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1. Introduction

Let 2 be a domain in the plane whose boundary is composed of a finite number
of disjoint smooth simple closed curves. The space H?(£2) consists of those ana-
lytic functions f on 2 for which the subharmonic function | f(z)|? has a harmonic
majorant. K () is the convex cone of those elements in H?(Q) whose real part
is nonnegative on £2.

In this paper we describe the projection of H?(Q2) onto K (2) and also de-
scribe the unique element of K (£2) of minimal norm satisfying a finite number of
interpolation conditions:

min{ || fllg2q) : f € K(Q) and f(z;) =wj, j=1,2,...,n}, (1.1)

assuming, of course, that there is at least one element of K (£2) satisfying these
conditions.

A problem similar to (1.1) was solved by Sarason [11] for the space H*(A)
where A is the open unit disc. He proved that the minimal norm interpolant is ra-
tional. As explained in [3], this result has importance in signal processing. The
H?() version of the problem studied here was suggested to us by J. D. Ward, to
whom we express our appreciation.

The plan of the paper is this. In Sections 2 and 3 we give a description of the pro-
jection of H?(2) onto K (£2) in the case when Q is a finitely connected domain. The
special case when 2 = A is examined separately in Section 2 because of its impor-
tance and simplicity. In Section 4 we show how this knowledge, combined with a
result from [9], leads us to the the solution of problem (1.1) when = A. In Sec-
tion 5 we give some results similar to those of Section 3 but for finitely connected
domains, where additional attention is given to the special case of an annulus.

2. The Projection onto Functions with Nonnegative
Real Part: The Unit Disc

Let A = {z:|z|] < 1} be the open unit disc, 7" the unit circle, and dm = ﬁ do
Lebesgue measure on 7' normalized so that fT dim = 1. Also, we use || - ||, tc
denote the L? norm relative to this measure.
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THEOREM 2.1. Let K(A) = {g : g € H*(A),Reg(z) > 0, z € A}. Then the
projection of H*(A) onto K (A) is given by the formula

. 1 [eP+z ;
(Prey @ =i1m fO) + 5~ [ S 2Re ) =240, f & HA),
r eif —
2.1
where A is the unique nonpositive number satisfying the equation
A1 +m{Re f < A}) =/ Re f dm. 2.2)
Re f<A

Proof. For each f € H?(A), observe that equation (2.2) uniquely determines
some A < 0 because the function

u(t)=t(l+m{Ref<t])—/ Refdm=t+/ (t —Re f)dm

Re f<t Re f<t
is a strictly increasing function of ¢, with lim,_, _o, #(t) = —oo and u(0) > 0.
Next, we note that for any f € H2(A) we have the relationship
I £l132¢a) = 2lIRe £1I7 — Re(f(0)) (2.3)
and consequently for f, g € H>(A) we have the formula
Re(f, 8)un2a) = 2(Re f,Re g)2 — Re(f(0)g(0)). 2.4)
To establish (2.1) we must show that
Re(f — Pka)fs 82y =0, g € K(A), (2.5)

with equality when g = Px(a) f.
We begin by noting that equation (2.1) implies that

A when Re f(e*?) > A,
Re f(e’®) when Re f(e'?) < A.
Recall that, for every f € H?(A), we have

Re f(e®) — Re(Pgay f) () = [

Re f(0) = f Re fdm.
T
Hence, using equation (2.4) we have

Re(f — Pxay f> 8 u2 )

= 2](RC f —Re Pgayf)Re gdm — Re((f(0) — (Pk(a) f)(0))g(0))
T
=2)~f Regdm+2f Re fRegdm
Re f=A Re f<A

—Reg(O){Af dm—l—/ Refdm},
Re f>A Re f<A

which by definition (2.2) of A
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=2)Lf Regdm—}-Z/ RefRegdrn—2kfRegdm
Re f>A Re f<A T

= 2[ (Reg)(Re f — A)dm.
Re f<A

This last quantity is nonpositive for g € K(A) and zero for g = Pga) f. U

3. The Projection onto Functions with Nonnegative
Real Part: Finitely Connected Domains

In this section we extend Theorem 2.1 in two ways. First we study the case of mul-
tiply connected domains €2, and then we consider more general inequality con-
straints on the real part of f. Let Q be a bounded domain in the complex plane
whose boundary I'" consists of m + 1 disjoint analytic simple closed curves. Fix a
point #p € 2 and let ;& be harmonic measure on I' corresponding to the point #y.
For 1 < p < oo we let H?(€2) consist of those analytic functions f on 2 for
which the subharmonic function | f(z)|? has a harmonic majorant on 2. If f isin
HP(2), then | f]? has a unique least harmonic majorant u; on £2. If we set

1A =1 lar) = (ur(to))'/? (3.1

then || - || is a norm on H?(2).
It is also true that each f € H?(£2) has boundary values a.e. x on I' that lie in
L?(I'", u) and
| fllar@) = Il fllee(r,w- (3.2)

H®°(£2) is the space of bounded analytic functions on €2 with the sup norm.
Since p is multiplicative on H2(Q2), we have

2
/f2du=(f fdu> . feHA®
r r
2 2
f[(Ref)z——(Imf)2]dM= (f Refdu) — (/ Imfdu) .
r r r

This equation yields the formula

or

fr [(Re £) + (Im f)]d
2 2
=2/(Ref)2d,u,— (f Refd,u) -+ (f Imfdp,)
r r r
or, in other words,

j P dp =2 / (Re f)? dut — Re(f(0))2. (3.3)
r r
Consequently, for every f, g € H?(2) we find that

Re(f, &) nr o) =2 fF(Re F)(Re g) dp — Re(f(t0)g (to))- 34
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Let K (€2) be the convex cone of those functions in H?(2) whose real part is
nonnegative on Q. Fix f € H*(Q), f ¢ K(R), and let F be the unique element
of K () that is nearest f in H*(2). Then

Re(f = F, ey <0, g€ K(Q) (3.5)

and
Re(f — F, F)pgq =0. (3.6)

From (3.4) we may write
Re(f — F, )iy =2 /F Re(f — F)Re g dy — Re((f(10) — F(10))g(t0))

—2 fr Re(f — F)Re g du — Re(f(t0) — F(to)) Re g(fo)
+ Im(f(t0) — F(t)) Im g(2p).

Since Im g(#p) can be any number, we evidently must have from inequality (3.5)
that
Im F(t) = Im f(t).

Write U :=2Re(f — F) and ¢ := Re(f(ty) — F(tp)) = % fr U du. Then (3.5)
and (3.6) take the respective forms

/(U—C)Regdu,fo, g € K(2) 3.7
r

and
f(U —c)Re Fdu =0. (3.9)
r

Note that the choice g = 1 in (3.7) gives ¢ < 0. Moreover, replacing g by
Ah + |||, where || = 1 and A is any function in H*°(£2), yields the inequality

=< lelliAllco- (3.9)

/(U —co)hdu
r

That is, the function U — ¢ gives a bounded linear functional on A% (€2) of norm at
most |¢|. To make use of this observation we recall that the subspace of L (T, p)
of functions orthogonal to H*(£2) has a special form. Namely, u € L1(T, )
is orthogonal to H®(£2) if and only if u = g + w, where g € HJ () = {v :
v € HI(Q), v(tp) = 0} and w lies in an m-dimensional subspace N of C(I"). In
fact, N is spanned by m real-valued, smooth functions (cf. [4, Thm. 4.2.3 and
Sec. 4.5]). The functions in N that are real-valued on I are known as Schottky
Jfunctions; see [5]. Moreover, we know that whenever a sequence {gi }rez, lies in
H} () and another {wy}rez, in N with {gi + wi}rez, boundedin LI (T, u), then
there is a subsequence {g; + w;}iez, , and functions g € Hy () and w € N such
that (g; + wy)du — (g + w)du weak-* as measures on C(TI")

Using these facts, we conclude that there is a g € H{} (2) and aw € N
such that
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/IU—c+g+w]d;,L
r

=inf[/|U—c—k|du:keL1(F,u), fkvdpL:O, veHm(Q)}
r r

= sup{

Hence

el [10=ctgtuldnz [(-U+c—g—wdu=—c=ld
r r

/(U —C)hdu‘ : h e H®(Q), |lhllo <1 } < |c] = —c.
r

and we conclude that
U—-c+g+w=<0 ae.ponl.
In particular, U — c 4+ g + wisreal a.e. p on I so that
U—-c+g+w=U~—-c+Reg+Rew ae ponl;

hence
Img=—Imw ae ponl.

But Imw € N, since N has a basis of real functions. Thus, Im g € N and so is
orthogonal to H'(Q):

0= fr (Im g)g du = fr (Re g)(Im g) dps + i fr (Im g)2 dye.

This implies that Im g = 0 and so g is constant. Since g(¢g) = 0, we have g = 0.
So far we have proved that
U—-—c+w=<0 ae.puonl, (3.10)
which implies that
Re F <Re f — 3¢+ jw. (3.11)
Howeyver, from (3.6) we also have

0=Re(f — F, F)pq

:/(U—c+w)Requ,§0,
r
which implies that
(U—-c+w)ReF=0 ae.ponTl. 3.12)

Therefore, a.e. u whenever { € T is such that Re F(¢) > 0 it follows that
2Re(f — F)(¢) — c+w = 0. Equivalently, Re F(¢) > 0 implies that Re F () =
Re f(¢)—5+ %w(;‘). Also, from (3.11) we see that Re F'(¢) < OwhenRe f(¢) —

5+ %w(g‘) < 0 a.e. up onI'. Consequently, we have established that
ReF:(Ref—%c+%w)+ ae.ponl. L]

We summarize this information in the next theorem.
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THEOREM 3.1.  Suppose the boundary of 2 consists of a finite number of disjoint
smooth simple closed curves. Let K (2) be the convex cone of functions in H*(RQ)
with positive real part on Q. If f € H?*(Q) but is not in K(Q), and if F is the
best approximation to f in H*(Q2) from K (), then there is a real number ¢ and
a function w € N such that

ReF=Ref—-—c—w)y ae ponT. (3.13)

As an example of this result, we consider the case where 2 is the annulus
{z: R <zl < R},

where R is some real constant greater than unity. For the point ¢y = 1, the har-
monic measure du is given by the formula

1 00 R" __—in® — p,if
3% D n=—oo TEng1C df, z = Re',
du =

1 o0 R" —ind — p-1,i6
3 D ooo TngTE T dO, z=R7"e",

and N is the one-dimensional space spanned by the function defined by the equa-
tion [0 if z=Re",

H= i —do if z = R1e®;
see [1]. Hence the projection onto K (£2) is given by

Re F = (Re f +av +b)4,

where a and b are scalars such that

/(ReF)vd,u =0
r

and
2/(Re F)(Re(f — F))du + (Re F(1))* = 0.
T

As a corollary of this result, we note the following fact.

PROPOSITION 3.1. Let Q be finitely connected as above. If f € H?*(Q) but
f ¢ K(2), and if F is the best approximation to f from K(S2), then Re F must
vanish on some set of positive measure on I'.

Proof. Suppose to the contrary that Re F' > 0 a.e. u on I'. It therefore follows by
Theorem 3.1 that

ReF:Ref—%c—I—%w ae. ponl.

This implies that w € Re H?(2). But w is also orthogonal to Re H?(2) and so
w = 0, that is, Re(f — F) = Jc. Hence,

O0=Re(f = F, F)pqg)

—2 /F Re(f — F)Re Fdy — Re((f(to) — F(t0)) F(t0))
1 1
= 2./r‘ —Z-CRCdeL — —2-cReF(t0)

1
= ’QCRC F(t()).
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Since Re F(#p) > 0, we must have ¢ = 0; that is, Re F = Re f. This implies that
f € K(f2), contradicting our original hypothesis. O

We conclude this section with an extension of Theorem 3.1. To begin, we let u;
and u, be two real valued functions in L%{(F, @) such that u; < up ae. pwon'.
With these functions we consider the convex subset of H2(2) defined by

K(uup,up):={he H(Q):uy <Reh <uyae. ponl}.

Under the condition that K (£2; u;, u3) # ¢ we shall describe the orthogonal pro-
jection of H?(S2) onto K (2; u1, u2). Toward this end, we introduce the following
truncation operator 7y, ,,: Lﬁ(r‘; wy —> Lﬁ(F, w) defined for g € Lﬁ(l“; u) by

w if g <uy,
Tywg=1 8 ifuy <g=<u,
uy, if g > us,.

Of course, if u; = 0 and u, = oo then 7, 4,8 = g+, since g is finite a.e. p on I'.

THEOREM 3.2. Suppose u, and u, are two real-valued functions in L*(T, 11).
Let the boundary of 2 consist of a finite number of disjoint smooth simple closed
curves. Let K (2; u1, uz) be the convex subset of functions in H*(Q2) whose real
partliesin[uy, us] onT'. We suppose that K (2; uy, us) is nonempty. If f € H*(Q)
but not in K(2; uy, uy) and if F is the best approximation to f from K (Q2; uy, u»),
then there is a real number c and a function w € N such that

ReF =T, ,(Re f—c—w) ae pwonT. (3.14)

Proof. Recall that F is defined by the variational inequalities
Re(f —F,8 — Flprq =0, g€ K(Qu,us), (3.15)
from which it follows from (3.4) that
0> / URe(g — F)du — cRe(g — F)(to) + Im(f — F)(to) Im(g — F)(t),
r

where U = 2Re(f — F) and

1
c=Re(f — F)(ty) = EfFUdM'

As in Theorem 3.1, we conclude that Im(f — F)(#) = 0, since Im g(#p) can be
any number. This gives us the variational inequality

0> [(U —c)Re(g — F)du, ge K(2;ui,uy) (3.16)
r

which we will proceed to solve.
We introduce subsets of I"':

Al={¢:¢t el ,ReF(t)=u;}, j=1,2,
and also A = I"'\(A! U A?).
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Our first goal is to show that there is a w € N such that
U—-c=w a.e.ponA.

When A has measure zero there is nothing to prove. If A has positive measure
then we decompose it by introducing the subsets

As:={C:C €A u€)—ui(¢) =4},
so that
A=U{A4s:5>0}.

For a fixed § > O such that £ (A;s) > 0, we choose v € Ly’ (A;, 1) such that
/ vudu =0, ué€N,
As

and define g € H?(Q) by setting
Reg :=Re F + cvya,.
Then there exists an g3 > 0 such that g € K(Q; uy, uy) for all ¢, |e|] < &.

Substituting this g into the variational inequality (3.16), we conclude that

(U —-c)vdu =0.
As

From this observation we conclude that there exists a w € N such that U — ¢ =
w on the set A;. Since the sets As (§ > 0) are nested in §, it is easy to see that w
is independent of § and so

Uig)—w@)—c=0, ¢eA.
Next, we consider this function off the set A and define fori = 1, 2 the sets
Ei={¢:5 e A {UEQ) —w@) —c}(=D'"" >0},
Let v; € LR (T", i) be chosen to be supported on As, so that the function
V= XE, — XE, T Vi

is in Re H2(S2). Such a v; exists since it (A;s) > 0 and N has finite dimension. As
before, define g € H?(2) by the equation

Reg =Re F + ¢ev.

When ¢ is a sufficiently small positive number we conclude that g € K (£2; up, u»).
Again, substituting this function into the variational inequality (3.16) gives us

Ozf(U—c)vd,u:/(U—c—w)vdu
r r

= U—-c—wydu+ | (U—-c—w)(—1du
E, E>

+/(U——c—-w)vdu.
A
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Suppose that one or both of E; and E, have positive measure. The last integral
above is zero, since U — ¢ — w vanishes on A and one or both of the others are
positive. This contradiction implies that meas £y = meas E, = 0. Hence,

<0 where Re F = u,,
U—-c—wi >0 where Re F = u,,
=0 where u; <ReF < u,,
or (equivalently)
< u where Re F = u;,
Ref—%c—%w > Uy where Re F = u,,
=Re F where uj <ReF < u,.

That is,

Re F =T, ., (Re f — 3¢ — Jw). O

For the special case of the unit disc, w = 0 since N = {0}; also, ¢/2 = A, where
A is the unique root of the equation

A+ f(Ref —A—u)rdm= /(Ref — A —uy)ydm. (3.17)
T T

To see this, we compute

c=[Re(f—F)dm= (Re f —uy)dm + (Ref—uz)dm—l—ffdm
T Al Az A

2
:Ll(Ref—ul—g) dm—l—fA

Recalling that the integrand is (respectively) negative on Ay, positive on A,, and
zero on A, we conclude that indeed (3.17) holds.

(Ref—ug—g) dm—l—%.

2

4. Minimal Interpolation with Nonnegative
Real Part: The Unit Disc

Given distinct points z1, 22, ... , 2, € A and complex numbers wy, ws, ... , W,,
we wish to characterize the unique g in H?(A) of minimal norm satisfying the
conditions

geK(@), gkz)=w;, j=12,...,n @.1)

Extremal problems of this general type have been studied before (see e.g. [2; 6;
8; 10]). First, we recall the following well-known necessary and sufficient condi-
tions on z1, 23, ... , 2, and wy, wa, ... , w,, which ensure the existence of a g €
H?(A) satisfying (4.1).

LEMMA 4.1. Assume wy, wy, ..., w, are complex numbers that are not all the
same. There exists a function in H?(A) satisfying (4.1) withRe g(¢) > 0 (¢ € A)
if and only if the matrix
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A (M)
1 —z;zk j k=1

is strictly positive definite.

Proof. Let
. 1-— w;

- 1+wj’

and observe that a function g € H?(A) satisfies (4.1) if and only if the function
S =00-g)/(+ g) has H®(A) norm at most 1 and satisfies the interpolation
conditions f(z;) = ¢;, j = 1,2,...,n. By the Pick-Nevanlinna theorem, such
a function exists if and only if the matrix

B— 1—9§
1 —2z;zk k=l

is nonnegative definite; B is singular if and only if the interpolant is unique, and if
this is so then it is a Blaschke product of degree n — 1 or less. If f is a Blaschke
product and g = (1 — f)(1 4+ f), then g has poles on the boundary of A and so
cannot be in H?(A). Thus B must be strictly positive definite. In this case, we
may find an f in H?(A) with norm less than 1 satisfying the interpolation con-
ditions f(z;) = ¢;, j = 1,2, ..., n. The corresponding g satisfies (4.1) and is
also bounded and therefore in H?(A). To finish the proof note that B = DAD™!,

where . . )
D:«/Ediag ,  een s . O
l4+w 14w, 1+ w,

g j=12,...,n,

Returning to our variational problem (4.1), we wish to exclude from considera-
tion a simple special case of this problem that appears as an exception to certain
arguments that we shall present later; specifically, as noted in Lemma 4.2. The

case we have in mind occurs when all the values wy, w,, ... , w, are the same
purely imaginary number. That is, there is a real constant ¢ such that w; = ic,
j=1,2,...,n.Inthis special case we see that

min{[|g[%2a, : & € K(A), 8(zj)) =wj, j=1,2,...,n}

=min{ lic + fl}2, : f € K(A), f(z))=0, j=1,2,...,n}

= C2,

and so the optimal g is merely g = ic. Now that this case has been treated, we can
proceed with our analysis of the general case.

The next lemma is essential for the characterization of the function in H2(A)
of least norm satisfying (4.1).

LEMMA 4.2. Let hy, h,, ..., h, be linearly independent rational functions that
are analytic in some neighborhood of A. Suppose wi, wa, ..., w, are complex
numbers that are not all equal to the same purely imaginary constant. Also, sup-
pose there exists a g € K(A) such that (g, hj)g2ay = wj, j = 1, ... ,n. Then,
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whenever [y, W, ... , Uy are complex numbers such that ng:l |,uLJ-|2 = 1 and
Re(Z;;l njw;) > 0, it follows that Pxay(h) # 0 where h = Z';=1 wih;.

Proof. Suppose to the contrary that Pga)(h) = 0. Then for any z € A we have

el +z

——(Re h(e”®) — 1)1 dm (6).
e” —z

0=iImh(0)+/
T

Consequently, we conclude that Im #(0) = 0 and Re 2(e*®) < A a.e. on T. Thus
from (2.2) with f = h we have that

A = 1 Re(h(0)) = 1h(0).
Now let g € H?, Reg > 0, (& hjduzay = wj, j=1,...,n. Then

n
0 <Re Z ﬂjwj
j=1
= Re(g, h) y2(a)

= 2](Reh) Re g dm — Re(h(0)g(0))
T

=2/(Reh—A)Regdm
T

<0.

Hence, Re(h — 1) Re g = 0 a.e. on T. First, let us rule out the possibility that that
Re g = 0 a.e. on T. If indeed that were the case then it would follow that g = in
everywhere on A for some real constant . This contradicts our hypothesis about
the data wy, wp, ... , w,.

Thus there exists a subset E of T having positive measure such thatRe(h — 1) =
0 on E. The function 4 is rational; let h;(z) = h(1 /Z). Then h; is also rational
and 2Re h(e'?) = h(e'®) + hy(e'®). Hence the rational function % + h; — 2 van-
ishes on a set E in T of positive measure and so is identically zero. Therefore,
we conclude that Re# — A = 0 on all of 7. As remarked above, this means that
h = A 4+ in for some real constant 7 on A. Since we have already observed that
Im 2(0) = 0, we conclude that in fact 1 = A everywhere on A. In particular we
have 24 = Re £(0) = A, which means that A = 0. This conclusion again contra-
dicts our hypothesis. O

We are now ready to prove the characterization theorem. Recall that, for any points
Z1,22, ... » Zn in the disc A, we have

& Fmy =8@), j=1,2,...,n, he H*A),

where
Fi(z) = —, zZzE€A, j=12,...,n.
1 -2z
Note that if the points zi, z2, ... , z, are distinct then the functions ; = F; (j =
1,2, ..., n) satisfy the hypothesis of Lemma 4.2. For this case, we seth = F, =

2 i Fj.
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THEOREM 4.1. Let 73, 22, ..., 2, be distinct points in A, and let wq, wa, ... w,
be points not all of which equal the same purely imaginary constant. Suppose there
existsa go € K(A) suchthat go(z;) = w;,i = 1,2, ..., n. Then the minimization
problem

min{ [Igllp2a) : & € K(A), g(zj) =wj, j=1,2,...,n}

has a unique solution of the form

. 1 [ef+z 0
G(z) =ilm F,(0) 4+ — .Q—-(Re E.(e"”) — 1)+ d6b, 4.2)
2n Jr et¥ —z
where
A1 +m{Re F, < A}) =/ Re F,
Re F, <A
and

Gizj)=w;, j=1,...,n 4.3)

Proof. The essential point in the proof is to show that the equation (4.3) has a so-
lution of the form (4.2). It then follows that G given in (4.2) is the unique solu-
tion to the minimum problem. To see this, recall that for any complex numbers
Ui, ..., U, the function G defined in (4.2) satisfies

Re(F, — G, g)p2a) <0
forall g € K(A), withequality forg = G.Hence,ifg(z;) =w; (i =1,2,...,n)
then we have
1G 132y = Re(Fu, ) r2(ay = Re(Fy,, 8) < Re(G, g) < [IG|ligll.

Thus we must show that there exist complex constants ug, ... , i, such that G
satisfies the interpolation conditions (4.3). For this problem, we follow [9] and
consider the variational problem

1 n
inf (EHPK(A)(F;L)HZ - Re( F,u(zi)wi)) . 4.4)
i=1

Ulseer s ftn€C

.

From general principles given in [9], we can demonstrate that any solution of (4.4)
satisfies

PK(A)(F;L)(ZJ') = wj, ] = 1,2, A (P (45)
This follows from the fact that the gradient of %MPK( Ay (F) |? is
Re((Pgay(Fu), F1)m2ay, (Pray(FL)s F2)m2ays - -+ » (Pray(Fu)s Fu)mza)
= Re(Pga)(F)(z1), Pray(Fu)(22), ..., Pray(FL)(za)).

To establish that (4.4) has a solution, we use Lemma 4.2 in the following way.
Let ¥ be any minimizing sequence of (4.4). If Y1, |z*|*> — oo then we can find
a subsequence of u*f = t%/(3"7|t}|?)!/? that converges to a vector (i1, . . . , tn)
satisfying 37_, |uj> = 1, Re 3°"_; fjw; = 0, and Pk a)(F,) = 0. This con-
tradicts Lemma 4.2, and so % must be bounded in norm and (4.4) has a solution
as asserted. O
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5. Minimal Interpolation with Nonnegative Real Part:
Domains of Finite Connectivity

This section presents our solution to the minimum problem

min{ [|g|lp2) : & € K(£2), g(zj)) =w;, j=1,2,...,n},

where €2 is a domain of connectivity m + 1, as described earlier; z1, 22, ... , 2,
are distinct points in 2, and wy, w,, ... , w, are prescribed complex numbers.

We first need a version of Lemma 4.2 that applies to the domain €2. For this pur-
pose, let a be any point of 2 and let K, be the reproducing kernel in H?(2) for
a. Thatis, K, € H*(R2) and

[ fRatn=s@. 1em@. (5.1)
r
We also have
[ fRadn = s Katt0), 1 € B (52)
r
Combining these equations yields the formula
f f@)(z — a){Ka(2) £ Ka(2)} dp(z) = 0, (5.3)
r
which is valid for all f € H?(S2) that vanish at 7.
LemMA 5.1. Let 71, 22, ... , 2, be distinct points in 2, and let wy, wj, ..., w,
be complex numbers that aré not all equal to the same purely imaginary constant.
Also, suppose there exists a g € K(2) such that g(z;) = wj, j =1,2,... ,n.
Then, whenever 1, 2, ... , Uy are complex numbers such that Z;;l | ,u,jl2 =1

and Re(}_'i_; itjw;) > 0, it follows that Px o) (f) # Owhere f =3 | u;K,.

Proof. To begin, we point out that it follows from (5.3) and Theorem 4.48 of [4,
p.- 92] (the F. and M. Riesz theorem for multiply connected domains) that there
are functions G and H in H?(S2) such that

= . G(2)
2Re K,(z) = K,(2) + K,;(z) = ———(Z “OPQ ae.ponl
and H)
; — R (2) — 1w
—2iIm K,(z) = K;(2) — K,(2) =P ae.uonl,

where P is a monic polynomial of degree m whose zeros are precisely the points
at which the complex derivative of the function g(z; tp) + ih(z; zg) is zero. Here
g(z; tp) is Green’s function for the point ¢y and 4 (z; t) is the harmonic conjugate
of g(z; tp). This implies that both Re K, and Im K, have a meromorphic exten-
sion from I" to 2 with m + 1 poles. Since both of these functions are real on T',
they can be extended analytically across I". We then apply this result to our situ-
ation and conclude that the function Re(}_’}_; u; K;) has a meromorphic exten-
sion to a neighborhood of €2 U I" with a finite number of poles on 2 and no poles
onl.
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Now suppose that Pgq) f = 0, where ZLII jl> = 1. Then, according to
Theorem 3.1, there is a real scalar ¢ = Re(f(t) — Pxq) f(f0)) = Re f(ty) anda
function w € N with

Ref—%—l—-g—so ae.ponl. 5.4

Also, we know from the proof of Theorem 3.1 that Im f(79) = Im Pg (2) f(to) =

0. Using the fact that
RC( wj,zlj) >0
j=1

and the function g € K(£2) such that g(z;) = w; (j = 1,2, ... ,n), by (5.4) we
have that

n
0<Re) wj =Re(/ gfdu)
i—1 T

J

_9 /F (Re g)(Re f) dp — Re(g(to) f(10))

=/Reg(2Ref—c+w)du_<_O.
r

We conclude that (Re f —c¢/2 4+ w/2)Reg = 0 a.e. u on I'. As in the proof of
Lemma 4.2, we rule out the possibility that Re g = 0 a.e. u on I". Hence there is a
subset E of I" having positive measure such that 2Re f — ¢ + w vanishes on E.
However, Theorem 4.4.8 of [4, p. 92] implies that w is meromorphic on a neigh-
borhood of 2 U I" with m poles in €2 and no poles in I". This fact, together with
the above remark about Re f, implies that 2Re f — ¢ + w is meromorphic on a
neighborhood of 2 U I" and hence must be identically zero on I' U €2 (excluding
the poles). Consequently, since w L Re H?(R), it follows that 2Re f = ¢ and so

= 2 +inon QUT. In particular, c = Re f(t)) = c¢/2 and so ¢ = 0, which im-
plies n = 0 as well. Finally, since the points z;, z», ... , Z, are distinct, we con-
clude that p¢q, us, ... , u, are also all zero. ]

This result leads to the following fact, which extends Theorem 4.1 to multiply
connected domains.

THEOREM 5.1.  Suppose the boundary of <2 consists of a finite number of disjoint
smooth closed curves. Let K () be the convex cone of functions in H?*(Q) with
positive real part on Q2. Suppose z1, 22, . . . , 2, are any distinct points in 2 and let
wi, Wy, ... , Wy, be points not all of which equal the same purely imaginary con-
stant. Suppose there exists a go € K(2) such that go(z;) = w;, i =1,2,... ,n.
Then the minimization problem

min{ [gllp2@) : & € K(RQ), gizj)) =wj, j=1,2,... ,n}
has a unique solution G of the form

ReG=ReF, —c—w); aepon',
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n
ceR, weN, pu=(Q1,H2...,Hy) €C", FH=ZM,-KZ,-,
j=1

and
G@izj))=wj, j=12,...,n.

Proof. The proof follows the method used for the proof of Theorem 4.1 and there-
fore relies on Lemma 5.1. u

ADDENDUM. Some preliminary results on the problem discussed here appeared
in an internal IBM research report: “Minimal norm interpolation in H? with non-
negative real part” (RC 12351, December 1986). Shortly after we decided to
return to the interesting problem studied here, we obtained a copy of “Control-
oriented H, optimal problems with passivity constraints” by John E. McCarthy
and Clas A. Jacobson, where the problem we solve in Theorem 4.1 is also con-
sidered. Their paper is motivated by considerations arising in certain problems in
control synthesis and system identification.
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