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1. Introduction

Let Cy[0,T] denote one-parameter Wiener space, that is, the space of R-
valued continuous functions x(¢) on [0, '] with x(0) = 0. The concept of an
L,-analytic Fourier-Feynman transform for functionals on Wiener space
was introduced by Brue in [1]. In [3], Cameron and Storvick introduced an
L,-analytic Fourier-Feynman transform. In [11], Johnson and Skoug devel-
oped an L ,-analytic Fourier-Feynman transform for 1 < p < 2 that extended
the results in [1; 3]. In [9], Huffman, Park, and Skoug defined a convolution
product for functionals on Wiener space and, for a class of functionals of
the type

T T
F(x)=f(f0 oq(t)abc(t),-..,f0 an(t)dx(t)).

showed that the Fourier-Feynman transform of the convolution product
was a product of Fourier-Feynman transforms. In [10], they obtain similar
results for functionals of the form

T
G(x)= exp{ fo g(t, x(1) dt},

which play an important role in quantum mechanics.
In this paper we consider functionals, on Wiener space, of the form

T oT
F(x)=exp{f0 fo f(s,t,x(s),x(t))dsdt} (1.1)

for appropriate f: [0, 7> x[R? - C. Such functionals were discussed in the
book by Feynman and Hibbs [8, Secs. 3-10] on path integrals, and in Feyn-
man’s original paper [7, Sec. 13]. Feynman obtained such functionals by
formally integrating out the oscillator coordinates in a system involving a
harmonic oscillator interacting with a particle moving in a potential. The
double dependence on time occurs because, as Feynman and Hibbs [8, p. 71]
explain, “The separation of past and future can no longer be made. This
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happens because the variable x at some previous time affects the oscillator
which, at some later time, reacts back to affect x.”

Moreover, functionals like (1.1), but involving multiple integrals of more
time dimensions than two, arise when more particles are involved. We con-
sider a class of such functionals in Section 3 where f:[0,T]"XR"—>C is
quadratic in the space variables.

In Section 3 we establish several results involving Fourier-Feynman trans-
forms and convolutions for functionals in a Banach algebra 8 introduced
by Cameron and Storvick in [4]. These results can then be immediately
applied to many functionals of the form (1.1) which are known to belong to
S [6; 14]. In addition, we establish a Parseval’s identity for functionals F
and G in 8.

In Section 4 we consider functionals of the form (1.1) with fe
L1o([0, T1?> % R?). These functionals in general do not belong to $ (all of
whose elements are bounded), and the resulting theory is considerably more
complicated than the theory in Section 3.

2. Definitions and Preliminaries

Let O denote the class of all Wiener measurable subsets of C,[0, 7"] and let
m denote Wiener measure. (Cy[0,T], M, m) is a complete measure space,
and we denote the Wiener integral of a functional F by fco[o, T F(x)m(dx).

A subset E of Cy[0, T'] is said to be scale-invariant measurable [5; 13] pro-
vided pE € M for all p > 0, and a scale-invariant measurable set N is said to
be scale-invariant null provided m(p/N) = 0 for each p > 0. A property that
holds except on a scale-invariant null set is said to hold scale-invariant
almost everywhere (s-a.e.). If two functionals F and G are equal s-a.e., we
write F = G.

LetC,={AeC:ReA>0}and C; ={AeC:A#0and ReA = 0}. Let Fbe
a C-valued scale-invariant measurable functional on C,[0, 7'] such that

T = f FO™2x)ym(dx)
Col0,T]

exists for all A > 0. If there exists a function J*(A) analytic in C, such that
J*(A) = J(A) for all A >0, then J*(A) is defined to be the analytic Wiener
integral of F over Cy[0, T'] with parameter A, and for Ae C_ we write

f " Foom(dx) = T,
Col0,T]

Let g # 0 be a real number and F a functional such that [ g‘;}vg r1 F(x)ym(dx)
exists for all Ae C,,.. If the following limit exists, we call it the analytic Feyn-
man integral of F with parameter ¢ and we write

anf, anw,
f F(x)m(dx)= lim F(x)m(dx),
Col0,T] A= —ig Y C,[0,T]

where A— —ig through C,.
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NOTATION.

(i) ForAe C, and ye Cy[0,T], let

anw),

GEND) = [ Flx+yym(dx). 2.

Col0,T]

(it) Given a number p with 1 < p < +o0, p and p’ will always be related
by l/p+1/p'=1.

(iii) Let1 < p <2 andlet {H,} and H be scale-invariant measurable func-
tionals such that, for each p > 0,

lim |H,(py)—H(py)|"'m(dy) = 0. (2.2)
n—o C()[O, T] )
Then we write
Lim.(wf)(H,) =~ H (2.3)
H—00

and call A the scale-invariant limit in the mean of order p’. A similar defi-
nition is understood when # is replaced by the continuously varying param-
eter A.

We are finally ready to state the definition of thé L -analytic Fourier-Feyn-
man transform [12] and our definition of the convolution product [9].

DEfINITION. Let g # 0 be a real number. For 1 < p < 2 we defined the L -
analytic Fourier-Feynman transform 7{”)(F) of F by the formula (A€ <E+)

(TP(F) () —}\1 m.(wf ) TH(F))(y) (2.4)
— -—1q
whenever this limit exists. We define the L,-analytic Fourier-Feynman trans-
form TV(F) of F by (AeC,)

(TNEN ) = Alim_ (TA(F))(») (2.5)
- —iq
for s-a.e. y. We note that, for 1 < p <2, T“’)(F) is defined only s-a.e. We
also note that if T/”(F)) exists and if F; = F,, then T/P)(F,) exists and
T(p)(F ) = T(p)(Fl)

DEerINITION. Let F and G be functionals on Cy[0,T]. For Ae C we define
their convolution product (if it exists) by

( anw,, —
f F(y\/_gx)G(yﬁx)m(dx), AeCy;
Fron =1 2.6)
*F G m(dx), A=—iq, geR, qg#0.
kfcom,n (55 o5 )m @ acta

REMARK. When A = —ig, we will denote (F* G), by (F*G),.
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3. Transforms and Convolutions of Functionals in S

The Banach algebra § of functionals on Cy{0, T'1, each of which is a type of
stochastic Fourier transform of a bounded C-valued Borel measure, was
introduced in [4] by Cameron and Storvick. The Banach algebra 8 consists
of functionals expressible in the form

T
F(x)= f exp{i f v(s) dx(s)} df(v) 3.1)
0

L5[0,T]
for s-a.e. x in Cy[0,T] (i.e., except on a scale-invariant null set), where f is
an element of M(L,[0,T1), the space of C-valued countably additive Borel
measures on L,[0,7].

TueOREM 3.1. Let Fe § be given by (3.1). Then, for all pe|1, 2], the Fou-
rier-Feynman transform T P/(F) exists for all e R—{0) and is given by
the formula

(TP(F))(y) = f

L,[0,T]

T i T
exp{i fo v(t)dy(t)—z fo vz(t)dt}df(v). (3.2)

Proof. First of all, using the Fubini theorem and the well-known Wiener
integration formula

T 1 T
f exp{i f h(t)dx(t)}m(dx):exp{—— f hz(t)dt}, (3.3)
Col0,T] 0 2 Jy

we obtain, for all A > 0 and s-a.e. y e Cy[0, T'], the formula

(LEN) = fc L FOT s yyma)

T
- f f exp{i f (1) dINV2x(8) + y(t)]} df (v)ym(dx)
Col0,T]1 Y L,[0,T] 0

T
= exp{i fo v(?) dy(t)}

L2[0,T]

i T
.ICOIO'T] exp{—ﬁﬁ) v(t)dx(t)zm(dX)df(U)

T T
= exp{i f o(t) dy(f)— —— f v2(t) dt} df(v). (.4
1,00,T] 0 2X Jo
But the last expression is an analytic function of A throughout C,, and is
a bounded continuous function of A on C3 for all y in Cy[0,T] since f is
a finite Borel measure. Hence T,P)(F) exists and is given by (3.2) for all
desired values of p and q. O

THEOREM 3.2. Let Fand G be elements of 8 with corresponding finite Borel
measures f and g in M(L,[0,T1). Then their convolution product (F*G),
exists for all g€ R— {0} and is given by the formula
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i T
(F*xG)y(»y) = f exr){ﬁ fo [v(6)+w(1)] dy(t)}

L3[0,T]

;T
-exp{—?;— fo [v(t)—w(t)]2dt]df(v)dg(w). (3.5)

Proof. Proceeding as in the proof of Theorem 3.1, for all A > 0 and s-a.e. y
in Cy[0, T'] we obtain

~ yEA V2 y—A"V2x
erorn=f ()

: T
= L -1/2
- fCoIO.TJ sz[O.TJ CXP{\E fo v dlyn+A x(t)]} df(v)

. AT
) L 172
Lz{O,T} exD{ﬁL w()d[y(t)—A x(t)]] de(w)m(dx)

i (7 d
= Jizon expl 7z [ [0+ wona o)

: fco

= exp{—-‘l f o)+ w(o) dy(r)}
L3[0,T} V2 Jo

T
-exp{—-;7 fo [v(t) —w(D)]? dt} df(v) dg(w). (3.6)

)m(dx)

. T
o exp{ﬁ fo [v(5)—w(1)] dx(t)}m(dx) df(v) dg(w)

But the last expression is an analytic function of A throughout C,, and is a
bounded continuous function of A on C7 for all y in Cy[0,7] since fand g
are finite Borel measures. Hence (F'* G), exists and is given by (3.5) for all
qgeR—-{0]}. O

Our next theorem shows that the Fourier-Feynman transform of the convo-
lution product is a product of transforms.

THEOREM 3.3. Let F, G, [, and g be as in Theorem 3.2. Then, for all g€
R— {0}:
(TPUF*G) ) (2) = (TP F N (=/N2NTPUG))(2/V2) (3.7

Jorl=p=<2,

Proof. We first show that
(TA(F* G)))(2) = (TA(F))(2/V2)(TH(G))(2/V2) (3.8)
holds for A > 0. For A > 0, using (2.1) and (2.6) we see that

anw,

(Ty(F*G))(z) = fC L (FXGR () m(@)

anwy z+y+x) (z+y-—x)
= F G m(dx)m(dy).
c210, 7] ( V2 V2 (dxym(dy)
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But w; = (y+x)/V2 and w, = (¥ —x)/V2 are independent standard Wiener
processes and hence, for all A > 0,

(To(F* G)y)(2) = f;:::n Fw,+2/N2)G(Wy+ 2/NZ)m(dwy)m(dws)

anw, anwy
= f F(w;+z/V2)m(dw,) G(w,y+z/V2)ym(dw,)
Col0,T] Col0,T]

= (TW{(F) (2/V2)(T\(G))(z/V2).

But both expressions on the right-hand side of equation (3.8) are analytic
functions of A throughout C_, and are bounded continuous functions of A
on Cj for all ze Co[0,T]. Hence T P (F* G), exists and is given by equa-
tion (3.7) for all desired values of p and g. O

In our next theorem we establish an interesting Parseval’s identity for func-
tionals F and G in the Banach algebra 8.

THEOREM 3.4. Let F and G be as in Theorem 3.2. Then, for all g€ R—{0},
the Parseval’s identity

anf_q
f (T{P(FxG),)(z)m(dz)
Col0,T]

anf_,
= [ TPEN DTN N2 mdz)
Col0,7T]

anf,

=| 7 F(eN2)G(—z/N2)m(dz) (3.9)
Col0,T]

holds for 1< p < 2.

Proof. Fix p and q. Then, for A > 0, using (3.7) and (3.2) we obtain

f (TSP/(F*G) )z NX)m(dz)
Col0,T]

=f f exp{ J fTv(t)dz(t)—LfTv"(t)dt}df(v)
Col0, T} Y L,[0,T] \/2_X 0 2q Jo

f ex { ! frw(t)dz(t)——i——fTwz(t)dt}d (wym(dz)
L,10,T] P V2A Jo 2gq Jo £

. T
= exp{—L f [02(2) +w2(1)] dt
L3{0,T] 2q Jy

1 T 2
-2 [ dr} df (v) dg(w).

But the last expression is a continuous function of A on C7, and so letting
A = —(—q)i = qi we obtain
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anf__q
f (TP(F*G),) (2)m(dz)
CO[()! T]

. aT

= exp{-——L f [v(t) —w(1)]? dt} df(v) dg(w).
130, T} 4q Jo

On the other hand, for A > 0,

f F(z/\ZN) G(—=2/2N)m(dz)
Col0,T]

— l T _
- fcom,n ng[o,n eXp{\/Z—)\ fo [v(t)—w(t)] dz(t)} df (v) dg(w)m(dz)

_ et 2
= fL%[(m exp{ an fo [v(2)—w(1)] dt}df(v)dg(W)-

But the last expression is a continuous function of A on C7, and so letting
A = —qi we obtain that

anfq
f FN2)G(—z/N2)m(dz)

Col0,T]

;oT
= 4 _ 2
_fz_g[o,r] exp[ 4q J;) LoD =w®)] d’} df(v) dg(w)

anf_q
= (TPUF*G),)(z)m(dz). O
Col0,T]

The following corollary follows immediately from equations (3.9) and (3.7)
by choosing G = F for (i) and G =1 for (ii) below.

CoROLLARY 3.1. For Fe 8§,

anf_q anfq
M [ (T ENeADPmdd = [ 7 FeNDF—2/\2)m(dz)
Col0, T} Col0,T]
and
anf_q anfq
(i) f (TPENANDmE = [ FanDmdz).
Col0,T] Col0,T]

REMARK. An interesting alternative form of Parseval’s identity is

anf,

anf_,
[T agEn@apenema =" FoG-amd. (.9

CO[Os T] COEOi Tl
However, it is not true that

anf,

anf_,
f (TPUF) (TG (z)m(dz) = F(z)G(—z)m(dz).
Col0,T) Col0,T1

Next, for Fe 8§, we obtain an inverse transform theorem.
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THEOREM 3.5. Let Fe 8 be given by (3.1). Then T'ENTPN(F)) = F for all
qgeR—-{0}.

Proof. First, proceeding as in the proof of Theorem 3.4, for A > 0 calculate
T\ (T P)(F)). Then extend analytically in A to C., and finally let A—> —(—gi)=
gi through values in C, to obtain T2(T P (F)) = F. a

Next we exhibit some classes of functionals on Cy[0, T'] of the form (1.1), or
the n-dimensional version of (1.1). Every functional in each of these classes
is known to belong to the Banach algebra 8 by Corollaries 3.2, 3.3, and 3.4
of [14].

Class A,: Let A, denote the class of all functionals of the form

T T
F(x)=exp{— fo fo <A(t1,r2)(x(t1),x(t2»,(x(tl),x(tz)»dtldtz} (3.10)

for s-a.e. x in Co[0, T'1, where {A(#}, £3) = (a;;(t}, 1)): (¢, 1) €[0,T1*} is a
commutative family of 2 X 2 real, symmetric, nonnegative definite matrices
with the functions a;;(¢,, £) all in L,([0, T 1%). Note that 4, contains the funec-
tionals of the form (3.10) with A(¢,, ¢,) = g(#,, t,)A, where g(¢,,£,) = 0is in
L([0,T]?) and A is a real, constant, symmetric, nonnegative definite matrix.

Class A,: Let {A(t;, ;)] be as in class A;. Let  be a Borel measure on
[0,T]%. Let 6: [0, T']> X R? - C be such that, for all (¢, ;) € [0, T']?,

e(tls t2, Uy, u2) = f
R

where (i) o(,, ,,) € M(R?); (ii) for all E€ ®(R?), o(;,,1,)(E) is a Borel measur-
able function of (#;, ¢,); and (iii) |lo(,, 1|l € L1([0,T1%, B([0,T]%), n). Then
A, is the class of all functionals of the form

, expliu vy +iuy vy} dogy, 1,y(V1, 02)

T oT
F(x) = exp{— fo fo CA(t, ) (e(t), x(£2)), (e(ty), x(82) dty dtz}

T oT
-exp{ f f 9(1'1,tz,x(tl),x(fz))dﬂ(th12)}- (3.11)
0 Y0

Class A;: Let n = 2 be a fixed positive integer. Aj; is the class of all func-
tionals of the form

F(x)
=exp{—f (A(t]s-‘-y tn)(x(tl),'--’x(tn))a (X(tl), -o-sx(tn))>d?} (3°12)
[0,71"

for s-a.e. x in Cy[0, T'], where
{A(tla seey tn) = (aij(th sery tn)): ls., = 1) 2a ey N1y i.= (tls seey tn) € [0’ T]n}

is a commutative family of n X n real, symmetric nonnegative definite ma-
trices with the functions a;;(#,, ..., #,) all in L,([0,T]").



Convolutions and Fourier-Feynman Transforms 255

Class A4: Let 7 be a finite Borel measure on [0,7]". Let A, be the class
of all functionals of the form

F(x)= exp[—flo n"(A(tl’ e ) (X(8), .o x(2,)), (x(1y), ..., x(tn)»dt”}

~epr 0(t1, ..or tys X(11), .., X(8)) dn(ty, ..., tn)} (3.13)
[0,7}"

for s-a.e. x in Cy[0, T'], where {A(¢y, ..., ¢,)} is as in class A; and

n

Oty ceny by Upy oney Uy) =f exp{i > ujvj} dog,, ...t )(V1s e Uy),

n

j=1
where (i) (1, ..., € M(R"); (ii) 0(4,, ...,1,)(E) is a Borel measurable function of
(¢, ..., t,) for all Ee B(R"); and (iii) ""(h, r,,)" eL,([0,T1", ®([0,T1™), 7).

THEOREM 3.6. Let F,Ge\U}_| A;. Then, for geR—{0},
(T{P(F* G)g)(2) = (T{P(F ) (z/N2U(T{P(G)(z/V2) (3.14)

and
anf_, anf,

[ @@ Fx Gy ymdz) = [ FeADG-z/Dmds) (315
Col0,T] Col0,T]

forl=p<2.

Proof. We simply note that F,G e Uj‘zlA ;j implies that F and G belong to
S; then we can use Theorems 3.3 and 3.4. O

4. Transforms and Convolution of Functionals in @

First we describe the class @ of functionals that we will be considering in
this section. Let L,.([0, T1? xR?) be the space of all C-valued Lebesgue
measurable functions f on [0, T)?> X R? such that f(s, ¢, -, ) is in L;(R?) for
almost all (s, #)e[0,T]? and as a function of s and ¢, | f(s, 2, -, 9)]|; is in
Lo([0,T]?). We define @ to be the class of all functionals F such that, for
some fe L([0, T]*>xR?),

T oT
F(x)=exp{ J;) J; f(s,t,x(s),x(t))dsdt} 4.1)

for s-a.e. x in Cy[0, T']. Functionals F in the class @ were studied by Cam-
eron and Storvick in [2] and by Johnson and Skoug in [11].

In our first theorem, for Fe @ we obtain a series expansion for 7,(F) for
AeC,.

THEOREM 4.1. Let Fe @ be given by (4.1) with || f(s, t, -, -)||1 < B for almost
all (s,t)€[0,T)2 Then, forall AeC,,
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(T(FNY)
0 2n A 172 A(uj_uj—l)z
=1+ 2 -PE-Lz,,(T)fR“[H(ZT(” r_ o) e"p{ 2(r,—1,-1) H

n
[Hl S (Tmjs Ty U+ Y (Fm,),s uk,.+y(rk,.))] dudr, (4.2)
_I=

where
Ay (T)={F=(r1y ...y F2n) €10, T1*":0< 1\ < -+ < 1y, < T},

P, is the set of all (2n)! permutations of the set of integers {1,2, ...,2n},
ro=0, and uy =0.

Proof. We first note that, for Fe @ of the form (4.1), we have the series
expansion

F(x)=1+ E [f f f(s, t,x(s), x(t))dsdt]

=14+ — [Hf(sj, , X(55), w(tj))] dsdr. 4.3)

n=1 1! Jio, 127
Hence, for A > 0 we see that

(TA(F) () = fC L FO e y)m(a

—-1+E

(0,T1*" fco[o T]
[II;I1 S(sjs 1, X2 x(5) + y(s7), AV 2x (1) + y(tj))] m(dx) dsdi.

Now let ry, r,, ..., 1y, be the set of numbers sy, ...,s,, 1, ..., f, In some re-
arrangement and let P, be the set of all permutations of {1,2,...,2#n}. Now
if we set s;=ry,, and ¢; =ry, and evaluate the foregoing Wiener integrals,
we obtain the series expansion on the right-hand side of (4.2) and thus equa-
tion (4.2) holds for A > 0. But Ae C, implies that ReA > 0 and so the right-
hand side of (4.2) is an analytic function of A throughout C, for each ye
Cyl0,T]. O

We will use our next lemma to help obtain a bound on the series in (4.2).

LEMMA 4.1. Let

Az,,(T)={i"=(r1,...,rz,,)e[O,T]Z":O<r1< Ly = T}

Then

2n n
IIlr—r )72 dF = (7:17;) : 4.4)

Az,(T) j=1

Proof. We first note that
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2n
[ Ttn-r02ar
A

22(T) j=1

J‘Tf"znfrzn—l J‘"ctf"sf"z
0 Y0 0 0 0 0

Lri(ra=r)(ry—ry) - (rap—ra, )12 dridry -+ dra,.

Making the substitution v = r;/r,, we see that

2 -172 : ~1/2 1 1
fO[rl(rz—rl)] dr1=f0[v(1—v)] dv=3(-2—,-2—),

where # denotes the beta function. At the next state we make the substitu-
tion v = r,/r; and obtain

r r i
f ’ f Z[rl(rz-—rl)(a—rz)r”zdrldrz=B(—1—,-1—) f P21 =)™ dy
0 0 2 2 0

6(1 1)6(1,—;—)03)“2.

At the next stage we let v = r3/r4, which yields

fa 3172 172
f f f [ri(ra= 1) (r3— o) (ra—13) ]~V dry diry dirs
0 0 0

11 1\,/3 1
-85 3)o o2

Continuing on for 2n—1 stages, we obtain

2n 2n—1
H[rj—r 18 2 dF = H B(J l)f r2n—]dr2n

Azn(T) j=1 272

Tn 2n—1 J 1 (’FT)"
~n H B( ): n!

since I'(3) = Vr, B(v,w) = [I‘(v)I‘(w)]/I‘(v+w), and I'(n) = (n—1)!. O

’

REMARK. Similar calculations were carried out in [2; 11].

THEOREM 4.2. Let FeQ be asin Theorem 4.1. Then, for1 < p <2, Tq"”(F )
exists for all g € R— {0} such that |q| < 1/2BT and is given by

(TP(F)(»)
® 1 2n —qi )1/2 { qi(uj—uj_l)z}]
=1 —_ -
+n§1 n! ngn(T)fRZ"[g(ZW(’}'_'}‘—I) =P 2(r;—rj—1)

-[H Sy Tiejs Um;+ Y(Tm)), U, +y(rk,.))] didr. (4.5)

j=1

Proof. For all (y,A) € Co[0,T]x {Ae C3:|A| < 1/2BT}, the series on the
right-hand side of (4.2) is dominated by the series
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) _1__ l)‘l )1/2]
g n! PE‘LG(T)fﬂzn[J 1(27T(”J —rj_1)

. [ Hl | (s Tijs m, + Y (Fm)),s uk_,.+y(rkj))|] diidr
j=

) 1 2n I)\l )1/2]
=1+ —
n§1 n! g: fAz,,(T) fRZ"[,:];Il(ZW(rj—')—l)

[Hlf("m i Fieys Um s Uk, )I] diidr

© 2n 1/2 n
= 1+n§l —’;— g: LZH(T)[H(Zw(rj —rj- l)) ]I:HHf(rmj, rkj, K .)"l} @
© pn 1/2
=1 n§=;i n! gf ,,(T)[; 1(27T(r, —rj_ 1)) ]
© n(zn)! |'2n( II\I )1/2] .
n§=:l n! Lz,,(r) E 2w (ri—rj_y) 4
< B"2n)! |A|" (xT)"
= 1+,,§, n! (27)* n!
14 S QBTN Cn)!

ntnt22n °

where we used Lemma 4.1 in the next-to-last step. Next we use Stirling’s
formula

]
I

12n—1

(e <n<vim(ef i

to obtain

(2n!) Jaxn(2n/e)*" 1 2
Aini2on 2wn(n/e)2n22n [l+ 24n—1] < N7
Thus, the above series is dominated by the series
2BT|A|)"
12 § GETA"
which converges by the ratio test for |A| < 1/2BT. Hence the series on the
right-hand side of (4.2) converges absolutely and uniformly for all (y,A) €

Col0,T]1x {Ae C3:|A|<1/2BT}, and so T}P)(F) exists and is given by equa-
tion (4.5). O

THEOREM 4.3. Let F be as in Theorem 4.1, and let G € @ be given by
T oT
G(x) = exp{ f f g(s, t, x(s), x(t)) dsdt}, (4.6)
0 Yo

with ||g(s, t, -, )|li < B for a.e. (s, t) € [0, T)%. Then their convolution prod-
uct (F*G), exists for all A\e C . and is given by
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(F*G)i(»)

® 1 2n A )1/2 [—A(Uj"uj-l)ZH
=1 -
+n§1n!p2fA2,,mfRz~[,IIi(2w(r ) P 2=r10)

n (rmj)'i"umj (rkj)"' Ug,
'H[f(rmjs rkjs \/i ’ \/i )

Y(rm))—um, Y(ri;)— k)] dii dit 47)

+ 8\ s Tk,s ’

g( mj k ﬁ ﬁ
Proof. By definition of (F* G),, for A > 0 we have
(F*G))\(»)

y+/\—1/2 ) _/\—IIZX)
= F
Col0,T] ( V2 G( V2 m(dx)
y(s)+ A2 x(s) y(t)+)r'/2x(t))
N ColO, T]exp[f f [f( V2 ’ V2

3172 -2
+g(s,t, Ys)—A x(s),y(t) A x(t))]dsdt]m(dx)

v_ V—
n= 1 n' [0, T]2n Co[o T]

n VA 2x(s, £+ A" 25(1,

-H[f(s,-, ” PP FATxls) ) FA X ,))

= vz vz

+g(sj, . )’(Sj)—)\_mx(sj) ’ y(fj)“‘)\_l/zx(fj)

V2 V2
Then, letting ry, ..., r,, be the set of numbers sy, ..., s,, ¢, ..., , in some re-
arrangement and P, the set of all permutations of {1,2,...,2n} and eval-
uating the Wiener integrals as in the proof of Theorem 4.1, we obtain (4.7)

for A> 0. But Ae C, implies that ReA > 0 and so the right-hand side of
(4.7) is an analytic function of A for each y e Cy[0, T]. (]

)]m(dx) dsdr.

THEOREM 4.4. Let F and G be as in Theorem 4.3. Then, for all Ae C_,
T,(F*G), exists and is given by

A
T(F*xG =1
(T(F*G))(z) +2 E o fw,,, 1(27r(r, )

- 1 [(v;—v;- l)2+(l —1;_ 1)]
wf 2§ o }
" 2(rm,) z(rk)
.H[f(rmja rkj, {2— + )
+g(rm,, Tk Z(\;;j) z(rk) )] divdldr. (4.8)
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Proof. For A > 0, using (4.7) we obtain

(Ty(F*G))(2) = fc L EEORO it ym(a)

143 ,zf f
n=11 Ap(T) YRA"

[ A(u,-—u,_l)z—A(wj—wj_l)ZH
[;1—11(277(” 1))exp{ 2(ri—ri_1)

. z(rm,)+um,.+wm,. 2(ry;) + ug, +wy,
'H[f(rmjsrks \/2- ’ \[i )

j=1
2(Tm) +Wn, — U, z(rk,.)+wk,.—uk,.)] dii div dF

+g T'm;s Tk;s ’
( mjs TK; V2 V2
Next, in the above expression we make the substitutions

Wi+ u; W —u;
vi=—2L—L and I,=—L—"

7 \/5 J \/5
for j=1,2,...,2n. The Jacobian of this transformation is unity and for j =
1,2,...,2n we have that

(uj— ;) + (W —w;_ ) = (=0 )+ (= o)

Hence (7, (F*G),)(2) is given by (4.8) for A > 0. Again, by analytic con-
tinuation in A, we obtain that equation (4.8) is valid throughout C,. U

Our next theorem shows that the Fourier-Feynman transform of the con-
volution product is the product of their transforms.

THEOREM 4.5. Let F and G be as in Theorem 4.3. Then, for all g€ R —{0}
such that |q| < 1/2BT,

(TPUF* G),)(z) = (T{PU(F)(z/V2)(TP(G)) (2 /V2) (4.9)
forl=p=<2.

Proof. The proof used in establishing equation (3.8) shows that
(TM(F*G))(2) = (TH(F) (2 /V2UTH(G)Nz/V2) (4.10)

holds for all A > 0. But both sides of (4.10) are analytic functions of A
throughout C, and so equation (4.10) is valid throughout C,. However,
by Theorem 4.2, both of the expressions on the right-hand side of (4.10)
are bounded continuous functions of A on {Ae C;:|A| < 1/2BT} for all ze
Co[0,T1. Hence T/P(F*G), exists and is given by equation (4.9) for all
(p,q)e[l1,2]1X E, where E= (—1/2BT,0)U(0,1/2BT). O

REMARK. An alternative (but much longer) method of establishing Theo-
rem 4.5 is to show that the series expansion for (7, (F * G),)(z) is the Cau-
chy product of the series expansions for (T(F))(z/¥2) and (T)(G))(z/V2).
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