p . If a point q in $sp_X(\Gamma_p)$ lies on Γ_p , then a box containing q lies in $sp_X(\Gamma_q)$, making q an interior point of $sp_X(\Gamma_p)$. If a point q in $sp_X(\Gamma_p)$ lies off Γ_p , then there is an arc λ : $[\alpha, \beta] \to S$ in $sp_X(\Gamma_p)$ along an X-line with $\lambda(\alpha) = q$ and $\lambda(\beta)$ on Γ_p . Let U be a box containing $\lambda([\alpha, \beta])$. If $sp_X(\gamma_{\lambda(\beta)})$ is the set of all points on all X-lines on S that intersect $\gamma_{\lambda(\beta)}$, then the intersection of $sp(\gamma_{\lambda(\beta)})$ with U is a (possibly smaller) box U_q that contains $\lambda([\alpha, \beta])$. Every X-line that intersects U_q lies in $sp_X(\Gamma_p)$, making q an interior point of $sp_X(\Gamma_p)$. It follows that $sp_X(\Gamma_p)$ is open.

By Lemma 2, every X-line on S intersects Γ . Thus, S is the union of the sets $sp_X(\Gamma_q)$ for all points q on Γ . The complement of $sp_X(\Gamma_p)$ in S is open, since it is the union of the sets $sp_X(\Gamma_q)$ for all points q on Γ off Γ_p . If S has a point outside of $sp_X(\Gamma_p)$ then S is disconnected, a contradiction. Thus $\Gamma = \Gamma_p$.

The simple, nonclosed, regular spacelike curve Γ has a C^{∞} parameterization $\Gamma:(a,b)\to S$ by E^3 arclength. We must show that $(a,b)=\mathbb{R}$. Suppose b is

finite, so that the points $\Gamma(s_n)$ for any sequence s_n in (a, b) with $s_n \to b^-$ lie in a bounded set for the distance function d_{ε} defined by I_{ε} on S. Since I_{ε} is complete, so is d_{ε} . Thus, for some subsequence s_{n_j} , the points $\Gamma(s_{n_j})$ converge to a point q on S as $n_j \to \infty$. Since z = c at $\mathcal{Z}(\Gamma(s_{n_j}))$ for all n_j , it follows that z = c at $\mathcal{Z}(q)$, putting q on Γ . But then some neighborhood of q contains just the portion γ_q of Γ on which q is an interior point, contradicting the definition of q. Thus $b = \infty$, and a similar argument shows that $a = -\infty$.

When defining the conformal boundary of a simply connected, oriented, and time-oriented Lorentzian surface in [3], Kulkarni placed a *natural orientation* on null lines, making X-lines past directed and Y-lines future directed. The same convention is followed in [7]. This natural orientation parameterizes X-lines to the right and Y-lines upward in E_1^2 if the timelike vector field $\partial/\partial v - \partial/\partial u$ is used to define the time orientation on E_1^2 . This is the time orientation taken on E_1^2 in what follows.

Given a timelike C^{∞} immersion $\mathcal{Z}: S \to E_1^3$ from a simply connected, oriented surface S, use the time orientation induced on S by \mathcal{Z} to naturally orient all null lines. For any point p on S, use the naturally oriented null directions X_p and Y_p as coordinate axes in S_p . Naturally orient each Cauchy surface Γ_c so that $\Gamma'_c(s)$ lies in the first quadrant of S_p at each point $p = \Gamma_c(s)$.

LEMMA 4. Suppose $\mathcal{Z}: S \to E_1^3$ is a timelike C^{∞} immersion from a simply connected, oriented surface S, provided with the Lorentzian metric and time orientation induced by \mathcal{Z} . Then there is an orientation preserving C^{∞} diffeomorphism $\phi: \mathbb{R}^2 \to S$ such that:

- (i) for each fixed ζ_0 , $\phi(\zeta_0, s)$ is a regular C^{∞} parameterization of the Cauchy surface $\Gamma_{-\zeta_0}$ which respects the natural orientation on $\Gamma_{-\zeta_0}$;
- (ii) $\phi(0, s)$ parameterizes Γ_0 by E^3 arclength; and
- (iii) for each fixed s_0 , $\phi(\zeta, s_0)$ parameterizes the X-line that passes through $\phi(0, s_0)$ by the negative ζ of the global time function z on S.

Proof. Let $\Gamma_0: (-\infty, \infty) \to S$ parameterize Γ_0 by E^3 arclength so as to respect natural orientation on Γ_0 , with s=0 at some point p_0 on Γ_0 . If $\phi(0,s)=\Gamma_0(s)$, then all other values of $\phi(\zeta,s)$ are determined by (iii). Because $S=sp_X(\Gamma_0)$, ϕ is onto S. Since distinct X-lines never intersect on S and distinct Cauchy surfaces Γ_c never intersect on S, ϕ is one—one. The field $\vec{\zeta}$ of tangent vectors to the X-lines $\phi(\zeta,s_0)$ for all fixed values s_0 is C^∞ on S. Since $\phi(\zeta,s_0):\mathbb{R}\to S$ is the maximal integral curve of $\vec{\zeta}$ with initial value $\phi(0,s_0)$ on the C^∞ curve $\phi(0,s):\mathbb{R}\to S$, standard results in ordinary differential equations guarantee that $\phi:\mathbb{R}^2\to S$ is C^∞ .

To show that the Jacobian matrix of ϕ has rank 2 everywhere, it suffices to prove that the Jacobian matrix of $\mathcal{Z} \circ \phi$ has rank 2 everywhere. Here $(\mathcal{Z} \circ \phi)(\zeta, s) = (f(\zeta, s), g(\zeta, s), -\zeta)$ for C^{∞} functions $f: \mathbb{R}^2 \to \mathbb{R}$ and $g: \mathbb{R}^2 \to \mathbb{R}$. Given a fixed ζ_0 , the curve $\phi(\zeta_0, s): \mathbb{R} \to S$ describes the Cauchy surface $\Gamma_{-\zeta_0}$. If σ is E^3 arclength on $(\mathcal{Z} \circ \phi)(\zeta_0, s)$, then

$$(d\sigma/ds)^{2} = f_{s}(\zeta_{0}, s)^{2} + g_{s}(\zeta_{0}, s)^{2}.$$

To see that $d\sigma/ds \neq 0$, suppose ϕ had been defined with (ii) replaced by the requirement that $\phi(\zeta_0, s)$ is parameterized by its E^3 arclength σ for the one fixed value ζ_0 . Arguing as before with the roles of Γ_0 and $\Gamma_{-\zeta_0}$ reversed, one would see that s is a C^{∞} function of σ , which means that $d\sigma/ds \neq 0$. Since ζ_0 is arbitrary, the lemma is proved.

Our next result refers to the conformal boundary $\partial_0 S$ constructed by Kulkarni in [3] for any simply connected, oriented, and time-oriented surface S. Only the briefest description of $\partial_0 S$ and its properties is given here. For further background and details, see [7, Chap. 4].

Assign to each null line γ on the simply connected, oriented, and time-oriented surface S a pair of ideal endpoints γ^- and γ^+ . The natural orientation on γ is thought of as defining motion "toward γ^+ " and "away from γ^- ". An end $\gamma \uparrow$ (resp. $\gamma \downarrow$) of γ is the portion of γ beyond (resp. preceding) any one fixed point on γ . Thus an end $\gamma \uparrow$ (resp. $\gamma \downarrow$) is given the ideal endpoint γ^+ (resp. γ^-). If γ is an X-line (resp. Y-line), we write l, l^+ , l^- , $l \uparrow$, and $l \downarrow$ (resp. m, m^+ , m^- , $m \uparrow$, and $m \downarrow$) for γ , γ^+ , γ^- , $\gamma \uparrow$, and $\gamma \downarrow$ in that order.

Suppose there is a proper null chart $\chi: V \to E_1^2$ containing a box U for which all of the closure \bar{R} of $R = \chi(U)$ except one vertex r lies in $\chi(V)$. If, for some X-line l and Y-line m on S, one of the four situations (i)–(iv) listed next applies to an ordered pair ξ , η of ideal endpoints, then (and only then) we write $\xi \nearrow \eta$.

- (i) The chart χ maps an end $l \uparrow$ (resp. $m \uparrow$) onto the top (resp. right) edge of R with $\xi = l^+$, $\eta = m^+$, and r the upper right vertex of R. (See Figure 1a.)
- (ii) The chart χ maps an end $m \uparrow$ (resp. $l \downarrow$) onto the left (resp. top) edge of R with $\xi = m^+$, $\eta = l^-$, and r the upper right vertex of R. (See Figure 1b.)
- (iii) The chart χ maps an end $l\downarrow$ (resp. $m\downarrow$) onto the bottom (resp. left) edge of R with $\xi=l^-$, $\eta=m^-$, and r the lower left vertex of R. (See Figure 1c.)

Figure 1

(iv) The chart χ maps an end $m\downarrow$ (resp. $l\uparrow$) onto the right (resp. bottom) edge of R with $\xi=m^-$, $\eta=l^+$, and r the lower right vertex of R. (See Figure 1d.)

We write $\xi \nearrow \eta$ for an ordered pair ξ, η of ideal endpoints if and only if there are ideal endpoints $\xi_1, \xi_2, \ldots, \xi_m$ for some $m = 2, 3, \ldots$ such that $\xi = \xi_1 \nearrow \xi_2 \nearrow \cdots \nearrow \xi_m = \eta$. One never has $\xi \nearrow \xi$, nor can one have $\xi \nearrow \eta$ for ideal endpoints ξ and η of a single null line. In addition, one can never have both $\xi \nearrow \eta$ and $\eta \nearrow \xi$ for a particular pair ξ, η of ideal endpoints. (See [7, Sec. 4.1].)

Let Σ be the set of all ideal endpoints on S. Write $\xi \cong \eta$ for ξ and η in Σ if and only if $\xi = \eta$ or $\xi \nearrow \eta$ or $\eta \nearrow \xi$. Then \cong is an equivalence relation on Σ , and Kulkarni defines $\partial_0 S$ as Σ / \cong . Thus each point on $\partial_0 S$ is an equivalence class of ideal endpoints on S. The ideal endpoints in any one point p on $\partial_0 S$ are linearly ordered by $\nearrow \nearrow$. Hence we can define the rank $\sigma(p)$ of p as the number of ideal endpoints in p if that is a finite number, as $+\infty$ if p has a first but no last entry, as $-\infty$ if p has a last but no first entry, and as $\pm \infty$ if p has neither a first nor a last entry. (See [7, Sec. 4.1] for examples that display all possible values for $\sigma(p)$.) If $\sigma(p) = 2$ (resp. $\sigma(p) = 1$), then the type of p is the linearly ordered set of its entries, so that any such p has type $\{l^+, m^+\}$, $\{m^+, l^-\}$, $\{l^-, m^-\}$, or $\{m^-, l^+\}$ (resp. $\{l^+\}$, $\{m^+\}$, $\{l^-\}$, or $\{m^-\}$).

The next result follows directly from Theorem 2 if one uses Higgins's theorem, stated in [7, p. 134] and proved in [2]. Since [2] has not yet appeared, an independent argument using Lemma 4 to establish Theorem 3 is sketched below.

THEOREM 3. Suppose $\mathcal{Z}: S \to E_1^3$ is an E^3 -complete, timelike C^{∞} immersion of a simply connected, oriented surface S. Then, using the Lorentzian metric and time orientation induced on S by \mathcal{Z} ,

- (i) S is C^{∞} -conformally diffeomorphic to a subset of E_1^2 so as to preserve time orientation, and
- (ii) $\sigma(p) \leq 2$ for each p on $\partial_0 S$, with p of type $\{m^+, l^-\}$ or $\{m^-, l^+\}$ if $\sigma(p) = 2$.

Proof. Use the orientation preserving C^{∞} diffeomorphism $\phi \colon \mathbb{R}^2 \to S$ provided by Lemma 4 to pull the time-oriented Lorentzian metric on S back to the (ζ, s) plane. Then ζ is a regular C^{∞} parameter that respects natural orientation on each X-line $s = s_0$. Similarly, s is a regular C^{∞} parameter that respects natural orientation on each Cauchy surface $\zeta = \zeta_0$.

Every Cauchy surface Γ_c on S is naturally oriented, so that $\Gamma'_c(s_0)$ lies in the first quadrant of S_p for $p = \Gamma_c(s_0)$ when the naturally oriented null directions X_p and Y_p are taken as coordinate axes in S_p . By Lemma 2, it follows that each Y-line in the (ζ, s) plane coincides with the graph of a C^{∞} function $s = f(\zeta)$, with $f'(\zeta) < 0$ for all real values of ζ . The global time function $z = -\zeta$ is a regular C^{∞} parameter on each Y-line $s = f(\zeta)$ that respects natural orientation. Over the interval $f(\mathbb{R})$, s is also a regular C^{∞} parameter on each Y-line $s = f(\zeta)$ that respects natural orientation.

Given a point (ζ_0, s_0) , let $(0, u(\zeta_0, s_0))$ be the point where the Y-line through (ζ_0, s_0) crosses the Cauchy surface $\zeta = 0$. Thus, for each real constant c, the

equation $u(\zeta, s) = c$ describes a Y-line $s = f(\zeta)$. We leave it to the reader to check that $u(\zeta, s)$ is C^{∞} with $u_{\zeta}(\zeta, s) > 0$ and $u_{s}(\zeta, s) > 0$. Hence, the map $\psi \colon \mathbb{R}^{2} \to E_{1}^{2}$ given by

$$\psi(\zeta, s) = (u(\zeta, s), s)$$

is C^{∞} and one-one onto an open set Ω in E_1^2 . The Jacobian matrix

$$\begin{pmatrix} u_{\zeta} & 0 \\ u_{s} & 1 \end{pmatrix}$$

of ψ has positive determinant, so that ψ preserves orientation.

Since ψ takes X-lines (resp. Y-lines) in the (ζ, s) plane onto X-lines (resp. Y-lines) in Ω , it follows that $\psi \colon \mathbb{R}^2 \to \Omega$ is a C^{∞} -conformal diffeomorphism. (See [7, p. 37].) Thus $\psi \circ \phi^{-1}$ is a C^{∞} -conformal diffeomorphism taking S onto $\Omega \subset E_1^2$. Because natural orientation on X-lines and Y-lines is preserved by ψ and ϕ , $\psi \circ \phi^{-1}$ is also time-orientation preserving. This establishes (i).

Because Ω is not a bounded set in the (u, v) plane, some points on $\partial_0 \Omega$ are hard to visualize. Thus we replace Ω by its image $\hat{\Omega} \subset (-1, 1) \times (-1, 1) \subset E_1^2$ under the orientation and time-orientation preserving C^{∞} -conformal diffeomorphism of E_1^2 taking u to $\tanh u$ and v to $\tanh v$. The points on $\partial_0 \hat{\Omega}$ are represented by points on the topological boundary of $\hat{\Omega}$ in E_1^2 that are endpoints of maximal horizontal or vertical line segments in $\hat{\Omega}$. To study $\partial_0 S$, we study $\partial_0 \hat{\Omega}$.

If $\sigma(p) \geq 3$ at a point p on $\partial_0 \hat{\Omega}$, then p contains three ideal endpoints satisfying $m_1^- \nearrow l^+ \nearrow m_2^+$, $l_1^+ \nearrow m^+ \nearrow l_2^-$, $m_1^+ \nearrow l^- \nearrow m_2^-$, or $l_1^- \nearrow m^- \nearrow l_2^+$. (See Figure 2.) In all four cases, two different null lines $(l_1 \text{ and } l_2 \text{ or } m_1 \text{ and } m_2)$ in $\hat{\Omega}$

Figure 2

Figure 3

lie to opposite sides of p along the same horizontal or vertical line in the (u, v) plane. Since each Cauchy surface Γ_c on S is taken to a curve of positive slope in $\hat{\Omega}$, the image of Γ_c cannot meet both l_1 and l_2 or both m_1 and m_2 . Since Γ_c crosses every null line in S, its image must do the same in $\hat{\Omega}$. This contradiction gives $\sigma(p) \leq 2$. Suppose $\sigma(p) = 2$ for p on $\partial_0 \hat{\Omega}$, with p of type $\{l^+, m^+\}$ or $\{l^-, m^-\}$. (See Figure 3.) In either case, the image of a Cauchy surface Γ_c is a curve of positive slope in $\hat{\Omega}$ that cannot meet both l and m. Thus p has type $\{m^+, l^-\}$ or $\{m^-, l^+\}$, which completes the proof of (ii).

Theorem 3 can be used to obtain the following extension of Theorem 1 from [4].

THEOREM 4. Suppose $\mathcal{Z}: S \to E_1^3$ is an E^3 -complete C^∞ timelike immersion from a simply connected S. If \mathcal{Z} is minimal outside a compact subset S_0 of S, then S with the Lorentzian metric induced by \mathcal{Z} is C^∞ -conformally diffeomorphic to E_1^2 .

Proof. Orient S and use \mathcal{Z} to time-orient S. Then S can be replaced by the subset $\hat{\Omega}$ of E_1^2 described in the proof of Theorem 3. Let $\hat{\Omega}_0$ be the compact subset of $\hat{\Omega}$ corresponding to S_0 , and think of \mathcal{Z} as an immersion \mathcal{Z} : $\hat{\Omega} \to E_1^3$. By Theorem 3, $\sigma(p) \leq 2$ for any p on $\partial_0 \hat{\Omega}$ with p of type $\{m^+, l^-\}$ or $\{m^-, l^+\}$ in case $\sigma(p) = 2$. Suppose there is a point p on $\partial_0 \hat{\Omega}$ with $\sigma(p) = 2$, so that one of the diagrams in Figure 4 applies. There is a rectangle $R = (a, b) \times (c, d)$ whose closure in the (u, v) plane less p lies in $\hat{\Omega}$, with one side along l and another side along l and another side along l whose intersection with any horizontal or vertical line in the l can be made so small that its closure in $\hat{\Omega}$ lies in an open set $\mathcal{U} \subset \hat{\Omega}$, with $\mathcal{U} \cap \hat{\Omega}_0 = \emptyset$, whose intersection with any horizontal or vertical line in the l can be made so single line segment. Since \mathcal{Z} is minimal outside of l near curvature l for l vanishes on l. Since

$$I = \mu du dv$$

Figure 4

for some C^{∞} function $\mu > 0$, the middle coefficient of II must vanish on \mathcal{U} , which means that $\mathcal{Z}_{uv} \equiv 0$ on \mathcal{U} . (See [7, p. 176].) It follows from the shape of \mathcal{U} that

$$\mathcal{Z}(u, v) = \mathcal{X}(u) + \mathcal{Y}(v)$$

on \mathcal{U} . Since \mathcal{Z} is E^3 -complete, the E^3 length of the portion l_0 of l bordering R is infinite. Since the values of \mathcal{Z} along any maximal horizontal line interval \mathcal{I}_0 differ from those along l_0 by a constant vector in E_1^3 , the E^3 length of \mathcal{I}_0 must be infinite. But this is impossible, since the closure of \mathcal{I}_0 is the compact image of an arc λ : $[a, b] \to \hat{\Omega}$ along an X-line in $\hat{\Omega}$. This contradiction shows that $\sigma(p) \equiv 1$ on $\partial_0 \hat{\Omega}$. By [7, Lemma 27, p. 94], it follows that $\hat{\Omega}$ (and thereby S) is C^{∞} -conformally diffeomorphic to E_1^2 .

A corollary of Theorem 4 is the conformal Bernstein theorem from [4], which states that any entire timelike minimal surface in E_1^3 must be C^{∞} -conformally diffeomorphic to E_1^2 . By Theorem 4, we now know that any entire timelike surface in E_1^3 is C^{∞} -conformally diffeomorphic to E_1^2 provided it is minimal outside a compact set.

4. Some Examples

In this section we construct uncountably many simply connected globally hyperbolic subsurfaces of E_1^2 , any two of which are C^0 -conformally distinct and thereby C^{∞} -conformally distinct. For the definition of C^j -conformal equivalence for any $j=0,1,\ldots;\infty$, see [7, Sec. 3.1]. To see that these sorts of conformal equivalence are different from one another, see [6].

Given a real number r with 0 < r < 1, let $r = .r_1r_2r_3...$ be the binary expansion of r, chosen so that

$$r = \sum_{j=1}^{\infty} \frac{r_j}{2^j}$$

without allowing $r_j = 1$ when $j \ge j_0$ for any fixed $j_0 = 2, 3, \ldots$. Associate to $r = .r_1r_2r_3 \ldots$ two sequences $\{p_k\}$ and $\{q_k\}$ of points in E_1^2 with

$$p_k = \left(\sum_{j=1}^k \frac{1+r_j}{2^j}, \sum_{j=1}^k \frac{1}{2^j}\right),$$

$$q_k = \left(\sum_{j=1}^{k+1} \frac{1}{2^j} + \sum_{j=1}^k \frac{r_j}{2^j}, \sum_{j=1}^k \frac{1}{2^j}\right),$$

so that both p_k and q_k converge to the point (1 + r, 1) as $k \to \infty$.

Construct a simple closed arc Λ_r in E_1^2 beginning and ending at the point (1+r,1) by following in order the line segments joining (1+r,1) to (0,1), (0,1) to (0,0), (0,0) to (1/2,0), (1/2,0) to p_1 , p_1 to q_1 , q_1 to q_2 , ..., p_k to q_k , and q_k to p_{k+1} , Let S_r be the interior of Λ_r provided with the Lorentzian metric, orientation and time orientation induced from E_1^2 .

To see that S_r is globally hyperbolic, let $\gamma:[0,1] \to S_r \cup \Lambda_r$ be any C^{∞} arc with $\gamma(0) = (0,0)$, $\gamma(1) = (1+r,1)$, and $\gamma(t)$ in S_r with $\gamma'(t)$ spacelike for 0 < t < 1. Then $\gamma:(0,1) \to S_r$ is a Cauchy surface on S_r .

To show that S_r and $S_{r'}$ are C^{∞} -conformally distinct when $r \neq r'$, look at the conformal boundary $\partial_0 S_r$ for any r with 0 < r < 1. (Claims made about $\partial_0 S_r$ can be checked in [7, Secs. 4.2-4.5].) Each point on $\partial_0 S_r$ is represented by the endpoint of a maximal horizontal and/or vertical line segment in S_r . Thus every point on Λ_r represents a point on $\partial_0 S_r$, except for the points (1 + r, 1), (0, 1), (0, 0), and (1/2, 0) in case $r_1 = 0$ and for the points q_k in case $r_{k+1} = 0$ for a given $k = 1, 2, \ldots$. The topology on $\partial_0 S_r$ as defined in [7, Sec. 4.3] coincides with the topology induced upon it as a subset of Λ_r by E_1^2 . There is also a cyclic order on $\partial_0 S_r$ (defined by Smyth in [5] and described in [7, Sec. 4.5]) that coincides with the usual counterclockwise cyclic order of points on Λ_r . This cyclic order puts a linear order on the points lying along any one line segment on $\partial_0 S_r$.

Each point on the open line segment from (1+r,1) to (0,1) (resp. from (0,1) to (0,0) or from (0,0) to (1/2,0)) has rank 1 and type $\{m^+\}$ (resp. type $\{l^-\}$ or $\{m^-\}$). If $r_1 = 1$, then (1/2,0) is also a rank-1 point of type $\{m^-\}$ on $\partial_0 S_r$. Similarly, if $r_{k+1} = 1$ for some $k = 1, 2, \ldots$, then q_k is a rank-1 point of type $\{m^-\}$ on $\partial_0 S_r$. For every $k = 1, 2, \ldots, p_k$ is a rank-2 point of type $\{m^-, l^+\}$. Each point p on the open line segment from (1/2,0) to p_1 (resp. from q_k to p_{k+1} for $k = 1, 2, \ldots$) has rank $r_1 + 1$ (resp. $r_{k+1} + 1$) and type $\{l^+\}$ if $\sigma(p) = 1$ and type $\{m^-, l^+\}$ if $\sigma(p) = 2$. Finally, every point on the open line segment from p_k to q_k for any $k = 1, 2, \ldots$ has rank 1 and type $\{m^-\}$.

Fix r and r' with 0 < r < 1 and 0 < r' < 1. Any orientation and time-orientation preserving C^{∞} -conformal diffeomorphism F from S_r onto $S_{r'}$ is automatically an orientation and time-orientation preserving conformal homeomorphism from S_r onto $S_{r'}$ (as defined in [7, Sec. 3.1]). Any orientation and time-orientation preserving conformal homeomorphism F from S_r to $S_{r'}$ extends uniquely to a homeomorphism F from $S_r \cup \partial_0 S_r$ onto $S_{r'} \cup \partial_0 S_{r'}$, which restricts to a homeomorphism ∂F from $\partial_0 S_r$ to $\partial_0 S_{r'}$. The map ∂F preserves rank as well as the type of rank-1 and rank-2 points. Finally, $\partial_0 S_r$ preserves cyclic order, so that $p \hookrightarrow q \hookrightarrow r$ on $\partial_0 S_r$ implies that $F(p) \hookrightarrow F(q) \hookrightarrow F(r)$ on $\partial_0 S_{r'}$.

It is now easy to check that ∂F takes each maximal line segment on $\partial_0 S_r$ onto the corresponding maximal line segment on $\partial_0 S_{r'}$ so as to preserve the linear order induced by counterclockwise cyclic order. If $r_1 = 0$, then (1/2, 0) does not lie on $\partial_0 S_r$ and therefore cannot lie on $\partial_0 S_{r'}$, which gives r' = 0. If $r_1 = 1$, then (1/2, 0) lies on $\partial_0 S_r$, is fixed by ∂F , and lies on $\partial_0 S_{r'}$; this gives r' = 1. Assume that $r_j = r'_j$ for $j = 1, 2, \ldots, k$ for any $k = 1, 2, \ldots$. Then each point p_j and q_j on Λ_r coincides with the corresponding point p_j and q_j on $\Lambda_{r'}$ for $j = 1, 2, \ldots, k$. If $r_{k+1} = 0$, then q_k does not lie on $\partial_0 S_r$ and therefore cannot lie on $\partial_0 S_{r'}$, which gives $r'_{k+1} = 0$. If $r_{k+1} = 1$, then q_k lies on $\partial_0 S_r$ and therefore lies on $\partial_0 S_{r'}$, which gives $r'_{k+1} = 1$. The existence of an orientation and time-orientation preserving conformal homeomorphism F from S_r onto $S_{r'}$ thus implies that r = r'. We conclude that there are uncountably many C^0 - (and thereby C^∞ -) conformally distinct simply connected subsurfaces S_r of E_1^2 , one for each r with 0 < r < 1.

References

- [1] J. K. Beem, P. E. Ehrlich, and K. L. Easley, *Global Lorentzian geometry*, 2nd ed., Dekker, New York, 1996.
- [2] L. Higgins and T. Weinstein, Conformal boundary properties characterize globally hyperbolic simply connected Lorentz surfaces, preprint.
- [3] R. Kulkarni, An analogue of the Riemann mapping theorem for Lorentz metrics, Proc. Roy. Soc. London Ser. A 401 (1985), 117–130.
- [4] T. K. Milnor, A conformal analog of Bernstein's theorem for timelike surfaces in Minkowski 3-space, The Legacy of Sonya Kovalevskaya, pp. 123–132, Amer. Math. Soc., Providence, RI, 1987.
- [5] R. W. Smyth, Characterization of Lorentz surfaces via the conformal boundary, Ph.D. thesis, Rutgers Univ., New Brunswick, NJ, 1995.
- [6] R. W. Smyth and T. Weinstein, Conformally homeomorphic Lorentz surfaces need not be conformally diffeomorphic, Proc. Amer. Math. Soc. 123 (1995), 3499–3506.
- [7] T. Weinstein, *An introduction to Lorentz surfaces*, de Gruyter Exp. Math., 22, de Gruyter, Berlin, 1996.

S. Lin Mathematics Department Rutgers University New Brunswick, NJ 08903

senchun@math.rutgers.edu

T. Weinstein Mathematics Department Rutgers University New Brunswick, NJ 08903

tilla@math.rutgers.edu