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1. Introduction

In this paper we exhibit the equivalence of Enflo’s nonlinear notion of generalized
roundness and the classical embedding notion of negative type. This enables us to
develop a rudimentary theory of generalized roundness and to give applications to
the L,-spaces. In particular, we show thatfor p > 2andn > 3, the n-dimensional
I, spaces fail to have generalized roundness g for all g > 0.

The notions of roundness and generalized roundness were introduced by Enflo
in [E1], [E2], and [E3] to study the uniform structure of metric spaces. We be-
gin by recalling some material from these papers. However, we make some slight
alterations to Enflo’s original definitions to allow easier exposition later.

1.1. DerFINITION. (a) We say that a metric space (X, d) has roundness g, written
g € r(X, d), if whenever a,, a,, b, b, are in X we have

d(ay, a2)? +d (b1, b)? < Y dai, by)’. ¢))
1<i,j<2
(b) A pair (ay,...,a,), (b1,...,b,) of n-tuples in a metric space is called a

double-n-simplex. Such a double-n-simplex will be denoted [a;; b;]_,. We call a
pair of points (a;, a;) or (b;, bj) an edge, and a pair of points (a;, b;) a connecting
line.

We say that a metric space (X, d) has generalized roundness q, written g €
gr(X, d), if for every n > 2 and every double-n-simplex [a;; b;];_; in X we have

> (dai,ap?+dbi, b)) < > dai, by )
1<i<j<n 1<i,j<n
When (2) holds for a specific double-n-simplex [a;; b;]7_; in X we will write
q € grla;; bili_y.
1.2. REMARK. In [El] and [E2] Enflo defined the roundness of a metric space

(X,d)tobesup{q | g € r(X, d) }and the generalizedroundnesstobesup{qg | g €
gr(X,d)}. Itiseasy tocheckthat {qg | ¢ e r(X,d)}and {q | g € gr(X,d)} are
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both closed subsets of [0, c0); hence the above suprema are maxima whenever
they are finite.

If [a;; b;i]]_, is a double-n-simplex with a; = b; then, due to cancellation of like
terms, g € grla;; b;]!_; if and only if g € gr[a;; b;]]_,. So in computing the
generalized roundness of a metric space (X, d) it suffices to consider only those
double-n-simplexes [a;; b;]!"_, for which {a;}'_, N {b; ]J'.’=1 = .

Note that the roundness of a metric space (X, d) is computed using (2) for
double-2-simplexes. It is easy to see that every metric space has roundness one
and generalized roundness zero. It is clear that, for a metric space (X, d), gener-
alized roundness g implies roundness g.

In [E1] Enflo proved that, for all p such that 1 < p < 2 and for any positive
Borel measure u, max{q | g € r(L,(u)) } = p and, as a consequence, showed
that an infinite-dimensional L, (x1) is not uniformly homeomorphic to L, (112)
if p1 # p2, 1 < p1, pp < 2. 1t is known from Enflo [E2] that max{q | g €
gr(Ly(w)) } = 2. In lectures given at Kent State University, Enflo indicated that,
forall p suchthatl < p <2, max{q | q € gr(L,(n))} = p.

In [E2] Enflo used generalized roundness to construct a countable metric space
that is not uniformly homeomorphic to any subset of L,[0, 1]. This gave a neg-
ative answer to a question asked by Smirnov : “Is every separable metric space
uniformly homeomorphic to a subset of L;[0, 1]?7” By the previous paragraph,
the analogous question with L, replaced by L, for 1 < p < 2 also has a negative
answer.

Beyond Enflo’s rather elegant application of generalized roundness in [E2], there
has been no systematic study of the notion. In this paper we develop the rudiments
of a general theory. One of our main tools is the existence of a strong link between
the notions of generalized roundness and negative type. The notion of negative
type emerged from investigations by Menger [Me], and Schoenberg [S1; S2] into
the nature of isometric embeddings of metric spaces into Hilbert spaces.

Our main result, established in the next section, is the following.

1.3. THEOREM. For2 < p < 00, if L,(R, X, u) is at least three-dimensional
then it fails to have generalized roundness q for any q > 0.

Prior to connecting with negative type, we give direct computations of the round-
ness of infinite-dimensional L,(u)s for the case p > 2. It is known from Enflo
[E3] that, for a normed space (X, || - |),

() g € (X, || - Il) if and only if ||x + yl|7 + |lx — y||? < 2(llx||? + ||y||?) for
all x,y € X, and
(ii) g e r(X, || - ||) implies q; € r(X, || - ||) for all g; suchthat 1 < g, < 4.

Indeed, (ii) follows easily using vector-valued interpolation via the complex meth-
od (see e.g. [BL, 5.1.2]). We use these facts in the proof of our next claim.

1.4. PROPOSITION. For 2 < p <oo, r(Lp[0, 11) =[1, p']l where 1/p+1/p'=1.
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Proof. Recall this inequality of Clarkson [C]: Forallx, y € L,

/

' ’ \1/p
U7 (xNg, + IyNE )7 < (Ix + Y2, +lx = Y12 )

Since p’ <2 < p, an application of Holder’s inequality gives

’ \1/P r_ 1/p
(602 +1y0) ™ <27~ (el + v,

_ , \1/P
<27 (x4 y0E, + = yIE)

P

Fix f,g € L,. Lettingx = f +gand y = f — g, we can rephrase this inequality
to read

If + 8l +1f = gl <277 (12112, + 12812, ) = 2(IF1E, + gllE, ).

Hence [1, p'] € r(L,[0, 1]). To show equality, consider any g satisfying (i) for
the L,-norm. Then choose x = %[X(o,l/z) +x(1/2,1)] andy = %[x(g,l/g) ——x(l/p_,l)].
Notethatx+y = X(0,1/2) andx—y = X1/2,1)- Thus (%)q/p < 2(%)‘1 andsoqg < p’.

Ll
1.5. REMARK. Proposition 1.4 is also clearly true for any L,(£2, X, p) of dimen-
sion at least 2. Also, Clarkson’s inequalities hold for noncommutative L, spaces
(see e.g. [FK], which also contains further references to the many authors who
have contributed to this inequality), including the Schatten classes C, [Mc; To].
It follows that r(L,) = [1, p'lif 2 < p < oo, andr(L,) =[1, p]if1 < p <2,
for any noncommutative L ,-space corresponding to a faithful, normal, semifinite
trace; or, more generally, for any L ,-space corresponding to a von Neumann alge-
bra in the sense of Haagerup (see e.g. [Te]). Finally, we remark that in Herz [H],
Clarkson’s inequality is also used to show that if an /”-norm is of g-negative type
(which is equivalent to generalized roundness g, by the next section), then g <
min{p, p’}. Though the proof details are not given, the result implicitly contains
a significant part of our Proposition 1.4.

Let us note that Enflo [E1] introduced roundness to complete the result of Lin-
denstrauss [L] that L, and L,, are not uniformly homeomorphic if p; # ps.
Enflo’s method captured the result when 1 < p;, p» < 2. Now, calculating the
roundness of L, for p > 2 does not give Lindenstrauss’ result, but only a part
of it: if p; € [1,2], pp > 2, and p; < Pf'zs then L,, and L,, are not uniformly
homeomorphic.

Concerning the general problem of the uniform and Lipschitz classification of
Banach spaces, we refer the reader to [Al; A2; AMM; B; HM; R], as well as to a
recent paper on uniform homeomorphisms [Cha]. The survey paper of Benyamini
[B] contains many other references.

2. Generalized Roundness and Negative Type

Before beginning, we remark that some other references related to the theme of
this section are [WW; H; Cho, Sec. 41] and (more recently) [GL].
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2.1. DErFINITION. Let g € [0, c0). A metric space (X, d) is said to have g-neg-

ative type, writteng € n(X, d), if, foralln € N, all finite sequences { x{, ... , x,} C
X, and all choices of real numbers &, ... , &, with Z;’___l & = 0, we have
Y d(xi, x)%%& <0. 3)
1<i,j<n

In order to connect generalized roundness with negative type, we shall begin by
reformulating it.

2.2. THEOREM. For a metric space (X, d), the following are equivalent:
(i) q € gr(X, d),

(i1) for all n € N, all finite sequences {xi, ... ,x,} C X, and all collections of
weights wi, ..., Wy, S1, ... ,S, > 0 that satisfy Z;;l w; = Z};l si(=1
if one wishes to normalize), we have

Z d(xi, %)) (w; — s;)(wj — ;) <0. @
1<i,j<n

2.3. REMARK. The left-hand side of (4) is very easily seen to equal
D wiwy 4+ sisild(xi, x)? =2 Y wisid(xi, %), )
1<i,j<n 1<i,j<n
strongly hinting at generalized roundness.
Proof of Theorem 2.2. (ii) = (i). Suppose that (ii) holds. Consider a given

double-m-simplex [a;; b;];_, in the metric space (X, d). Setting n = 2m, con-
sider the points

a;, l1<i<m
xl_{bi—m, m+1<i<n
and the weights
‘ 1, 1<i<m _ 0, 1<i<m
wi:[os m+1<i<n’ Si:[l, m+l<i<n’

Obviously, > ./, w; =m =) _:_, s;. Applying (ii), we see that
0> Z d(xi, %) (w; — s:)(wj — ;)

1<i,j<n
= Y dana)'+ D dbi_m bjiw)"
1<i,j<m m+1<i,j<n
- Y dbima)?— Y dai, bjn)?
m+1<i<n I<i<m
I<j<m m+l<j<n
= > [d@,a)?+d®i, b)) -2 ) dlaibpr.
iI<i,j<m 1<i,j<m

In other words, we have shown that lei<j$m [d(a,-,aj)q +d(bf,bj)q] <
2 1<ij<m@(ai, b)), and hence g € grla;; b;];L;. It follows that X has gen-
eralized roundness q.
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(i) = (ii). Suppose that X has generalized roundness g. Consider a finite se-
quence Xj, ... , X, in X. Suppose that N > n and thatl, ... ,l,,my, ... ,m, are
nonnegative integers satisfying } 5 [; = N = 3 _7_ m;.

Construct a double-N-simplex as follows. Set

ay=a;=---=a, =X1, au41 =0ay42 ="' =da,4, =X, andsoon;

by=by=-..-= bml = X1, bml-{-l =042 = = Omy4+my = X2, and so on.

Since X has generalized roundness ¢, inequality (2) for this double-N-simplex
can be manipulated to give

S d, 1) [5—”—%’;—’&]52 3 d(x,-,x,-)‘f[lj\’;;f]. ©)

lsi:jfn lSi,an

Comparing (6) with (4) and (5), and noting that the set

1
—(k1, ..., k,
{N(l )

is a dense subset of

j=1

N,k; €N, N > n, and Zk,-:N}

n
[(Z1,... ,Zn) | €each z; > 0 and Zijl},

Jj=1

an elementary continuity argument completes the proof that (i) = (ii). O

From this reformulation of generalized roundness we derive the following theo-
rem.

2.4. THEOREM. A metric space (X, d) has g-negative type if and only if it has
generalized roundness q.

Proof. Suppose that (X, d) has g-negative type. Let [a;; b;]_; € (X,d) be a
double-n-simplex. Set

X1 =41, X3 =42, ... , Xp—1 = Qp,
X2 =by, x4 =0b2,...,%2 = by,

and set & = (—=1)/ forall 1 < j < 2n. It is clear that we have 2321 & = 0.
Hence, by our hypothesis, we have

> d(xi, x)6& < 0. (7
1<i,j<2n

Summing over (i, j) both odd, (i, j) both even, i even and j odd, and i odd and
J even, we see from (7) that

0> Y dlxi,xp)&& =Y {dai,a)?+d(b;, b;)? —2d(ai, b)?} .
1<i,j<2n 1<i,j<n

It follows that g € gr[a;; b;]]_,. We conclude that X has generalized roundness g.
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On the other hand, suppose that X has generalized roundness g and consider
X1, ... , X, in X and real numbers &1, ... , &, satisfying Z 1 & =0.
If§ > Osetw; = §; ands; = 0. If?,fj < Osetwj = Oandsj = —§&;. Then

> iqwi =25 sjandso
D A, xp)T(w; — si)(wj — ;) <0

1<i,j<n
by Theorem 2.2(ii). Since w; —s; = §; forall 1 < j < n, we conclude that X
has g-negative type. O

It is well known that if a metric space has g-negative type then it has g;-negative
type for all 0 < g; < g (see [WW, p. 11]). It follows immediately from Theorem
2.4 that generalized roundness shares this interval property.

2.5. COROLLARY. Ifa metric space has generalized roundness q then it has gen-
eralized roundness q, forall0 < q; < gq.

We remark that such a statement does not hold true for roundness in a general
metric space. An example of this is given in [E3, p. 254]. It does hold true for
roundness in Banach spaces, however, by the interpolation technique mentioned
in Section 1.

Using Corollary 2.5, we can give a short proof of the following result, known
to Enflo for 1 < p < 2 (though to our knowledge no proof has previously ap-
peared in the literature). We remark that for 0 < p < 1 we are using the usual
quasinorm on L, and the obvious extension of Definition 1.1(b) to the associated
quasimetric.

2.6. COROLLARY. (a) Let 0 < p < 2. Let u be a positive measure. Then
gr(L,(n)) = [0, pl.

(b) Moreover; if (X, ||-||x) is a Banach space with generalized roundness q, 0 <
P < q < 2, then the Lebesgue—Bochner space L,(j1, X) has gr(L,(u, X)) =
[0, pl. In particular, this is the case for X = L, (v).

Proof. (a) Webegin by showing that (IR, | - |) has generalized roundness 2, as stated
in [E2]. Let [a;; b;]}_, be a double-n-simplex of real numbers. Then clearly

1<Z< [(ai - aj)2 + (bi — bj)z] =n :Zl(af + b?) — (g a,-) — (Z;: bi) .
and

i<i, j<n

So to prove that (R, | - |) has generalized roundness 2, it is enough to show

(Z)(Z)(Z)(Z)
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which is trivially true. Similarly, if we replace real by complex scalars, the imme-
diately preceding result is still true.

By Corollary 2.5, we can replace 2 by p for all 0 < p < 2 and then integrate
the scalar inequality to obtain p € gr(L,(u)).

To see that L,(u) does not have generalized roundness g for any g > p, sim-
ply consider the double-2-simplex [ay, az; b1, b3] where a; =0, a; = 1, by =
X©,1/2), and by = x(12,1). Alternatively, note that g € gr(L,(u)) implies thatg €
r(L,(w)); hence g < p by [E1].

(b) This is very similar to part (a). O

2.7. Remark. In[El], Enflo also integrates a scalar inequality to prove that for
1 < p <2, L,[0, 1] has roundness p. He derives his scalar inequality by using
elementary calculus.

Another application of Theorem 2.4 is an indirect proof of Theorem 1.3 in the spe-
cial case that L, () is infinite-dimensional. Since we are assuming p > 2, such
spaces do not have g-negative type for any g > O (see e.g. [WW, p. 36]), and
Theorem 1.3 follows.

The generalized roundness of l[(,") in the case p > 2 can also be settled using
Theorem 2.4 in conjunction with existing theory. To begin with, it is well known
that L contains a linear isometric copy of every two-dimensional normed spacz.
This result was obtained independently by several authors in the early sixties; and
in particular was proven by Herz [H]. (Also see, for example, Yost [Y] for a short
proof and further references.) So, recalling that L has generalized roundness I,
we see that for every two-dimensional normed space X, gr(X) 2 [0, 1]. Such
need not be true for higher (finite) dimensions. Two important theorems come
into play. One is due to Bretagnolle, Dacunha-Castelle, and Krivine [BDK] (and
may also be found in [WW, p. 23]). The other is due to Dor [D], Misiewicz [Mi],
and Koldobsky [K].

THEOREM [BDK]. If a finite-dimensional normed space X has q-negative type
Jor some 0 < q < 2, then there is a linear isometry from X into some Lg,-space.

THEOREM [D; Mi; K]. For2 < p <ocoandn > 3, ll(,") is not linearly isometric
fo a subspace of any L,-space with0 < g < 2.

Theorem 2.4 and the above two results imply our final result.

2.8. THEOREM. For 2 < p < coandn > 3, lI(J”) fails to have generalized
roundness q for any q > 0.

Of course, Theorem 2.8 is equivalent to Theorem 1.3.

OPEN QUESTION. What is the (maximal) generalized roundness of the Schatten
class C,, (or more generally, of any noncommutative L ,-space) for 1 < p < 2?
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We remark that C,, has generalized roundness O for p > 2, since its subspace [, has
generalized roundness 0. We further remark that the “integration of a pointwise
inequality” proof strategy of Corollary 2.6 does not work forC,, 1 < p < 2.
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