E’-Complete Timelike Surfaces in E;
Are Globally Hyperbolic
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1. Introduction

A C* immersion Z of a surface S into Minkowski 3-space E f’ can also be viewed
as a C* immersion of § into Euclidean 3-space E>. If the metric / induced on
SbyZ2:S - E 13 is Lorentzian, then Z: S5 — Ef' is called ftimelike. If the met-
ric I, induced on S by Z:S — E? is complete, then Z: S — Ef’ is said to be
E3-complete.

In all results below, S is a surface provided with the Lorentzian metric / and
the time orientation induced by a timelike C* immersion Z: S — E f Among
the conformally invariant properties definable on a time-oriented Lorentzian sur-
face are the causality conditions of interest in general relativity. Two of these con-
ditions, stable causality and global hyperbolicity (defined in [1, pp. 63—65]) are
dealt with in this paper.

Theorem 1 makes the elementary observation that S must be stably causal.
In case Z is E3-complete, Theorem 2 states that S is globally hyperbolic. If
Z:8 — E} is E3-complete from a simply connected S, Theorem 3 states that S
is C*®-conformally diffeomorphic to a subset of the Minkowski 2-plane E?, and
places strong restrictions on the conformal boundary 9,5, which was defined by
Kulkarni in [3] and studied in [7]. (This strengthens slightly a result announced
without proof on p. 196 in [7].)

Under the hypotheses of Theorem 3, Theorem 4 states that .S is C°°-conformally
diffeomorphic to E7 provided that the mean curvature H for Z: S — E; vanishes
outside a compact seton S. This generalizes the conformal Bernstein theorem from
[4], which states that any entire timelike minimal surface in E3 is C*®°-conformally
diffeomorphic to E f'

Because global hyperbolicity is the most restrictive of the causality conditions
on space-times discussed in [1], it may appear that the surface S in Theorems 2 and
3 has little room for variation in its global Lorentzian structure. To show that this
need not be the case, we describe in Section 4 uncountably many C°- (and thereby
C®°-) conformally distinct simply connected, globally hyperbolic subsurfaces S,
of E% Like all subsurfaces of Elz, the S, are C* isometrically imbedded in Ef’
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when E? is identified with the (x, z) plane in E;. However, these are not E> com-
plete imbeddings of the S,. We do not yet know whether every globally hyperbolic
time-oriented Lorentzian surface (even if simply connected) has an E>-complete
conformal immersion in E3, or a C®-inextendible conformal imbedding in E; (as
defined in [7, Sec. 8.1}).

Familiarity with basic Lorentzian properties of E? and E; will be assumed
throughout. In E 3 we choose to make the vertical coordinate axis timelike. For
background, see [7, Secs. 1.5 and 7.2].

2. The Main Result

Throughout this paper, a surface § is a connected (not necessarily oriented) C*°
2-manifold. Suppose that Z: S — E 13 is a timelike C* immersion. Then the met-
ric / induced on S by Z is Lorentzian. For some neighborhood V of any point p
onS,2Z:V—>E f is a timelike C*° imbedding, with Z,|, a linear map from the
tangent plane S, to S at p onto the plane tangent to Z(V) at Z(p). A vector in
Sp, or a 1-dimensional linear subspace of S,, is given the causal type (spacelike,
timelike, or null) of its image under Z,|,. The two distinct 1-dimensional linear
subspaces of S, that are null are called null directions in §,,.

A C® curve A: (a, b) — S is spacelike (resp. timelike or null) provided that its
tangent vector A'(¢) is spacelike (resp. timelike or null) for each ¢ in (a, b). A C*°
curve A: (a, b) — S is causal provided that A'(¢) is either timelike or null for each
t in (a, b). Since the zero vector is always spacelike, all C* causal curves on §
are regular.

The usual time orientation is taken on E3, which prefers the upper half of the
time cone at every point. Thus, any timelike C* immersion Z: § — Ej induces
a time orientation on S, making a timelike or null vector v in S, future (resp. past)
directed if and only if Z,| ,(v) is future (resp. past) directed in Z,|,(S;). A causal
C® curve A: (a, b) — S is future (resp. past) directed provided that A’(¢) is future
(resp. past) directed for one ¢ value (and thereby for all ¢ values) in (a, b).

The following elementary observation yields Theorem 1 as an obvious conse-
quence.

LEMMA 1. If A:(a,b) — S is a future directed C*° causal curve for a timelike
C® immersion Z: S — E? with

(Zo)(@) = (x(1), y@), 2(2)),
then 7/(t) > Oon (a, b), so that z(t) is strictly increasing, A is a simple nonclosed

curveon S, and Z imbeds A in E13

Proof. The Euclidean angle 6(t) between (Z o A)'(r) = (x'(¢), y'(¢), Z’(¢)) and
the positive z axis satisfies 0 < 0(¢) < m/4, so that z'(t) > 0 for all ¢ in (a, b).
The remaining claims of the lemma follow directly from this fact. [

A continuous function f: S — R on a time-oriented Lorentzian surface S is a
global time function if and only if f is strictly increasing on each future directed
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causal curve. A time-oriented Lorentzian surface admits a global time function
if and only if it is stably causal. (See [1, pp. 63-64] for references and for the
definition of stable causality.) Thus Lemma 1 gives the following result.

THEOREM 1. If Z2:§ — E13 is a timelike C*° immersion, then S provided with
the Lorentzian metric and time orientation induced by Z is stably causal.

Proof. By Lemma 1, the C* function z: S — R given by
Z(p) = (x(p), y(p), z(p))

for any point p on S is a global time function on the time-oriented Lorentzian sur-
face S. L

Given a C*® immersion Z: S — E;, the Riemannian metric / induced on § by
Z:S — E3 can be used to parameterize any regular C* curve on S by its E> arc-
length. The parameterization of a future (resp. past) directed C* causal curve A
on S by E? arclength is always taken so that A'(s) is future (resp. past) directed.

A C® causal curve A: (a, b) — S for a timelike C* immersion Z: S — E f' is
extendible provided that A(f) converges to a pointon S ast — at orast — b™.
If A is not extendible then it is inextendible (see [1, p. 61]). Note that the inter-
val (a, b) on which A is defined can be bounded or unbounded, so that a or » may
each be finite or infinite.

LEMMA 2. Let A:(a,b) — S be a future directed inextendible C*° causal
curve parameterized by E* arclength for an E3-complete timelike C™ immersion
Z:S—>ELIf

(Z0A)(s) = (x(s), y(s), 2(s)),

then a = —o00, b = oo and
lim z(s) = —o0, lim z(s) = oo.
S—>—00 §—> 00

Proof. Suppose that b is finite. Then, for a fixed s¢ in (a, b), the I, length of
Az (so, b) — S is finite. Given any sequence of values s, in (sq, ») with s, — b,
the points A(s,) lie in a bounded set for the distance function d, defined on § by
I.. Since I, is complete, so is d.. Thus, some subsequence A(sn;) converges to
a point g on § as n; — oo. Since the curve A: (s, b) — S has finite I, length,
A(s) — q as s — b~ . This means A: (a, b) — S is extendible, a contradiction.
We conclude that b = oco. But then

b b
00 = f ds = f VX()2 + y'(s)? + 7/(s)? ds

b
< «/5/ Z(s)ds = ﬁ(sgrgoz(s) — Z(So)),

so that

lim z(s) = oo.
S—> 00

A similar argument shows that a = —o0 with lim_, _o, z(s) = —o0. [
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On a Lorentzian surface S, a Cauchy surface is a subset I that intersects each
inextendible causal curve exactly once. A time-oriented Lorentzian surface S is
globally hyperbolic if and only if it admits a Cauchy surface. (See [1, p. 65] for
references.) Thus, Lemma 2 gives the following result.

THEOREM 2. If Z:S — E? is an E®-complete, timelike C™ immersion, then S
provided with the Lorentzian metric and time orientation induced by Z is globally
hyperbolic.

Proof. For each real constant c, let I'. be the set of all points on S that Z maps to
the horizontal plane z = cin E ? By Lemma 2, each inextendible causal curve on
S intersects I'; in exactly one point. It follows that I'; is a Cauchy surface and that
S is globally hyperbolic. O

Under the hypotheses of Theorem 2, the C°°-global time function z: S — Ris a
Cauchy time function, which means that the preimage under z of any real value ¢
is a Cauchy surface I'; on S. In Section 3 we study the Cauchy surfaces I'. under
the additional assumption that S is simply connected.

3. Extending the Conformal Bernstein Theorem

Fix a timelike C* immersion Z: S — E; and work with the Lorentzian metric /
on S induced by Z. Assume that S is oriented. Use on S only those C* coordi-
nate pairs whose chart maps are orientation preserving. In each tangent plane S,
label by X, (resp. ¥,) the null direction that coincides with a spacelike (resp. time-
like) 1-dimensional linear subspace when rotated in the positive sense by an arbi-
trarily small amount. A naturally ordered pair X, ¥ of C° null direction fields is
obtained on S by having X (resp. Y) assign the value X, (resp. Y,) to any point
ponS. (See [7, Lemma 1].) An X-line (resp. Y-line) on § is a maximal C* in-
tegral curve of X (resp. Y). A null line on S is either an X-line or a Y-line. Note
that any null line is an inextendible C*° causal curve on .

As in [3] and [7], the Minkowski 2-space E f is taken to be the (u, v) plane with
the metric du dv. A C* orientation preserving diffeomorphism x: V — x(V) C
E ‘12 from an open set V on S is conformal if and only if x*(du dv) = pl for some
C® function i > 0 on V. Every point p on § lies in the domain V of such a con-
formal C* orientation preserving diffeomorphism x:V — x(V) C E?, which
is called a proper null chart on S. (See [7, Lemma 2].) One easily checks that a
proper null chart x: V — E? takes connected portions of X-lines (resp. Y-lines)
onto horizontal (resp. vertical) line segments in (V).

A box U on S is the preimage under a propernullchart x: V — E 12 of a bounded
rectangular region (a, b) x (c, d) lying in x(V). Since any point p on S lies in a
box, a compactness argument shows that the image of any simple, nonclosed arc
A [a, B] — S along a null line lies in a box on S. If S is simply connected, the in-
tersection of an X-line (resp. Y-line) with a box U is a single curve A: (a, 8) — U
that any proper null chart x from U takes to a maximal horizontal (resp. vertical)
line segment in x(U) = (a, ) x (c,d). (See [7, Lemma 13].)
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If a regular C*° spacelike curve A: (@, B) — S lies in the domain V of a proper
null chart x, then (x o A): (o, B) — E12 is a curve in x(V) with positive slope.
For any point p on A, there is a box U in V containing p such that the portion of
A in U is connected, with x(A N U) crossing each maximal horizontal and verti-
cal segment in x(U) exactly once. Thus the set spx (L) (resp. spy (1)) containing
all points on all X-lines (resp. Y-lines) on § that intersect A contains U, as does
Spx (i) (resp. spy (i)) for any C* extension AofAonS.

Suppose now that S is simply connected. The existence of the Lorentzian metric
I on S guarantees that S is C* diffeomorphic to R?. (See [7, p. 53] or [1, p. 86].)
Moreover, it is well known that any regular spacelike C* curve A: (a,b) — S
must be simple and nonclosed. (See [1, p. 90].)

The next result looks more closely at the Cauchy surface I', defined in the proof
of Theorem 2 in case S is simply connected. Because Z is an immersion rather
than an imbedding, the set Z(I';) can have self-intersections. Nonetheless, one
has the following description of the set I'; of all points on S that Z maps to the
plane z = c.

LEMMA 3. Suppose Z:S — E 13 is an E3 complete timelike C™ immersion from
a simply connected surface S. Then, for any real constant c, the Cauchy sur-
face T, is a simple, nonclosed spacelike curve that has a C*° parameterization
I.: (—o0, 00) — S by E3 arclength.

Proof. Fix c, and write I' = I'; for convenience. Choose a point p on I'. Because
the C*° immersion Z is timelike, Z imbeds some neighborhood V of p as the
graph Z(V) of a C* real-valued function over an open set in the (x, z) plane or
the (y, z) plane. The horizontal plane z = ¢ cuts Z(V) in a simple, nonclosed,
C® spacelike curve in £ 13 that can be parameterized by E3 arclength. Thus, for
some neighborhood V of any point p on I', the portion of I" in V is a simple,
nonclosed regular C* spacelike curve y,.

The connected component I',, of I" containing y,, is simple and nonclosed, since
itis a regular C* spacelike curve on S. Fix an orientation on the simply connected
surface S. Let sp(I",) be the set of all points on all X-lines on S that intersect I',.
If a point g in spx (I';) lies on I',, then a box containing g lies in spx ('), mak-
ing g an interior point of spx(I',). If a point g in spx (I',) lies off I',, then there
is an arc A: [a, B] — S in spx(I',) along an X-line with A(a) = g and A(B) on
I',. Let U be a box containing A([«, 8]). If spx(ya(p)) is the set of all points on
all X-lines on S that intersect y, gy, then the intersection of sp(y,(g)) with U is a
(possibly smaller) box U, that contains A([a, 8]). Every X-line that intersects U,
lies in spx (I',), making g an interior point of spx(I',). It follows that spx (I') is
open.

By Lemma 2, every X-line on S intersects I'. Thus, S is the union of the sets
spx (I"g) for all points g on I'. The complement of spx (I',) in § is open, since it is
the union of the sets spx (I'y) for all points g on I' off T',,. If S has a point outside
of spx(I',) then S is disconnected, a contradiction. Thus I' = T',,.

The simple, nonclosed, regular spacelike curve I has a C* parameterization
I':(a,b) - SbyE? arclength. We must show that (a, b)) = R. Suppose b is
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finite, so that the points I"(s,) for any sequence s, in (a, b) with s, — b~ liein a
bounded set for the distance function d, defined by I, on S. Since I, is complete,
80 is d.. Thus, for some subsequence s,;, the points I'(s,; ) converge to a point g
on § as nj — 00. Since z = ¢ at Z(I'(s,,)) for all nj, it follows that z = ¢ at
Z(q), putting g on I'. But then some neighborhood of g contains just the portion
¥4 of I' on which g is an interior point, contradicting the definition of g. Thus b =
oo, and a similar argument shows that a = —oo. L]

When defining the conformal boundary of a simply connected, oriented, and time-
oriented Lorentzian surface in [3], Kulkarni placed a natural orientation on null
lines, making X-lines past directed and Y-lines future directed. The same conven-
tion is followed in {7]. This natural orientation parameterizes X-lines to the right
and Y-lines upward in E? if the timelike vector field 3/dv — 9/du is used to de-
fine the time orientation on EZ. This is the time orientation taken on E? in what
follows.

Given a timelike C* immersion Z: § — E; from a simply connected, oriented
surface S, use the time orientation induced on S by Z to naturally orient all null
lines. For any point p on S, use the naturally oriented null directions X, and Y, as
coordinate axes in S,. Naturally orient each Cauchy surface I'; so that I'(s) lies
in the first quadrant of S, at each point p = I'.(s).

LEMMA 4. Suppose Z:S — E? is a timelike C*° immersion from a simply con-
nected, oriented surface S, provided with the Lorentzian metric and time orien-
tation induced by Z. Then there is an orientation preserving C*™ diffeomorphism
¢:R? — S such that:

(1) for each fixed &y, ¢ (Lo, s) is a regular C*° parameterization of the Cauchy
surface U'_g, which respects the natural orientation on I'_y;
(ii) ¢(0, s) parameterizes Ty by E* arclength; and
(iii) for each fixed sg, ¢ (¢, so) parameterizes the X-line that passes through
¢ (0, s9) by the negative ¢ of the global time function z on S.

Proof. Let T'y: (—00, 00) — § parameterize Iy by E? arclength so as to respect
natural orientation on I'y, with s = 0 at some point pg on I'y. If ¢ (0, s) = T'p(s),
then all other values of ¢ (¢, s) are determined by (iii). Because § = spx(Io), ¢
is onto S. Since distinct X-lines never intersect on S and distinct Cauchy surfaces
I'; never intersect on S, ¢ is one—one. The field Z of tangent vectors to the X-lines
¢ (¢, so) for all fixed values sg is C* on S. Since ¢ (¢, s9): R — § is the maximal
integral curve of E with initial value ¢ (0, s¢) on the C* curve ¢ (0, s): R — S,
standard results in ordinary differential equations guarantee that ¢: R> — Sis C.

To show that the Jacobian matrix of ¢ has rank 2 everywhere, it suffices to prove
that the Jacobian matrix of Z o ¢ has rank 2 everywhere. Here (Z o ¢)(¢, s) =
(f(, 8), g(C, ), =) for C* functions f:R? — R and g:R?> — R. Given a
fixed &, the curve ¢ (&, s): R — S describes the Cauchy surface I'_,,. If o is E3
arclength on (Z o ¢)(&o, 5), then

(do/ds)* = f:(%o, $)* + 850, 5)%.
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To see that do/ds # 0, suppose ¢ had been defined with (ii) replaced by the re-
quirement that ¢ (&, s) is parameterized by its E3 arclength o for the one fixed
value ¢y. Arguing as before with the roles of Iy and I'_, reversed, one would see
that s is a C* function of o, which means that do/ds # 0. Since { is arbitrary,
the lemma is proved. C

Our next result refers to the conformal boundary 9¢S constructed by Kulkarni
in [3] for any simply connected, oriented, and time-oriented surface S. Only the
briefest description of 0¢.S and its properties is given here. For further background
and details, see [7, Chap. 4].

Assign to each null line y on the simply connected, oriented, and time-oriented
surface S a pair of ideal endpoints ¥y~ and y*. The natural orientation on y is
thought of as defining motion “toward y*” and “away from y~”. An end 7%
(resp. y|) of y is the portion of y beyond (resp. preceding) any one fixed point
on y. Thus an end y 1 (resp. y | ) is given the ideal endpoint y* (resp. y 7). If y
is an X-line (resp. Y-line), we write [, I, [~, I1, and |, (resp. m, m™, m~, m?,
and m]) for y, y*, ¥, ¥4, and y| in that order.

Suppose there is a proper null chart x: V — E? containing a box U for which
all of the closure R of R = x(U) except one vertex r lies in x(V). If, for some
X-line ! and Y-line m on S, one of the four situations (i)—(iv) listed next applies
to an ordered pair £, n of ideal endpoints, then (and only then) we write £ 7 1.

(i) The chart x maps an end /4 (resp. m1) onto the top (resp. right) edge of R
with &€ =1, n = m*, and r the upper right vertex of R. (See Figure 1a.)

(i1) The chart x maps an end m 1 (resp. [ ]) onto the left (resp. top) edge of R
with & =m™, n = 1", and r the upper right vertex of R. (See Figure 1b.)

(iii) The chart x maps an end /| (resp. m |) onto the bottom (resp. left) edge of
R with & =17, n = m™, and r the lower left vertex of R. (See Figure 1c.)

e = ~
> \
/ \ ;
! R R \
1 i !
I / \ ,
\ X(V) / \ X(V)
- - ey ~ - - - o ~ r
7
Vg \ / .
7 \ P R
\
'\ R ‘l : !
; A | /
|
r~ . x(V) « \\~ X()’,'
~ 7’ — m -
~--"C d

Figure 1
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(iv) The chart x maps an end m | (resp. /1) onto the right (resp. bottom) edge of
R with & = m~, n = [, and r the lower right vertex of R. (See Figure 1d.)

We write £ 7 n for an ordered pair &, n of ideal endpoints if and only if
there are ideal endpoints &;, &, ...,&, for some m = 2,3,... such that £ =
& & /7 --- /&, = n. Onenever has £ 7/ &€, nor can one have £ /"
for ideal endpoints £ and 5 of a single null line. In addition, one can never have
both § /" n and n A/ & for a particular pair &, n of ideal endpoints. (See [7,
Sec. 4.1].)

Let 3 be the set of all ideal endpoints on S. Write £ = n for £ and  in ¥ if and
onlyif§ =nor& //" norn /A7 &. Then = is an equivalence relation on X, and
Kulkarni defines d¢S as ¥/ =. Thus each point on d¢S is an equivalence class of
ideal endpoints on S. The ideal endpoints in any one point p on 9y S are linearly
ordered by /. Hence we can define the rank o ( p) of p as the number of ideal
endpoints in p if that is a finite number, as +oo if p has a first but no last entry, as
—oo if p has a last but no first entry, and as +oo if p has neither a first nor a last
entry. (See [7, Sec. 4.1] for examples that display all possible values for o(p).) If
o(p) = 2 (resp. o(p) = 1), then the type of p is the linearly ordered set of its en-
tries, so that any such p has type {I*, m*}, {m*, 17}, {{~,m™}, or {m~, [} (resp.
{1} {m™*} {17}, or {m™}).

The next result follows directly from Theorem 2 if one uses Higgins’s theo-
rem, stated in [7, p. 134] and proved in [2]. Since [2] has not yet appeared, an
independent argument using Lemma 4 to establish Theorem 3 is sketched below.

THEOREM 3. Suppose Z:S — E 13 is an E3-complete, timelike C™ immersion
of a simply connected, oriented surface S. Then, using the Lorentzian metric and
time orientation induced on S by Z,

(1) S is C*®-conformally diffeomorphic to a subset of E12 S0 as to preserve time

orientation, and
(ii) o(p) < 2 foreach p ondyS, with p oftype {m*, [~ }or {m~, It} ifo(p) = 2.

Proof. Use the orientation preserving C* diffeomorphism ¢: R? — S provided
by Lemma 4 to pull the time-oriented Lorentzian metric on S back to the (¢, s)
plane. Then ¢ is a regular C* parameter that respects natural orientation on each
X-line s = s¢. Similarly, s is a regular C* parameter that respects natural orien-
tation on each Cauchy surface { = &.

Every Cauchy surface I'; on S is naturally oriented, so that I"/(s¢) lies in the first
quadrant of S, for p = I'c(so) when the naturally oriented null directions X, and
Y, are taken as coordinate axes in S,. By Lemma 2, it follows that each Y-line in
the (¢, s) plane coincides with the graph of a C* function s = f(¢), with f'(¢) <
0 for all real values of . The global time function z = —¢ is a regular C* pa-
rameter on each Y-line s = f(¢) that respects natural orientation. Over the inter-
val f(R), s is also a regular C°° parameter on each Y-line s = f(¢) that respects
natural orientation.

Given a point (g, so), let (0, u(&o, s0)) be the point where the Y-line through
(%o, o) crosses the Cauchy surface { = 0. Thus, for each real constant ¢, the
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equation u(¢, s) = c describes a Y-line s = f(£). We leave it to the reader to
check that u(¢, s) is C* with u.(¢, s) > 0 and u,(¢,s) > 0. Hence, the map
¥:R? — E? given by

(&, s) = W, s),s)

is C* and one—one onto an open set 2 in EZ. The Jacobian matrix

(u; 0)
us, 1
of i has positive determinant, so that { preserves orientation.

Since i takes X-lines (resp. Y-lines) in the (¢, s) plane onto X-lines (resp. Y-
lines) in €2, it follows that ¥r: R? — Q is a C*®-conformal diffeomorphism. (See
[7, p. 37].) Thus ¥ o ¢! is a C*®-conformal diffeomorphism taking S onto & C
E f Because natural orientation on X-lines and Y-lines is preserved by ¢ and ¢,
¥ o ¢! is also time-orientation preserving. This establishes (i).

Because €2 is not a bounded set in the (#, v) plane, some points on do€2 are hard
to visualize. Thus we replace 2 by its image Qc (-1, D) x(-1,1) C E12 under
the orientation and time-orientation preserving C *°-conformal diffeomorphism of
E? taking u to tanh « and v to tanh v. The points on 90$2 are represented by points
on the topological boundary of QinE f that are endpoints of maximal horizontal
or vertical line segments in Q. To study ¢S, we study dg <.

If o(p) > 3 at a point p on 0<2, then p contains three ideal endpoints satisfy-
ingmy /Ut mf I mt A, mi 1T Smy,orly SmT L (See
Figure 2.) In all four cases, two different null lines (/; and /5 or m; and m>) in &

AN
p
m, 7, > Q A >
] . AN
>—0p
N
m, m
/N A
)
DS ] > m
AN L \ ) { b N
7 O 7
m, p

Figure 2
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p
m
" l
p >
Figure 3

lie to opposite sides of p along the same horizontal or vertical line in the (u, v)
plane. Since each Cauchy surface I', on S is taken to a curve of positive slope in
fZ, the image of I'; cannot meet both /; and /, or both m; and m,. Since I', crosses
every null line in S, its image must do the same in 2. This contradiction gives
o(p) < 2. Suppose o(p) = 2 for p on 3¢$2, with p of type {It, m*} or {{=, m™}.

(See Figure 3.) In either case, the image of a Cauchy surface I'; is a curve of
positive slope in €2 that cannot meet both ! and m. Thus p has type {m*,17} or
{m~, 1T}, which completes the proof of (ii). O

Theorem 3 can be used to obtain the following extension of Theorem 1 from [4].

THEOREM 4. SupposeZ.S — E f’ is an E3-complete C™ timelike immersion from
a simply connected S. If Z is minimal outside a compact subset Sy of S, then S
with the Lorentzian metric induced by Z is C*®-conformally diffeomorphic to E?.

Proof. Orient S and use Z to time-orient S. Then § can be replaced by the sub-
set Q of E 2 described in the proof of Theorem 3. Let Qo be the compact subset
of Q corresponding to Sy, and think of Z as an immersion Z: Q> E ? By The-
orem 3, o(p) < 2 for any p on 392 with p of type {m*, 1~} or {m™, [*} in case
o(p) = 2. Suppose there is a point p on 32 with o(p) = 2, so that one of the
diagrams in Figure 4 applies. There is a rectangle R = (a, b) x (c, d) whose clo-
sure in the (#, v) plane less p lies in €2, with one side along ! and another side
along m. Here R can be made so small that its closure in €2 lies in an open set I C
Q, withid N Q¢ = ¥, whose intersection with any horizontal or vertical line in the
(u, v) plane is either empty or a single line segment. Since Z is minimal outside
of Q¢, mean curvature H for Z vanishes on /. Since

I =pdudv

N
i rd

/
> p

Figure 4
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for some C* function ¢ > 0, the middle coefficient of /I must vanish on U/,
which means that Z,, = 0 on 4. (See [7, p. 176].) It follows from the shape of I/
that

Z(u,v) = X))+ Y©w)

on . Since Z is E3-complete, the E3 length of the portion Iy of ! bordering R
is infinite. Since the values of Z along any maximal horizontal line interval Z
differ from those along /y by a constant vector in £ f, the E3 length of Z must
be infinite. But this is impossible, since the closure of Zy is the compact im-
age of an arc A: [a, b] — Q along an X-line in 2. This contradiction shows that
o(p)=1on aos“z. By [7, Lemma 27, p. 94], it follows that Q (and thereby S) is
C*-conformally diffeomorphic to E?. O

A corollary of Theorem 4 is the conformal Bernstein theorem from [4], which
states that any entire timelike minimal surface in E; must be C*-conformally dif-
feomorphic to E?. By Theorem 4, we now know that any entire timelike surface
in E} is C*-conformally diffeomorphic to E? provided it is minimal outside a
compact set.

4. Some Examples

In this section we construct uncountably many simply connected globally hyper-
bolic subsurfaces of EZ, any two of which are C°-conformally distinct and thersby
C°°-conformally distinct. For the definition of C/-conformal equivalence for any

Jj=0,1,...; 00, see [7, Sec. 3.1]. To see that these sorts of conformal equiva-
lence are different from one another, see [6].
Given a real number r with 0 < r < 1, let r = .rjrar3... be the binary

expansion of r, chosen so that
oo
r.
r= E 517
j=1

without allowing r; = 1 when j > jo for any fixed jo = 2, 3, ... . Associate to
r =.rirar3 ... two sequences {p} and {gx} of points in E% with

K14 1
p":(z 2irJ’ZE)’

j=1 j=1

k+1 1 k rj 1
q":(ZE_*—Z_j’ZE)’

j=l =1 j=1

A

so that both p; and g, converge to the point (1 + r, 1) as k — oo.

Construct a simple closed arc A, in E} beginning and ending at the point
(1 4 r, 1) by following in order the line segments joining (1 + r, 1) to (0, 1),
(0, 1) to (0,0), (0,0) to (1/2,0), (1/2,0) to p1, p1 to g1, q1 to g2, ..., p; tO
gk, and gi to pryq, ... . Let S, be the interior of A, provided with the Lorentzian
metric, orientation and time orientation induced from E 12
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To see that S, is globally hyperbolic, let y:[0, 1] — S, U A, be any C* arc
with y (0) = (0,0), y(1) = (1 +r, 1), and y(¢) in S, with y’(¢) spacelike for 0 <
t < 1. Then y: (0, 1) — S, is a Cauchy surface on S,.

To show that S, and S,, are C*°-conformally distinct when r # r’, look at the
conformal boundary 9y S, for any » with 0 < r < 1. (Claims made about 3¢S, can
be checked in [7, Secs. 4.2-4.5].) Each point on 3y S, is represented by the end-
point of a maximal horizontal and/or vertical line segment in S,. Thus every point
on A, represents a point on d¢S,, except for the points (1 + r, 1), (0, 1), (0, 0),
and (1/2,0) in case r; = 0 and for the points g; in case ry; = O for a given
k=1,2,....The topology on 3¢S, as defined in [7, Sec. 4.3] coincides with the
topology induced upon it as a subset of A, by E?. There is also a cyclic order on
305, (defined by Smyth in [5] and described in [7, Sec. 4.5]) that coincides with
the usual counterclockwise cyclic order of points on A,. This cyclic order puts a
linear order on the points lying along any one line segment on 9yS,.

Each point on the open line segment from (1 + r, 1) to (0, 1) (resp. from (0, 1)
to (0, 0) or from (0, 0) to (1/2, 0)) has rank 1 and type {m*} (resp. type {I~} or
{m™}).If r; =1, then (1/2, 0) is also a rank-1 point of type {m~} on 3¢ S,. Simi-
larly, if ry4; = 1 forsome k =1, 2, .. ., then gy is a rank-1 point of type {m~} on
30S,. Forevery k = 1,2, ..., py is a rank-2 point of type {m~, [*}. Each point
p on the open line segment from (1/2, 0) to p; (resp. from g to piryq for k =
1,2,...) has rank r| + 1 (resp. rry1 + 1) and type {7} if o(p) = 1 and type
{m~, 1%} if o(p) = 2. Finally, every point on the open line segment from py to gy
forany k = 1,2, ... has rank 1 and type {m~}.

Fix r and r’ withO <r < 1 and 0 < r’ < 1. Any orientation and time-orientation
preserving C*°-conformal diffeomorphism F from S, onto S, is automatically an
orientation and time-orientation preserving conformal homeomorphism from S,
onto S,+ (as defined in [7, Sec. 3.1]). Any orientation and time-orientation pre-
serving conformal homeomorphism F from S, to S, extends uniquely to a homeo-
morphism F from S, UdgS, onto S,» UdyS,, which restricts to a homeomorphism
dF from 9¢S, to d¢S,/. The map 9F preserves rank as well as the type of rank-1
and rank-2 points. Finally, 3¢S, preserves cyclic order, so that p < ¢ <> r on
d0S, implies that F(p) — F(q) <— F(r) on 9yS,-.

It is now easy to check that dF takes each maximal line segment on 39S, onto
the corresponding maximal line segment on 3¢S,/ so as to preserve the linear or-
der induced by counterclockwise cyclic order. If | = 0, then (1/2, 0) does not
lie on 8¢S, and therefore cannot lie on 3¢S,+, which gives r’ = 0. If r{ = 1, then
(1/2, 0) lies on 99 S, is fixed by dF, and lies on 3¢S,; this gives ' = 1. Assume
that r; = rj’ forj=1,2,...,kforany k =1, 2, ... . Then each point p; and g;
on A, coincides with the corresponding point p; andg; on A, for j = 1,2, ... k.
If rp 1 = 0, then g does not lie on d¢S, and therefore cannot lie on 9¢S,/, which
gives r/ 41 = 0. If reyp = 1, then g lies on 3¢S, and therefore lies on 39S, ,
which gives r/; = 1. The existence of an orientation and time-orientation pre-
serving conformal homeomorphism F from S, onto S, thus implies that r = r’.
We conclude that there are uncountably many C °- (and thereby C °°-) conformally
distinct simply connected subsurfaces S, of £ 2 one foreachr with0 < r < 1.
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