The Hardy Class of Kcenigs Maps

PiIETRO POGGI-CORRADINI

1. Introduction

An analytic function ¢ on D such that ¢ (ID) C D induces a linear (composition)
operator Cy(f) = f o ¢ on the functions f defined on ID. The operator C; is
bounded on the Hilbert space H?(ID) of analytic functions f on ID such that

2
sup f | f(re)?db < oo (1.1)
O<r<l1J0

In this article we restrict our attention to the case when ¢ fixes a point in the
disk and has nonzero derivative there. Without loss of generality we can conju-
gate such a fixed point to the origin with a Mdbius transformation; to avoid trivial
situations, we assume that ¢ is not an automorphism of D.

DEFINITION 1.1. We consider the family A of functions ¢ that are analytic on D,
withg (D) C D, ¢(0) =0, and 0 < |¢'(0)] < 1.

For each function ¢ € A, Koenigs’s theorem (see Proposition on p. 91 of [Sh2])
provides a function o analytic on I, with ¢(0) = 0 and o’(0) # 0, that solves
Schréder’s equation:

oco@(z) =xro(2) VzeD (1.2)

with A = ¢'(0).

Near the origin, ¢ ~ Az and o conjugates ¢ to Az (since o is one-to-one in a
neighborhood of zero). However, o is defined in the whole unit disk and, by (1.2),
it intertwines the action of ¢ on D with multiplication by A on C. Therefore, the
growth of o near dID should encapsulate the repelling properties of ¢ near JlD.

We first determine how we are going to measure the growth of o. Recall that,
for each p > 0, one defines the Hardy space H”(ID) of analytic functions on D
satisfying a growth condition as in (1.1) by replacing | f(re’?)|? with | f(re'?)|?,
and the Nevanlinna class A/ (D) by replacing | f(re'®)|* with log™| f(re'?)|. Then
HP (D) ¢ HP2(D) for p; > p», and Up>0 HP(ID) is strictly contained in N (D).
For every analytic function f on D we set A(f) = sup{p > 0: f € H’(D)} €
[0, oo] and call it the Hardy number of f. Cleatly, f € H?(ID) when 0 < p <
h(f) and f ¢ HP(ID) when h(f) < p < oo; however, at issue is determining
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what happens when p = h(f) € (0, c0). In a sense, the smaller k( f) is, the faster
f grows. For instance, if fp is the Riemann map of ID onto a straight sector of
opening 8, then h(fy) = m/6. In this case it is also well known that f, ¢ HP(ID)
for p = /0. We will show that Kcenigs maps behave very much like the fjy.

On the other hand, the behavior of ¢ near d1D will be described by the essential
spectral radius r,(C,) of Cy4 acting on H?(D). Recall that

R T nyl/n
re(Cy) = lim [ICHIL", (13)
where || - ||, denotes essential norm—that is, || - ||, is the distance in the opera-

tor norm to the space of compact operators on H2(ID). Notice that Cy = Cy,,
where ¢, = ¢ o - - - o ¢ is the nth-iterate of ¢, and recall that Shapiro has obtained
[Sh1] a formula for ||Cy |, in terms of the Nevanlinna counting function Ny of ¢.
Shapiro’s formula states that

ICl2 = lim sup —22)_
wi—1 log(1/|wl)
where Ny (w) is defined to be Zj log(1/|z;]) and {z;} = ¢~'(w), listed with mul-
tiplicity, for all w € ¢ (D) \ {0}. Therefore, r.(Cy) measures the behavior near 9D
of the Nevanlinna counting function of an iterate ¢, of ¢ as n becomes large.
In this article we will show that

re(Cy) = |A|")/2 (1.5)

1.4)

for any ¢ € A.

One direction of (1.5) was proved recently by Bourdon and Shapiro in [BS].
Namely, they prove that r,(C,) > |A|*@)/2 Moreover, they show that if ¢ € A is
inner then o ¢ N/ (ID), hence h(o) = 0 and r.(Cy) = 1. In [BS], the authors ob-
tain r.(Cy) < |A|#©)/2 when ¢ extends to be analytic in a neighborhood of 3D,
and ask if this inequality holds for general maps ¢ € A. At almost the same time,
in [P-C1] we showed that r,(Cy) < |A|*)/2 under the hypothesis that ¢ is uni-
valent, without any smoothness assumption about ¢ on dD. In the present paper,
we drop the univalence condition and extend our previous result to every ¢ € A.
Moreover, we show that when ¢ is not inner then A(co) > 0, that is, r.(Cy) < 1.
The property of ¢ being inner thus provides a dichotomy for the mean growth
behavior of the Keenigs map o.

QuESTION 1.2. Is it possible to relate 2(o’) to a quantity that describes the map-
ping properties of ¢ alone, without having to consider the whole sequence of
iterates ¢,,?

In the particular case when ¢ is univalent, this question was settled in [P-C2].
Namely, we studied the dynamics of ¢ near 01D and computed /(o) in terms of the
smallest product of angular derivatives evaluated along the boundary-repelling cy-
cles of ¢. In particular, the case where ¢ has no boundary-repelling cycles corre-
sponded to k(o) = co. However, for nonunivalent functions, angular derivatives
are not the right object to look at because there are examples of infinite Blaschke
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products, hence with #(o) = 0, that have no angular derivatives (see [Sh2, Sec.
10.2]).

2. Statement of Results

The fact that o satisfies the functional equation (1.2) makes it possible to estimate
the Hardy number of o in terms of the harmonic measure of the level sets of o,
and to establish that o ¢ H?(ID) when p = h(o) € (0, co). We have gathered the
properties of o in Theorem 2.1. If zg is a point in aregion 2 C C and F is a Borel
subset of 382, we let w(zg, F, 2) denote the harmonic measure of F in £2 at the
point zg (see Section 3 for a precise definition).

THEOREM 2.1. Let ¢ be an analytic function on D, with ¢(D) C D, ¢(0) =0,
and ¢'(0) = A # 0, and let o be the Keenigs functionof ¢. Leth(o) = sup{p >0 :
o € HP(D) } be the Hardy number of o. For o > 0, let 2, be the component of
{ze€eD:|o(z)| < a} containing the origin, let Fy, = 02, N D, and let w, =
w (0, Fy, Q24). Then:

(1) the limit u(o) = limy_, o (log(l/wy)/log ) exists in [0, oo];

(ii) h(o) = p(o); and
(1) if u(o) € (0, 00) then o ¢ HP(D) for p = u(o).
Moreover, if ¢ is not an inner function then p(o) > 0.

Using this description, we then obtain the following theorem.

THEOREM 2.2. Let ¢, A, and h(o) be defined as in Theorem 2.1. Let Cy be the
composition operator induced by ¢ on the Hardy space H*(D), and let r,(Cy)
denote the essential spectral radius of Cy. Then, if ¢ is not an inner function,

re(Cp) < MMO2 < 1.
The next corollary follows from Theorem 2.2 and the results of [BS].
COROLLARY 2.3.  In the notation of Theorem 2.2, r,(Cy) = |A|"@)/2,
The next corollary follows from Theorem 2.1 and Theorem 2.2 of [Dul].

COROLLARY 2.4. Let ¢ and o be as in Theorem 2.1. If ¢ is not inner, then o has
nontangential limits almost everywhere on 0.

The working tools throughout this paper are the level sets F, of o as defined in
Theorem 2.1. In Section 3, we prove some technical lemmas about the mapping
properties of ¢ with respect to the sets F,. In Section 4, we first prove Theorem
2.2 using Proposition 4.1, which estimates the essential norms of Cj in terms of
the harmonic measure of the sets F,,. We then relate the Nevanlinna counting func-
tion of ¢ to harmonic measure, and prove Proposition 4.1. In Section 5 we relate
the Hardy class of an arbitrary analytic function on D to the behavior of the har-
monic measure of its level sets. In Section 6 we show that, with respect to their
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level sets, Kcenigs maps behave like the Riemann map of ID onto a straight sector,
and finally we prove Theorem 2.1.

3. A Different Form of Schwarz’s Lemma

We first need to collect some preliminary facts about the level sets F, and the
sets 2, defined in Theorem 2.1, Recall that, for « > 0, €2, is the component of
{z€D: |o(z)] < a} that contains the origin and F, is the relative boundary of
Q4 inD. Thus {2, } is an increasing family of nonempty (because o (0) = 0) sim-
ply connected regions, the sets F,, are disjoint for different &, and if oy < oy < a3
then F,, separates F,, from F,, in 2,,. Observe that, since o satisfies Schroder’s
equation (1.2), the following properties hold for all ¢ > O:

¢(a) C Qe and  ¢(Fo) C Fiaja- (3.1

In fact, if z € Q, then there is a path y C 2, connecting O to z; by (1.2), the
path ¢(y) connects 0 to ¢ (z) and is contained in the set {z €D : |o(z)| < |A|e }.
Hence ¢ (z) € Q). A similar argument yields the statement about F,,.

If E is a closed subset of D we assume that w(z, E, D\ E), the harmonic mea-
sure of E at z in the region D \ E, is the Perron solution of the Dirichlet problem
in D \ E with boundary data equal to the characteristic function xp of the set E.
Therefore, w(z, E, D\ E) is the harmonic function obtained as the supremum of
all the subharmonic functions v(z) in D \ E that satisfy lim sup,_, . v(z) < x£(¢)
for every £ € 3(ID \ E) (such v are often called “candidates” for the Perron solu-
tion). We refer the reader to [Co, p. 266] for more information on Perron’s method.
Also, recall that the hyperbolic distance between two points a, b € D is defined
by:

b—a

1+\1 :

pp(a, b) = log b_aa
1— -

1 — ba

Suppose E is aclosed setin D\ 2, for some @ > 0, so that F, separates E from 0
inD. Then, by (3.1), Fy» separates ¢~ I(E) from 0 in D and, by the invariant form
of Schwarz’s lemma (Theorem 1.4.1 of [CG]), pp(Fu, E) < pn(Fayp|s o~ UE)).
We claim that a similar inequality holds if we use harmonic measure instead of
hyperbolic distance. Hence, we think of the following lemma as a different form
of Schwarz’s lemma. For simplicity we restrict ourselves to nice sets E.

LEMMA 3.1. Let E be a closed set in D. Let u(z) = w(z, E,D\ E) and u(z) =
w(z, 9~ YE), D\ ¢ 1(E)). Suppose also that 3(D \ E) N E is locally an analytic
arc. If EN Qy, = @ for some o > 0, then o (E)N Qo =0 and

sup u(¢) = sup u($).

{€Fy E€Fa/p)
Proof. Let ¥ be a candidate for i on D \ ¢~!(E). Note that ¢ (D \ ¢~ (E)) C
D\ E, so 0 — u o ¢ is subharmonic on D \ ¢ !(E). Forz €D\ ¢ Y (E)and ¢ €
3D\ ¢~ (E)),
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limsup v(z) —uo¢(z) <0. (3.2)
bangd
In fact, when ¢ € 8D, (3.2) holds because limsup,_, , v(z) <O0and u o ¢p(z) >
0. For £ € ¢71(E), we have limsup,_,, #(z) < 1 by definition, but on the other
hand lim,_,, u 0 ¢(z) = 1, because ¢(¢) € E and—since 9(D \ E) N E is locally
an analytic arc—there is a barrier for D \ E at ¢ (¢) (see [Co, pp. 269-271]).
Thus, by the maximum principle for subharmonic functions, (3.2) implies that
U < u o ¢ and, since ¥ is arbitrary, i < u o¢ on D \ ¢~ !(E). Then, by (3.1),
¢~ (E) N Qqypp = 0. Thus
sup u#(§) < sup u(¢(é))

§€Fyy §€Fyn

< sup u(})
sed(Foyap)

< sup u(?),
teFy

where the last inequality follows from (3.1). 0

Lemma 3.1 will be used in conjunction with another maximum principle trick
known as “the conditional probability estimate”, which we now state and prove
for convenience.

LEMMA 3.2. Suppose E is a closed set in D \ Q4 for some a > 0, and let w, =
w0, Fy, 24). Then

w0, E,D\ E) <w, sup w(¢, E,D\ E).
ek,
Proof. Let u(z) = w(z, Fy, y) for z € 4. Let v be a candidate for w(z, E,
D\ E)inD\ E, and let § = sup,.p, @({, E,D \ E). Then, for z € 2, and
¢ €08,
lim sup v(z) — Su(z) <O0.

rand s
In fact, if { € 9D, then limsup,_, ¢ v(z) < 0 and Su(z) = 0. On the other hand,
if € Fy, thenlimsup,_,, v(z) < S and lim,,; Su(z) = S because Fy, is locally
an analytic arc. Therefore, by the maximum principle for subharmonic functions,
v < Su on £2,. Since v is arbitrary, Lemma 3.2 follows by evaluating at zero. [J

4. The Nevanlinna Counting Function
and Harmonic Measure

The following key estimate relates the essential norm of Cj to harmonic measure.

ProrosITION 4.1. Fora > 0, let w, be defined as in Theorem 2.1. Consider the
sequence o, = |A|7™", n = 1,2, ..., which tends to infinity. Then there exists a
constant Cy > 0 depending only on ¢ such that, for alln > 1,

1Cs, 117 < Cow,.
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We will prove Proposition 4.1 at the end of this section, but first we show how,
together with Theorem 2.1, it implies Theorem 2.2.

Proof of Theorem 2.2. By Proposition 4.1,
I1Cs, 12" < €' exp{—log(1/wa,)/n}.

Letting » tend to infinity and observing that log o, = nlog(1/|A|), by Theorem
2.1(1) and (i1) we obtain that

re(Cy) < exp(—log(1/|A]) u(0)/2} = A2, -

In order to prove Proposition 4.1 we will use (1.4) and estimate the Nevanlinna
counting function in terms of harmonic measure.

Because o'(0) # 0, it follows that ¢ is one-to-one on some disk sID with 0 <
s < 1. To simplify the notation, in the following we will always assume, with-
out loss of generality, that 2ID C o (sDD). In fact, we can just multiply o by a large
enough constant; then (1.2) still holds and /(o) is unchanged. Hence,

Q c sD. 4.1)

Let 5 > 0 be chosen so that the hyperbolic disk of radius § centered at 0 is sD,
thatis, § = log(1+s)/(1 —=s). Forevery w € D\ s, we let A,, denote the closed
hyperbolic disk of radius § centered at w. Then

log(1/|w])
log(1/s) ~

The next lemma estimates the Nevanlinna counting function Ng(w) in terms of
the harmonic measure of ¢~(A,) at 0.

w0, Ay, D\ Ay) = 0w, sD, D\ sD) = (4.2)

LEMMA 4.2. Let ¢ € A. For every w € ¢p(D) \ sD, let {z;}° = ¢~ 1(w) and let
Ng(w) = Y%, log(1/1z;]). Then

Ng(w) < log(1/5)0(0, ¢ (Ay), D\ ¢7'(Ay))

Proof. Let M be a Mobius transformation of ID that sends w to 0, and set ¢ =
M o ¢. Then {z;}{° = ¥~ 1(0) and ¥ (D) C D. Fix an integer n > 1. By the
maximum modulus principle, for all z € D we have

@) <[]
j=1

Consider the finite Blaschke product

) (4.3)

Zj —Z
1 -7z

n

Zj — <X
B,(z) = —
Jl:! 1 -7z
Then, by (4.3) and since M (A,) = s,
B '(sD) C ¥ '(sD) = ¢~ '(Aw).




Hardy Class of Kenigs Maps 501

Now w(z, By '(sD), D\ B, (sD)) = log(1/|B4(z)])/log(1/s). Thus, for z €D\
¢ (Aw),
log(1/]Bx(2)|)
log(1/s)

Evaluating at the origin and multiplying both sides by log(1/s), we obtain

< 0(z,07'(Aw), D\ ¢ (Ay)).

A)

i 1 1
Zlogm < log( )w(o, ¢~ (Aw), D\ ¢~ (Aw)).
j=1 J

Lemma 4.2 follows by letting n tend to infinity. |

Proof of Proposition 4.1. Note that, if ||Cy, ||, = 0 for some n > 1, then the in-
equality we need to prove is trivially satisfied. So, fix an integer » > 1 and assume
that ||Cy, || > 0. By (1.4) we can choose a sequence {wy,},"_; C ¢,(ID) such that
|wy,| tends to unity and Ny, (w,,)/log(1/|w,|) tends to ||Cy, ||g as m tends to in-
finity. Since |w,,| — 1, we can assume that A,, N sDD = @ for all m > 1, where
s is the same as in (4.1). By Lemma 4.2, Ny, (w,,)/log(1/s) is less than

@(0, 97 (Aw,), D\ ¢, (Aw,)). (4.4)

Because A, N2 = B, by (3.1) we have (,b;‘(Awm) Ny, =P forallm > 1.
Fix an integer m > 1. By Lemma 3.2 with E replaced by ¢"!(A,,, ) and o by o,
(4.4) is less than

Wa, SUP (L, ¢7 ' (Ay,), D\ ¢ (Ay,))- 4.5)

{eFy,

Therefore, by Lemma 3.1 with E replaced by A,, , a by 1, and ¢ by ¢,,, (4.5) is
less than

Oy SUP O, Ay, D\ Ayy). (4.6)
LeR

Since Fy = 9€; C sD, by Harnack’s inequality there is a constant Co > 1
depending only on €2 and s such that

sup w(¢, Awm, D\ Awm) < Cow(0, Awm, D\ Awm).
{eF

Finally, by (4.2), w(0, Ay,,, D\ A,,) = log(1/|w,])/log(1/s). Thus, the term
log(1/s) cancels out and, dividing both sides by log(1/|w,,|), we obtain

Nd)n(wm) < Cow
log(1/|lwm]) — s

Letting m tend to infinity, we obtain Proposition 4.1. O

Now it remains to prove Theorem 2.1, which we do in the next two sections.
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5. The Hardy Class of Analytic Functions
and Harmonic Measure

The next proposition provides a characterization of the Hardy spaces HP(D) in
terms of the harmonic measure of the level sets. In [ESS, Thm. 7] this charac-
terization is obtained with the extra hypothesis that the complement of the image
region has positive capacity. This condition is used in [ESS] to prove the suffi-
ciency of the integral condition, but is in fact not needed. We include here, for
completeness, a proof of Proposition 5.1.

PROPOSITION 5.1.  Assume that \ is an analytic function on D. For every o > 0,
let Q2 be the component of {z € D : |W(2)| < a} containing the origin, F, =
02, ND, and w, = w (0, Fy, S24). Then, for 0 < p < oo,

(o]
Y e HP(D) < / o? w, da < .
0

Proof. Suppose first that f0°° P lw, da < oo for some p > 0. Fix0 < r < 1.
Then, by Fubini’s theorem,

27 o0
f |w(re"")|f’d9=[ paP {0 : [Y(re®)| > a}|de,
0 0

where | - | denotes Lebesgue measure of a set of real numbers. Fix & > 0 and let
K, be the set of points on the circle |z] = r such that |y (z)| > «. Then

HO : 1Y (re®)| > a}| = 27w(0, Ky, rD).

Also, K, N 2, = @, so F, separates K, from 0 in ID. Thus, by the maximum
principle,
CI)(O, Kou r]D)) S C!)(O, Kas ]D) \ KO!) S (l)a

and
o0

27
/ |¥ (re'®)|P do < 27rp/ o’ lw, da < oo.
0 0

Since 0 < r < 1 was arbitrary, we obtain that ¢ € H”(ID).
Before proving the converse, we recall the following definition.

DEFINITION 5.2. For ¢ € 0D, consider the nontangential region
IF'@)={zeD: | —z] <21 — |z }.

Then a non-tangential maximal function 1,5 of i is defined at every point ¢ € 0D
by putting _
¥ (¢) = sup | ()|
zel'(§)
Now suppose that ¥ € H? (D). Then ¢ has nontangential limits almost everywhere
on 9D, and by [ Du, Thm. 2.6] it follows that

2
f v (e'®)|P do < oo.
0
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Also, by a theorem of Hardy and Littlewood (see [Ga, p. 57]),

2w 27
f [ ()P do < B/ [ ()P do < oo,
0 0

where B > 0 is a constant depending only on p. Hence, for all ¢ > 0, we let
E, = {€" : |¥ ()| = a }. Then, by Fubini’s theorem,

o0
f aP 1w (0, E,, D) da < oo. (5.1)
0

Fixwe F,, andlet I = {e'? : jw — €] <2(1 — |w|) }. We have I C E, and
|I] > Co(1 — |w]) for some constant 0 < Cy < 1 independent of w. Then

— lanl2
1—|w|* dé g Co

E,D)> | -2 2Y o
oW, B, D) = | S B =

= Cy, (5.2)

where 0 < C; < 1. Thus, if C, = C;/2 and U, is the component containing the
origin of the set of z € D where w(z, Ey, D) < C;, then F, NU, = @. Hence 3U,
separates F, from 0 in D, since U, is eventually a nonempty neighborhood of 0
because, by (5.1), w(0, E,, D) tends to zero as « tends to infinity. Thus

we <w(0,0U, ND, Uy,).
Moreover, as we shall show,
w(0,0U, ND, U,) < w(0, E,,D)/C,. (53)

Therefore, by (5.1), f0°° a? lw, da < co and the converse is proved.

To see why (5.3) holds, notice that, for every fixed ¢ € U, N D, w(z, Ey, D)
tends to C, as z tends to ¢, and otherwise w(z, Ey, D) > 0. Thus, if v is an ar-
bitrary candidate for w (0, 0U, N D, U,) then we always have w(z, Ey, D)/ Cy >
v(z), and the inequality follows by taking the supremum over all the v. O

We now obtain some immediate consequences of Proposition 5.1. The next defi-
nition is inspired by the behavior of the Riemann maps of ID onto straight sectors.

DEFINITION 5.3. Let ¢ be an analytic function on D. Let F, be defined as in
Proposition 5.1. We say that v is sectorlike if:

(a) the limit

. log(1/wy
a—00 oguo

exists in [0, oc]; and
(b) when p(yr) € (0, co) there is a C > 0 such that, foro > 1,

_log(/we) €
logaa ~ loga’

n(yr)

PROPOSITION 5.4. Suppose that v is sectorlike. Then, for 0 < p < o0,

Y e HP(D) < 0 < p < u(y).
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Proof. By Proposition 5.1, ¢ € HP(D) if and only if
/ % g p-log(l/wa)/loga g, (5.4)
0

converges. Now, if 0 < p < u(¥) then (5.4) converges, so ¥ € H?(ID). Con-
versely, assume that ¥ € H”(D) for some 0 < p < oco. If u(¥) < p then (5.4)
diverges, and if () = p then, by Definition 5.3(b), (5.4) is bounded below by

o,0]
/ e Ca ! da,
1

which also diverges. We have thus reached a contradiction, so 0 < p < u(yr).
]

6. Kenigs Maps Are Sectorlike

We are now ready to prove Theorem 2.1. Toward this end, we will show that if o
is the Kcenigs map associated to a function ¢ € A then o is sectorlike, so that (by
Proposition 5.4) the Hardy number k(o) = sup{p > 0: 0 € HP(D) } is equal to
the limit © (o) in Definition 5.3, and 0 € H?(D) if and only if 0 < p < u(o).
Moreover, we will also show that, when ¢ is not an inner function, (o) > 0.

Proof of Theorem 2.1. For o > 0, let ,, F,, and w, be as defined in Theorem
2.1. We assume that o is normalized so that (4.1) holds, that is, Q; C sD for some
0 < 5 < 1. Also, we assume that ¢ is unbounded, so that w, > O forall « > 0,
because otherwise Theorem 2.1 is trivially proved.

Fix B > 1 and find an integer N > 1 such that

A/IAD¥ < B < a/1aD”. (6.1)
For all « > B, there is an integer H > 1 such that
BA/IMTON <o < B(1/1ADTV. (6.2)

Having set the scales in which we are measuring the sizes of « and g, we let
Ty, = Fg-wv and W), = Qg -wv for h € Z. Iterating the conditional probability
estimate of Lemma 3.2, we obtain

H—1

wa <[] sup w(C Ty, Wn). (6.3)
h=0 $€Th-1

Notice that, by (3.1), 7y (Fg) N Wy, = @ and ¢}, 5 (F) D Tj,. Therefore,

sup (¢, Tn, Wi) = sup (¢, djn(Fp), D\ ¢jp (Fp))-
t€Ty— teTy

We now apply Lemma 3.1 with E replaced by Fg, o by IA|NB, and ¢ by ¢pu.
Then, forh =0,...,H — 1,

sup (¢, Pyn(Fp), D\ ¢y (Fp)) < sup w(&, Fp, Qp).
€Ty teT
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Finally, using the fact that, by (6.1), BIAN < 1 and thus T_; C Q; C sD, (6.3)
becomes

H
Wy < ( sup (¢, Fg, QB)) .
re
Write Pg for sup, g, @ (&, Fg, 2p). Taking logarithms and using (6.2), we obtain
log(1/we) _ H log(1/ Pp)
logae — HNlog(1/|A]) +logB’
Letting « tend to infinity, H also tends to infinity. Hence,
log(1 log(1/P,
lim inf 08{/@a) > og(1/Pp)
a—>00 loga Nlog(1/|A])
By (6.1), N log(1/[A]) < log B + log(1/IA]), so
log(l/wq log(1/P
liminf 08U/@) > og/Pp)
avco  loga  — log B+ log(1/[A])

This estimate will be used in the sequel.

Because o is bounded on sD, there exists a B¢ > 1 such that sD ¢ Qg for all
B > Bo. Harnack’s inequality yields a constant Cy > 1 depending only on £ and
s (i.e., independent of 8) such that

6.4)

Pﬁ < Coa)ﬂ for B > Bo.
Thus, (6.4) becomes
.. dog(l/wa) _ log(1/wg) 4-1og(1/Co)
lim inf > .
a~oo  loga log B + log(1/]A])
Letting B tend to infinity in (6.5), we obtain
log(1 log(1
a—oco  loga B—>00 log B

6.5)

Therefore, the limit p (o) in Definition 5.3(a) exists. Moreover, if (o) is finite
then we have from equation (6.5) that, for all 8 > B,

() log B —log(1/wp) = —pu(o) log(1/|1]) — log Co.
As aresult,
_ log(1/wg) - C
log = logp
for some constant C > (. We have thus proved that ¢ is sectorlike.

We now want to show that, when ¢ is not inner, (o) > 0. By (6.4) it is enough
to find a 8 > 1 for which

n(o)

sup w(¢, Fg, Qp) < 1,

re
so suppose that ¢ € A and ¢ is not an inner function. Then there is an A C 9D
of positive Lebesgue measure such that ¢ (A) C D, meaning that ¢ has nontan-
gential limit in ID at each point of A. For all ¢ € A, let I'(¢) be the cone region
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described in Definition 5.2. Also, write I',(¢) for the truncated cone I'(¢) \ rDD,
with0 <r < 1.

Without loss of generality, Ay cD (replace Aby{¢€A: |9p@)| <1-1/m}
for some m € N sufficiently large). Hence, by Schwarz’s lemma, there exists an
integer N € N such that ¢y (A) C £2;. Thus, to each ¢ € A we associate a trun-
cated cone I',(¢), where 1 — r is chosen small enough so that ¢ (I',(£)) C ;.
Then, by (1.2),

I () c{zeD:lo@)| < AV} (6.6)

Again without loss of generality, all the truncated cones I', (¢) can be taken to have
the same height (replace A by the set of ¢ in A for which the associated truncated
cone has height greater than 1 — 1/m for some m € N large enough). For n =
1,2,...,let W, = Qz- and T, = Fj,-». Again, there is an ng = no(r) such
that, for all n > ng, rID C W,, because o is bounded on rID. So, for all ¢ €A and
all n > ny = max{N, no}, W, NI, () # @. By (6.6), we must have I, (¢) C W,,.
Therefore, for n > n;, the set

V=rDU (UF(;))
teA

is a simply connected set contained in W,, such that 3V NoD = A. We want to show
that sup, .- @ (¢, Tn, Ws) < 1. By Harnack’s inequality, it is enough to show that
w(0, T,,, W,) is strictly less than unity, or equivalently that w (0, oW, N 3D, W,) is
strictly positive. By the maximum principle,

(0, 9W, N 3D, W,) = w(0, A, V),
so it is enough to show that
w(0,A,V)>0. (6.7)

To see why (6.7) holds, let ¢ be a Riemann map of I onto V such that ¢ (0) = 0.
By Carathéodory’s theorem, ¥ extends to be continuous and one-to-one on D (V
satisfies Theorem 2.6(iii) of [Pom, p. 24]). We can therefore let G = ¥ ~1(A) C
dD. Then

w(0,A,V)=w(, G,D) =2x|G|.

By the McMillan sector theorem (see [Pom, Thm. 6.24, p. 146]),
G| >0 < |A]| > 0.
Hence, (6.7) follows. O
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