A New Construction of Isospectral
Riemannian Nilmanifolds with Examples

RutH GORNET

1. Introduction

The spectrum of a closed Riemannian manifold (M, g), denoted spec(M, g),
is the collection of eigenvalues with multiplicities of the associated Laplace-
Beltrami operator acting on smooth functions. Two Riemannian manifolds
(M, g) and (M, g') are said to be isospectral if spec(M, g) = spec(M’, g’).
A basic question in spectral geometry is determining what geometric infor-
mation is contained in the spectrum of a Riemannian manifold.

Despite considerable research in the area, only a few geometric properties
are known to be spectrally determined: for example, dimension, volume, and
total scalar curvature. Examples of isospectral manifolds provide us with
the only means for identifying properties not determined by the spectrum.

The primary goal of this paper is the development of a new construction
for producing pairs of isospectral nilmanifolds of arbitrary step, and a com-
parison of the properties of resulting new examples. The new construction is
a generalization of the one used by Gordon and Wilson to construct pairs of
isospectral Heisenberg manifolds. Two-step nilmanifolds in general, and
Heisenberg manifolds in particular, have been a rich source of examples of
isospectral manifolds, and their geometry has been studied in some detail
[DGI1; BG; O; Pl; P2; P4; GWI1; GW2; Gl1; G2; E]. The higher-step exam-
ples that we introduce here have a much richer geometry, however, exhib-
iting many interesting and important properties not previously found. In
particular, we present new examples of manifolds that are isospectral on
functions but not isospectral on 1-forms. The techniques used to compare
the 1-form spectrum are new, as previous techniques could not be applied to
the higher-step examples.

Almost all known examples of isospectral manifolds can now be con-
structed by Sunada’s theorem [S] or its generalizations [GW1; DG2]. (See
[B2] for a general overview.) Sunada’s method and its generalizations are
based on representation theory, and all manifolds constructed by these meth-
ods are strongly isospectral; that is, all natural, strongly elliptic, self-adjoint
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operators on the manifolds are isospectral. In particular, these manifolds
share the same p-form spectrum. The p-form spectrum of a manifold is the
eigenvalue spectrum of the Laplace-Beltrami operator extended to act on
smooth p-forms for p a positive integer. (See Section 2 or the Appendix for
details.)

The new, higher-step construction uses techniques from Riemannian ge-
ometry, Lie groups, and representation theory to produce pairs of isospectral
nilmanifolds of arbitrary step. While representation theory is used as a tool,
this construction differs from previous ones in that the resulting pairs of
isospectral manifolds need not be isospectral on 1-forms and so do not fall
under the traditional Sunada set-up. This property was previously exhibited
by pairs of isospectral Heisenberg manifolds constructed by Gordon and
Wilson [GW2; G2]. Moreover, for any choice of P, Ikeda [I2] has con-
structed examples of isospectral lens spaces that are isospectral on p-forms
for p=0,1,..., P but not isospectral on (P+1)-forms. These are the only
known examples.

The only other examples of isospectral manifolds that do not fall under
the traditional Sunada construction are bounded domains of Urakawa [U]
and nonlocally isometric examples of Szabo [Sz2], Gordon [G3; G4], and
Gordon and Wilson [GW3]. Recent results of Pesce [P3) now explain the
Ikeda and Urakawa examples in a Sunada-like setting. This setting requires
a genericity assumption that excludes nilmanifolds. Moreover, the construc-
tion presented here generalizes the method used by Gordon and Wilson to
construct the Heisenberg examples.

Consequently, outside of the nonlocally isometric examples mentioned
above, the construction below subsumes all known examples of isospectral
manifolds that do not fall under a Sunada set-up.

The strength of this construction is demonstrated by the richness of the
properties of resulting new examples. In particular, we use the new construc-
tion to produce pairs of isospectral three-step nilmanifolds with the combi-
nations of properties shown in Table I.

The properties listed in Table I are defined as follows. Two cocompact
(i.e. ’'\G compact), discrete subgroups I'; and I', of a Lie group G are called
representation equivalent if the associated quasi-regular representations are

Table I New Examples of Isospectral Manifolds

Pair of 3-Step vp Same Rep. Equiv. Isomorphic Same Same
Isospectral p-form Fundamental Fundamental Length Marked Length
Nilmanifolds Spectrum Groups Groups Spectrum Spectrum
I(7 dim) Yes Yes No No No

I1(5 dim) Yes Yes Yes Yes No
IHNNIV(7\5 dim) No No No No No

V(7 dim) No No Yes Yes Yes
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unitarily equivalent. (See Section 2 for details.) The length spectrum of a
Riemannian manifold is the set of lengths of closed geodesics, counted with
multiplicity. The multiplicity of a length is defined as the number of distinct
free homotopy classes of loops in which the length occurs. (Note: other defi-
nitions of multiplicity appear in the literature.) The pairs of isospectral man-
ifolds described above have the same lengths of closed geodesics. However,
the length spectra often differ in the multiplicities that occur. The marked
length spectrum takes into account the lengths of the closed geodesics and
also records the free homotopy classes in which the geodesics occur.

After establishing notation in Section 2, the new construction for produc-
ing pairs of higher-step isospectral nilmanifolds is presented in Section 3.
In Section 4, we present the examples described in Table I and compare the
quasi-regular representations and the fundamental groups of Examples I
through V. We also compare the p-form spectrum, but the calculations are
left to an Appendix. The length spectrum and marked length spectrum of
these examples will be examined in [Gt4].

Example I is the first example of a pair of nonisomorphic, representation
equivalent, cocompact, discrete subgroups of a nilpotent Lie group. It is also
the first example of a pair of representation equivalent, cocompact, discrete
subgroups of a solvable Lie group producing Riemannian manifolds that do
not have the same length spectrum. This example has implications in repre-
sentation theory on nilpotent Lie groups, and motivated [Gt2] and [Gt3].

We prove in the Appendix that the manifolds in Examples III, IV, and V
are not isospectral on 1-forms. Outside of the traditional Sunada set-up, no
general method is known for comparing the 1-form spectrum of manifolds.
The methods illustrated in the Appendix are new, as previously used tech-
niques could not be applied to the higher-step examples. The only previous
examples of manifolds that are isospectral on functions but not isospectral
on p-forms for all p are the lens spaces and Heisenberg manifolds men-
tioned above.

Example V is the first example of a pair of isospectral Riemannian mani-
folds with the same marked length spectrum, but not the same spectrum on
1-forms. This example contrasts with two-step results relating the marked
length spectrum and the p-form spectrum [E]. This example will be studied
in detail in [Gt4].

A significant portion of the contents of this paper are contained in the
author’s thesis at Washington University in St. Louis in partial fulfiliment
of the requirements for the degree of Doctor of Philosophy. The author
wishes to express deep gratitude to her advisor, Carolyn S. Gordon, for all
of her suggestions, encouragement, and support.

2. Background and Notation

Let G be a simply connected Lie group and let I" be a cocompact, discrete
subgroup of G. A Riemannian metric g is left-invariant if the left translations
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of G are isometries. The left-invariant metric g descends to a Riemannian
metric on I'\G, which we also denote by g. Note that a left-invariant metric
is determined by a choice of orthonormal basis of the Lie algebra g of G.

As G is unimodular, the Laplace-Beltrami operator of (I'\G, g) may be
written

n
i=1

where {E|, ..., E,} is an orthonormal basis of the Lie algebra g of G.
The Laplace-Beltrami operator acting on smooth p-forms is defined by
A = ddé+46d. Here 6 is the metric adjoint of d. Equivalently

&= (_l)n(p+l)+l % d*,

where * is the Hodge-* operator. We denote the p-form spectrum of a Rie-
mannian manifold (M, g) by p-spec(M, g).

The quasi-regular representation pp of G on L*(I'\G) is defined as fol-
lows: For all x in G and f in L*(I'\G),

pr(X)f =feR,.

Here R, denotes the right action of x on I'\G. The quasi-regular representa-
tion is known to be unitary.

We say I'y and I, are representation equivalent if pp, and pr, are unitarily
equivalent; that is, I'; and I', are representation equivalent if there exists
a unitary isomorphism 7:L*(I)\G)— L*(I',\G) such that T( pr(x)f) =
pr,(x)Tf for every x in G and every f in L*(T'\G).

ProposiTION 2.2 [GWI1]). Let T, and I';, be cocompact, discrete subgroups
of a simply connected Lie group G. Let g be a left-invariant metric on G.
If T, and T', are representation equivalent, then

p-spec(I'\G, g) = p-spec(I',)\G, g)
for p=0,1,...,dim(G).

REMARK. Pairs of isospectral manifolds constructed using the traditional
Sunada method are of the form (I'\ M, g) and (I';)\ M, g), where I'; and T,
are representation equivalent, cocompact, discrete subgroups of a group G
acting by isometries on a Riemannian manifold (M, g).

For a Lie algebra g, denote by g’ the derived algebra [g, g] of g. That is,
gV is the Lie subalgebra of g generated by all elements of the form [X, Y]
for X, Y in g. Inductively, define g**1 =[g, g¥)]. A Lie algebra g is said to
be k-step nilpotent if ¢’ = 0 but g¢* " % 0. A Lie group G is called k-step
nilpotent if its Lie algebra is.

Let G = exp(g®’) denote the kth derived subgroup of G. We denote the
center of G by Z(G) and the center of g by 3. Note that if G is k-step nil-
potent, then G~V C Z(G).
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Let exp denote the Lie algebra exponential from g to G. The Campbell-
Baker-Hausdorff formula gives us the group operation of G in terms of g.
Namely, for X, Yeq:

exp(X)exp(Y) =exp(X+Y +3[X, Y]+ 55X, [X, Y]] +5[Y, [V, X]]+--),

where the remaining terms are higher-order brackets. Note that for two-step
nilpotent Lie groups, only the first three terms in the right-hand side are
nonzero. For three-step groups, only the first five terms are nonzero. If g is
nilpotent and G is simply connected, then exp is a diffeomorphism from g
onto G. Denote its inverse by log.

Let T', and T', be cocompact, discrete subgroups of nilpotent Lie groups
G, and G,, respectively. Any abstract group isomorphism &:T', - I'; extends
uniquely to a Lie group isomorphism ¢: G, — G,.

Let I"' be a cocompact, discrete subgroup of a nilpotent Lie group G with
left-invariant metric g. The locally homogeneous space (I'\G, g) is called a
Riemannian nilmanifold. If G is an abelian Lie group, then I' is merely a
lattice of full rank in G, and in this case logI' is also a lattice in g.

Let g = spang{logI'}. This is a rational Lie algebra; that is, there exists a
basis of ¢ made up of elements of logI" such that the structure constants are
rational. A Lie subalgebra | of g is called rational if § is spanned by hNgq.
Note that the notion of rational depends on I'. If H = exp(}) is the connected
Lie subgroup of G with rational Lie algebra f, then '\ A is a cocompact,
discrete subgroup of H. The g'¥ are always rational Lie subalgebras of g.

The Kirillov theory of irreducible unitary representations of nilpotent
groups gives us a correspondence between irreducible unitary representa-
tions of G and elements of g*, the dual of g. In particular, fix 7€ g*. Let §) be
a rational subalgebra of g that is maximal with respect to the property that
7([h, h]) = 0. The subalgebra | is called a polarization of r. Let H = exp(h)
be the connected subgroup of G with Lie algebra .

Define a character 7 of H by

F(h) = e2wiT(log(h)) (2.3)

for all 4 in H. Define =, to be the irreducible representation of G induced by
the representation 7 of H. Denote by JC, the representation space of ..
Two such irreducible representations 7, and =, are unitarily equivalent if
and only if 7' = 7°Ad(x) for some x in G. Here Ad(x) is the adjoint map
from g to g.

For 7 in g*, the coadjoint orbit of 7 is

O(7) = {r°Ad(x): xe G}.

Hence 7, and =, are unitarily equivalent if and only if 7 and 7’ lie in the
same coadjoint orbit of g*.

As G is nilpotent, every irreducible representation of G is unitarily equiva-
lent to =, for some 7€ g*, and the quasi-regular representation py is completely
reducible. Thus the representation space L>(I'\G) is unitarily isomorphic to
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L*(T\G) = ® m(1)3,
Ted
for some 3 C g*. Here m(7) denotes the multiplicity of H,, and we assume 3
contains at most one element of each coadjoint orbit of g*.
A good reference for representation theory on nilpotent Lie groups is
[CG].

3. A New Construction of Isospectral Nilmanifolds

Let G be a simply connected, k-step nilpotent Lie group with Lie algebra
g. Define G to be the simply connected, (k—1)-step nilpotent Lie group
G/G%*~D, For I a cocompact, discrete subgroup of G, denote by T' the
image of I" under the canonical projection from G onto G. The group T' is
then a cocompact, discrete subgroup of G. For a left-invariant metric g on
G, we associate a left-invariant metric @ on G by restricting g to an orthog-
onal complement of ¢* = in g.

We call the (kK —1)-step nilmanifold (I'\G, g) the quotient nilmanifold of
(I'\G, g). By using the definition of g, one easily sees that the projection
(I'\G, g) = (I'\G, ) is a Riemannian submersion.

The Lie algebra § of G is just ¢/g* 1. We denote elements of § by U,
where U is the image of U under the canonical projection from g onto §.

DEerFINITION 3.1. Let G be a simply connected nilpotent Lie group. We say G
is strictly nonsingular if the following property holds: For every z in Z(G)
and every noncentral x in G, there exists an element ¢ in G such that the
commutator of x and a is z. That is, xax'a ! =z.

The nilpotent Lie algebra g is strictly nonsingular if, for every noncentral

Xing,
3 C ad(X)(g).

That is, for every X in g — 3 and every Z in 3, there exists a vector Y in g such
that [X,Y]=Z.

One easily sees that these notions are equivalent. That is, a nilpotent Lie
group is strictly nonsingular if and only if its Lie algebra is strictly non-
singular.

THEOREM 3.2. Let G be a simply connected, strictly nonsingular nilpotent
Lie group with left-invariant metric g. If 'y and T', are cocompact, discrete
subgroups of G such that
NN Z(G)=T2NZ(G) and spec(T)\G,g) = spec(T)\G, &),
then
spec(I'\G, g) = spec(I',\G, g).

ReEMARK. The above construction is a generalization of the construction used
by Gordon and Wilson to obtain pairs of isospectral Heisenberg manifolds
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[GW?2]. If we let the Lie group G be a simply connected, strictly nonsingular,
two-step nilpotent Lie group with a 1-dimensional center, then G = H,, for
some n, where H, denotes the (2n+ 1)-dimensional Heisenberg group.

Proof of Theorem 3.2. We use the notation of Section 2.
For i=1,2, let J; be a subset of g* such that

LY (T\G) = D m;(1)3C,.
TES,’
Recall that m;(7) denotes the multiplicity of =, in the quasi-regular repre-
sentation of G on L3(I'\G), and we assume that J; contains at most one
element of each coadjoint orbit of g*.
We decompose the index set 3; = 3/ UJ; by letting

3i={re3i:7(3)=0} and J/={reJ;:7(3) %0}
We likewise decompose the representation space L2(I'\G) by letting

3Ci = @ mi(1)3C, and JCi= @ m;(1)3C,.
T7€3] 7€d]
As representation spaces, L*(TAG) = 3C;@ JC7.

Because the Laplace operator acts through the representation, we can
decompose the spectrum as spec(I'\G, g) = spec’(I'\G, g)Uspec”(I'\G, g).
Here spec’(T\G, g) and spec”(I';\G, g) are defined as the spectrum of the
Laplacian restricted to acting on JC;, and 3C7, respectively. The multiplicity
of an eigenvalue in spec(T';\G, g) is equal to the sum of its multiplicities in
spec’(I'\G, g) and spec”(I'\G, g).

LEMMA 3.3. _ sze Laplacian of (I:,-\q, g) acting on_JC; is precisely the La-
placian of (I'\G, g) acting on LZ(I‘,-\G). Thus spec(T\G, g) = spec’(T\G, g)
fori=1,2.

LeMMA 3.4. The representations of G on 3C{ and 3C; are unitarily equiva-
lent, hence spec”(I')\G, g) = spec”(I',)\G, g).

Theorem 3.2 now follows. O

The proof of Lemma 3.3 is essentially an extension of the first part of the
proof used by Gordon and Wilson to construct pairs of isospectral Heisen-
berg manifolds (see [GW2, Thm. 4.1]). The details are included here for
completeness and because of a difference in notation.

Proof of Lemma 3.3. Let (Z,,Z,, ..., Z1} be an orthonormal basis of 3 =
g*~D, Extend it to {E,, E>, ..., En, Zy, Z5, ..., Z7}, an orthonormal basis of
g. By (2.1), the Laplace-Beltrami operator of (G, g) is

N K
A=='—§S4Eh2—-§; Z%{
n=1 k=1

View the functions in L?(I'\G) as left I';-invariant functions of G. The sub-
space 3C; then consists of those functions in L2(T\G) that are independent
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of the center, which correspond to functions in L?>(T;)\G) in a natural way.
Hence, when we restrict A to JC;, we have

N
A== E}
n=1

which corresponds to the Laplacian of (I'\G, g).

_Th_e Laplacian of (I‘,-\_G, £) acting on_CfC;; is then precisely the Laplacian of
(T\G, g) acting on L3(T)\G), so spec(T)\G, &) = spec’(T'\G, g), as desired.

O

Before proving Lemma 3.4, we must introduce some of the theory of square
integrable representations of nilpotent Lie groups.

DEerFINITION 3.5. Let G be a locally compact, unimodular group with center
Z(G). We say that an irreducible unitary representation = of G on a Hilbert
space JC is square integrable if there are nonzero vectors x; and x, in JC such
that

f [(7(8)x1, X,2)|? di(5) < 0.
G/Z(G)

Here dji(5) denotes integration over G/Z(G) with respect to a choice of
Haar measure gz on G/Z(G). As the center acts trivially, the integrand may
be viewed as a function of G/Z(G).

Let 3! be the subalgebra of g* defined by 3+ = {x € ¢*: n(3) = 0}. Note that
3t = (g/3)*. For 7eg” let b, denote the skew-symmetric, bilinear form on
/3 defined by b,(X,Y) =7([X,Y]) for all X,Y in g/3. Here X and Y are
any elements of g that project onto X and Y, respectively.

THEOREM 3.6 [MW]. For a linear functional 7 in §* with coadjoint orbit
O(7) and corresponding irreducible unitary representation =,, the following
three conditions are equivalent:

(1) =, is square integrable;
(2) O(r) =7+3%;
(3) b, is nondegenerate on g/3.

Proof of Lemma 3.4. Fix 7€ 3. Let Z €3 be such that 7(Z) # 0. By strict
nonsingularity, for all noncentral X € g there exists Y e g such that [X,Y ] =
Z.Hence b.(X,Y) = 7([X, Y]) # 0 and so b, is nondegenerate. By Theorem
3.6, =, is square integrable. Note that b, nondegenerate implies that N =
dim(g/3) is even.

Recall from Section 2 that =, is independent of the choice of 7 in O(7).
By Theorem 3.6, since =, is square integrable, the coadjoint orbit O(7) is
uniquely determined by the restriction of 7 to the center. We may thus as-
sume 7€ 3.

Let o be a volume form on G/Z(G). That is, let o be a fixed, alternating,
N-linear form over § = g/3. Since b, is nondegenerate, b2 =b,A+--Ab, is
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also a volume form on G/Z(G) and hence a scalar multiple of «. Define
Py(7) by

P (r)aa=b_A---Ab,=DbN?

The polynomial P, is homogeneous of degree N/2 on g* and depends only
on the choice of volume form «.

Let 3* denote the dual of 3. Let L =T\'NZ(G) =T,NZ(G) and let L*C 3*
be the dual lattice of L. We now use the following occurrence and multi-
plicity condition, also due to Moore and Wolf.

THEOREM 3.7 [MW]. Let G be a nilpotent Lie group and T' a cocompact,
discrete subgroup of G. Let L =T'NZ(G). Fix a volume form ay on g/ so
that T\G has volume 1. Let T be a nonzero element of §* such that =, is
square integrable. The representation w, occurs in the quasi-regular repre-
sentation of G on L*(I'\G) if and only if e L*. Moreover, its multiplicity
m(t) is | P, (7)].

By Theorem 3.7, the square integrable representation «, occurs in the quasi-
regular representation of G on L*(I'\G) if and only if 7 is contained in L*,
Thus, for i =1, 2, the coadjoint orbits represented in 3; correspond to the
elements of L*. We may assume that J; = 35.

Because the Riemannian metrics of (I)\G, g) and (I',\G, g) arise from the
same left-invariant metric & on G, we know that the Riemannian volume
forms of (I_‘l\(_? &) and (T',)\G, £) arise from the same left-invariant volume
form on G. We will denote by Q this volume form and its projections onto
(T)\G, &) and (I',)\G, g).

Let ar, and ar, be as in Theorem 3.7. The volume forms ar, are then scalar
multlples of . For i =1, 2, let ar, = p;{. It follows that

Plf_ _Q=sz_ 4
e T\G

p1VOI(T\G, ) = p, Vol(T',\G, g).

By hypothesis, spec(T')\G, &) = spec(I’;,\G, &), and the spectrum of the
Laplace-Beltrami operator is known to determine the volume of a closed
manifold. Thus Vol(T\\G, £) = Vol(T',\G, £), which implies p, = p,, and so
Qar, = ap,.

As the definition of P, depends only on the volume form ap, we must
have

Por (1) = Py (1)

for all 7 in 37 = 33. Hence m,(7) = my(7) for all 7 in 37 = 35. Thus, the rep-
resentations of G on JC{ and JC5 are unitarily equivalent, and by Propo-
sition 2.2
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spec”(I'\G, g) = spec”(I';)\G, g),
as desired.
The proofs of Lemma 3.4 and Theorem 3.2 are now complete. O

COROLLARY 3.8. Let G be a simply connected, strictly nonsingular nilpo-
tent Lie group. Two cocompact, discrete subgroups I"; and T, are represen-
tation equivalent subgroups of G if and only if T, and T, are representation
equivalent subgroups of G and "'NZ(G) =T, N Z(G).

Proof. Let T, and T', be cocompact, discrete subgroups of G. As in the
proof of Theorem 3.2, we decompose the representation spaces of pr, and
pp2 as

LY T\G) = X;®3C!
fori=1,2.

If I'; and I', are representation equivalent, then the square integrable rep-
resentations occurring in the quasi-regular representations must correspond.
We showed in the proof of Lemma 3.4 that the square integrable representa-
tions occurring in pr, and pr, are precisely the irreducible representations
appearing in C/. Thus I'; and T', are representation equivalent subgroups of
G if and only if the representations of G on JC1 and JC5 are unitarily equiva-
lent and the representations of G on JC{ and JC5 are unitarily equivalent.

For i =1, 2, the irreducible components of the representation of G on
JC; correspond to the linear functionals in J; that are zero on the center of g.
Since these functionals may be viewed as functionals on g, we may likewise
view the irreducible components as representations of G. Hence the repre-
sentations of G on JC; and JC5 may be viewed as the quasi-regular represen-
tations of G on L*(I')\G) and L*(T',\G), respectively. Thus I'; and T', are
representation equivalent subgroups of G if and only if T, and T, are repre-
sentation equivalent subgroups of G and the representations of G on 3¢/
and JC5 are unitarily equivalent.

Theorem 3.7 tells us that the irreducible representations occurring in JC/
correspond to the elements of the dual lattice of I';N Z(G), so if the repre-
sentations of G on JC{ and JCj are unitarily equivalent then the duals of
I'NZ(G) and I',N Z(G) must coincide. Hence I''N Z(G) =T',NZ(G). The
proof of the forward direction is now complete.

The reverse direction follows from Proposition 2.2 applied to the quotient
nilmanifolds and Lemma 3.4. O

4. New Examples of Isospectral Nilmanifolds

Using Theorem 3.2, we construct and compare five new pairs of isospectral
nilmanifolds. A summary of the properties of these examples was listed in
Table I. In this section we compare the quasi-regular representations and the
fundamental groups of these examples. The p-form spectra of these exam-
ples are also compared, but the calculations are left to the Appendix. The
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methods used in the Appendix are new, as previously used techniques could
not be applied to compare the p-form spectrum of these higher-step exam-
ples. The length spectra and marked length spectra of these examples will be
studied in [Gt4].

With the exception of the column comparing the representation equiva-
lence of the fundamental groups, all of the properties listed in Table I are
geometric invariants. Hence, a “No” in any one of those columns demon-
strates that an Example is nontrivial.

Before proceeding, we need the following.

DEFINITION 4.1. Let ® be a Lie group automorphism of G. Let I" be a
cocompact, discrete subgroup of G. We say ® is an almost inner automor-
phism if for all elements x of G there exists a, in G such that ®(x) = a,xa; .

THEOREM 4.2 [GWI1]. Let G be a nilpotent Lie group and let T’ be a cocom-
pact, discrete subgroup of G. If ® is an almost inner automorphism of G
then T and ®(T') are representation equivalent subgroups of G.

Example I

Consider the simply connected, strictly nonsingular, three-step nilpotent Lie
group G with Lie algebra

g = spang{X), X5, Y1, Y3, Z), Z,, W}
and Lie brackets
(X, 1] =[X5, Y] =2,
[X), Y2] = 2Z,,
[X1, Z1] =1[X3, Z5] =Y, Y] =W,

and all other basis brackets zero.
Let T, be the cocompact, discrete subgroup of G generated by

{exp(2.X)), exp(2.X3), exp(Yy), exp(Y2), exp(Z)), exp(Z,), exp(W)).
Let I', be the cocompact, discrete subgroup of G generated by
{exp(2.X;), exp(2X), exp(Y}), exp(Y2+3Z,), exp(Zy), exp(Z,), exp(W))}.

Note that I'N Z(G) =T,NZ(G) = {exp(jW): je Z}. _
Now I'; = ®(I'}), where ® is the almost inner automorphism of G given
on the Lie algebra level by
)_(1 _’)—(la
Xz ")_(2,
Yl - ?1,
Y,-Y,+32,,
Zl - le
Zy—Z,.
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By Theorem 4.2, T, and T, are representation equivalent subgroups of G.
By Corollary 3.8, T'; and I', are representation equivalent subgroups of G.
By Proposition 2.2, for any choice of left-invariant metric g of G, we have
p-spec(I')\G, g) = p-spec(I',)\G, g) for p=0,1,...,7.

ProrosiTiON 4.3 [Gt2]. The subgroups I', and T’y are not isomorphic as
groups.

REMARK. The author previously established the representation equivalence
of I'; and T', in [Gt2] by using a direct calculation. This example was pre-
sented in [Gt2] as the first example of a pair of nonisomorphic, representa-
tion equivalent subgroups of a solvable Lie group. Note that a nilpotent Lie
group is necessarily solvable. Also, this example was presented in [Gt3] as
the first example of a pair of representation equivalent subgroups of a solv-
able Lie group producing nilmanifolds with unequal length spectra. Con-
trast this example with what must happen in the two-step case.

DErFINITION 4.4. Let G be a two-step nilpotent Lie group and let T" be a
cocompact, discrete subgroup of G. We call the automorphism ® of G a I'-
equivalence if for all v in T' there exist @, in G and v, in NG such that

®(y) =a,ya;'y;.

THEOREM 4.5 [Gt2; Gt3]. Let G be a two-step nilpotent Lie group. Let T,
and T', be cocompact, discrete subgroups of G. The subgroups T'y and T', are
representation equivalent if and only if there exists ®, a I'j-equivalence of
G, such that ®(I')) =T',. Thus, if T') and T, are representation equivalent
then they are necessarily isomorphic. In addition, if T'; and T, are represen-
tation equivalent then (I''\G, g) and (I',)\G, g) have the same length spec-
trum for any choice of left-invariant metric g of G.

Example IT

Consider the simply connected, strictly nonsingular, three-step nilpotent Lie
group G with Lie algebra

g =spang{X,, Y, Y, Z, W}
and Lie brackets
[Xi, Y11=2,
[X1, Z]=[Y,, Y] =W,

and all other basis brackets zero.
Let I'; be the cocompact, discrete subgroup of G generated by

fexp(2.X)), exp(Y)), exp(Y>), exp(Z), exp(W)}.
Let I', be the cocompact, discrete subgroup of G generated by
fexp(2X)), exp(Y;+32), exp(Y3), exp(Z), exp(W)).
Note that TyN Z(G) =T,N Z(G) = {exp(jW): je Z}.
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Now T, = ®(I'}), where @ is the inner automorphism of G given on the
Lie algebra level by _ _
Xl g Xl’
Y] - Yl + %Z,
YZ - )729
Z-2Z.
Note that an inner automorphism is necessarily almost inner. _
By Theorem 4.2, I'; and I', are representation equivalent subgroups of G.
By Corollary 3.8, T', and I'; are representation equivalent subgroups of G.
By Proposition 2.2, p-spec(I')\G, g) = p-spec(I',\G, g) for p=0,1,...,5,
for any choice of left-invariant metric g of G.

Here I'} and T', are isomorphic. Indeed, a simple calculation shows that
the isomorphism ¥ given on the Lie algebra level by

X X, +3Y,,
Y1-Y,+3Z,
Y- Y,
YA YA
W-Ww,

is an isomorphism of G such that ¥(I')) =T',. Note, however, that ¥ is not
almost inner, as exp(X;+ 3Y,) and exp(X,) are not conjugate.

I_)ROPOSITION 4.6. No isomorphism between T'y and T, will project to a
I';-equivalence of G.

ReMArk. Example I illustrates that in the higher-step case, the representa-
tion equivalence of T'; and I', and the isomorphism class of I'; and I', need
not be related. Example II shows that, in contrast to Theorem 4.5, even in
the case where I'; and I'; are isomorphic, knowing the isomorphisms between
I') and T, is not enough to use Corollary 3.8 to establish whether or not T}
and I', are representation equivalent.

Proof of Proposition 4.6. Let ¥ be an isomorphism from I'; to I';. Extend
it to the Lie group isomorphism ¥: G — G such that ¥(I'}) =T',.

On the Lie algebra level, any such isomorphism must preserve the follow-
ing ideals of g:

(1) ¢® = spang{W};

(2) ¢V =spang{Z, W};

(3) U =spangf{Y,, Z,W}; and

(4) € =spang(Y,,Y,, Z, W}, the centralizer of ¢! in g.
To see (3), note that ad(U)(g) C ¢*® if and only if Ue .

Note that the generators of I'; and I', presented above are canonical in the
sense that every element of I', may be expressed uniquely as
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exp(2n, X)) exp(m,Y;) exp(m,Y,) exp(kKZ) exp(jW)

for integers n,, m;, m,, k, j, and similarly for I';.

Because ¥(I')) =TI',, generators of I'y must go to generators of I',, and
these generators must be expressible in terms of the canonical generators
of I', given above. Combining this fact with properties (1) through (4), we
obtain:

V. (W)=+W by (1).
V(Z)=xZ+hW using (2).
¥,(Y,) = +Y, mod gV using (3).

¥, (Y) = +(Y1+3Z)+ 1Y, + h,Zmod g'®  using (4).
‘I’*(Xl) = i’X]+%h3Yl+%h4Y2 mod g(”.

Here hy, h;, h,, k3, and h, are integers.
Finally, we use the fact that ¥, is a Lie algebra isomorphism. By examining
the W coefficient of ¥, ([ X}, Y1]1) = [V« (X)), ¥« (Y})], we have the equation

hO = i%‘i“;‘hlh‘gihzi%h‘;.

Thus either 73 # 0 or Ay #0.
As Y, and Y, are not in [ X}, §] and not in §", we see that the projection of
¥ cannot possibly be a I';-equivalence. O

Example II1
Consider again the 7-dimensional Lie group G presented in Example I. We
again let I'; be the cocompact, discrete subgroup of G generated by
{exp(2.X)), exp(2.X3), exp(Y)), exp(Y>), exp(Z;), exp(Z;), exp(W)},
and let I', be the cocompact, discrete subgroup of G generated by
fexp(X)), exp(X>), exp(2Y)), exp(2Y3), exp(Z;), exp(Z,), exp(W)).

Note that I'"NZ(G) =T,NZ(G) = {exp(JW): je Z}.
Let g be the left-invariant metric on G defined by letting

[X]: XZ’ Yl: YZ: Zla ZZ: W]

be an orthonormal basis of g.
Now T, = &(T',), where ® is the automorphlsrn of G given on the Lie alge-

bra level by
)?1—*?2,
Xz—* ]71,
1—,1“’)-(_'2:
72*/\71,
Z,— -7,
Zy——2Z,.
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The automorphism ¢ is also an isor_netf_y of (G, g),_and_ an isometry must
preserve the spectrum. Thus spec(I')\G, &) = spec(I';)\G, g). By Theorem
3.2, spec(I')\G, g) = spec(I',)\G, g).

ProrosiTioN 4.7. The manifolds (I'\G, g) and (I',)\G, g) are not isospec-
tral on 1-forms.

The proof of Proposition 4.7 is left to the Appendix. Note that Proposition
4.7 and Proposition 2.2 together imply that I'; and T', are not representation
equivalent subgroups of G.

ProprosiTION 4.8. The subgroups T'; and T'; are not isomorphic as groups.

Proof. If there existed a group isomorphism between I'y and I',, it would
extend to a Lie group automorphism ¥ of G such that ¥(I';) =T,.

Each of the following ideals of ¢ must be preserved by the Lie algebra
automorphism ¥,:

(1) ¢ =3 = spang{W};

2) o'V =spang{Z,, Z,, W};

(3) € =spang{Y;,Y>, Z;, Z,, W}, the centralizer of g in g; and
(4) QI = SpanR{Xz, Y], Zl’ Zz, W}.

To see (4), note that the image of ad(U) has dimension < 3 if and only if
Ue .

Now ¥(I')) =TI',. Consequently, generators of I', must go to generators of
I',, and these generators must be expressible in terms of the canonical gen-
erators of I', given above. Combining this fact with properties (1) through
(4), we obtain:

¥, (Y;) = +£2Y; mod g\ by (3) and (4).
¥, (Y;) = +£2Y, mod spangl{Yy, Z,, Z,,W} by (3).
But then ¥, ([Y}, Y3]) # [V (Y1), ¥u(Y2)]. U
Example IV

Consider again the 5-dimensional Lie group G presented in Example II. We
again let I'; be the cocompact, discrete subgroup of G generated by

{exp(2.X)), exp(Y)), exp(Y3), exp(Z), exp(W)},
and let I'; be the cocompact, discrete subgroup of G generated by
{exp(X)), exp(2Y}), exp(Y3), exp(Z), exp(W)]}.

Note that I'NZ(G) =T, NZ(G) = {exp(jW): jeZ}.
Let g be the left-invariant metric on G defined by letting

{Xls Yl9 YZ: Z’ W}

be an orthonormal basis of g.
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Now T, = ®(T;), where & is the automorphism of G given on the Lie alge-
bra level by

/\71 - }71:
}—/1 - Xl ’
Yz s Yz,
Z——Z.
The automorphism & is clearly an isometry of (G, £), and an isometry pre-

serves the spectrum. Thus spec(I')\G, &) = spec(T',)\G, g). By Theorem 3.2,
spec(I'\G, g) = spec(I')\G, g).

PROPOSITION 4.9. The manifolds (I'\G, g) and (I';)\G, g) are not isospec-
tral on 1-forms.

The proof of Proposition 4.9 is left to the Appendix.
ProrosiTiON 4.10. The subgroups Ty and T', are not isomorphic as groups.

REMARK. The combination of properties exhibited by Examples III and 1V
are similar to properties exhibited by pairs of isospectral Heisenberg mani-
folds constructed by Gordon and Wilson [GW2; G2].

Proof of Proposition 4.10. If there existed a group isomorphism between
I' and T',, it would extend to a Lie group automorphism ¥ of G such that
\I’(Pl) = I‘z.

As before, generators of I'y must go to generators of I',, and these gen-
erators must be expressible in terms of the canonical generators of I'; given
above. Combining this with properties (1) through (4) from the proof of
Proposition 4.6, we have:

¥, (Y;) = £2Y, mod spang{Y>, Z, W}.
¥, (Y,) = Y, mod gV

Y. (W)=zxW.
But then ¥,([Y}, Y2]) # [W. (Y1), ¥u(Y3)]. O
Example V

Consider again the 7-dimensional Lie group G presented in Example I. We
fix a left-invariant metric on G by letting {E,, E,, E3, E4, Es, E¢, E7} be an
orthonormal basis of g, where

Ey=X\—3X,—3Y>,

E,=X,—3Y;,

E3 = Y],

E4 = Yl + Yz,
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E5 - Z],
E¢=3Z+2,,
E7=W.

Let ® be the automorphism of G defined on the Lie algebra level by

X, = =X+ Xo+3Y1+3Y,,
X, X, —3Y1+3Zy,

Y- -Y),

Y,-2Y,+ Y+ 2Z,,

Z,—Z+3W,

Zy>~Z1=Zy+3W,

W —W.

A straightforward calculation shows that &, ([U, V]) = [®.(U), ®.(V)] for

all U,V in g. Thus ® is indeed a Lie group automorphism.
Let I'; be the cocompact, discrete subgroup of G generated by

{exp(2.X)), exp(2.X3), exp(Y;), exp(Y2), exp(Z)), exp(Z,), exp(W),
and let_I‘2 = ¢(I'}). Note that I';N Z(g) =I, QZ(G) = {exE(jW): JeZ}.
Let ¢ be the projection of ® onto G. Then @ factors as = ¥, ¥,, where
¥, is the automorphism of G given on the Lie algebra level by
X - —-X|+ X, +3Y+3Y,,
X, — X, - %Yx,
Y, - -1,
Y,—2Y,+Y,,
Zl - 21,
Zz - '_Zl -—22,
and where ¥, is the automorphism of G given on the Lie algebra level by
/\71 - Xl,
X, X+ 32,
171 - Yl:
Yz—’ 72—21“22,
Zl - Zn
Z,—Z,.
By rewriting ¥, in terms of the orthonormal basis {E}, E>, E3, Es, Es, E¢)
of g, one easily sees that Y| (E;) =+E; fori=1, ..., 6. Thus the automorphism
¥, is also an isometry of G and must preserve the spectrum. A simple calcu-

lation shows that ¥, is an almost inner automorphism of G, which by Theo-
rem 4.2 also preserves the spectrum. Thus spec(T')\G, &) = spec(T',\G, g).

By Theorem 3.2, spec(I'\G, g) = spec(I',)\G, g).
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ProproSITION 4.11.  The manifolds (I')\G, g) and (I';)\G, g) are not isospec-
tral on 1-forms.

The proof of Proposition 4.11 is left to the Appendix.

REMARK. We will show in [Gt4] that the automorphism ® marks the length
spectrum of these examples. This is the first example of a pair of isospectral
manifolds with the same marked length spectrum but not the same spectrum
on I-forms.

Appendix: Comparing the p-Form Spectrum
of Nilmanifolds

In this Appendix, we show that the pairs of isospectral manifolds in Exam-
ples III, IV, and V are not isospectral on 1-forms.

Recall that on smooth p-forms, the Laplace-Beltrami operator is defined
as

A=dé+éd.

Here 6 is the metric adjoint of d. Equivalently, § = (—1)"?*D+1x g« where
* is the Hodge-* operator. Let EP(M) denote the exterior algebra of smooth
differential p-forms on M. Then, for fe C*°(M) and 7€ E(M), Gordon
and Wilson [GW1] showed that

A(fT) = (AS)T+S(AT) —2Vpaq s T. (A.1)
For G a simply connected Lie group with cocompact, discrete subgroup
T, view EP(I'\G) as
EP(I'\G) = C*(I'\G)® A?(g*).

Here elements of AP(g*) are viewed as left-invariant p-forms of G and also
as elements of E”(I'\G).

PROPOSITION 4.7. The nilmanifolds (I')\\G, g) and (I',)\G, g) as presented in
Example III are not isospectral on 1-forms.

Outline of Proof. In Step 1 we decompose 1-spec(I;\G, g) into four com-
ponents:
1-spec!(T\G, g) Ul-spec' (T\G, g) U1-spec™(T'\G, g) U1-spec'V(T'\G, g).

The multiplicity of an eigenvalue in 1-spec(I’;\G, g) is the sum of its multi-
plicities in each of the four components. In Step 2, using representation
theory, we show that

1-spec'V(T'\G, g) = 1-spec'V(I',\G, g)
and

1-spec™(I'\G, g) = 1-spec'(I',\G, g).
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In Step 3 we show that the (complex) multiplicity of every eigenvalue in
1-spec(T'\G, g) is congruent to 0 modulo 4. Finally, in Step 4 we show that
the eigenvalue 72+ 1 does not occur in 1-spec!(I';\G, g) but does occur with
(complex) multiplicity 2 in 1-spec!(I',)\G, g).

Proof of Proposition 4.7.

Step 1: Using the notation of Section 2, for i =1, 2 let J; be a subset of
g* such that

LY T\G) = @ mi(1)3C,.

T€J;
Let 3, =3/ U3tusMus!y where
3 ={redi1(Z) =1(Z) =7(W) =0},
3N ={red;:7(Z,) #0, 7(Z)) = 7(W) =0},
S = (re3;: 7(Z)) #0, 7(W) =0},
3NV ={re3;: 7 (W) #0).

Let
sgel= @ m(n)3e,, xl=@ mini,,
7€3] 7€ 3!
xl= @ mnie,, V=@ m(ic,.
re 3N redlV

As representation spaces,
LY(T\G) = xej@icl' @i @ac}.
Decompose 1-spec(I';\G, g) as
1-spec(T'\G, g) Ul-spec! (TAG, g) U1-spec™ (T'\G, g) U1-spec'(T\\G, g),

where 1-spec’(I''\G, g) is defined as the spectrum of the Laplacian acting on
Je!® Al(g*). Define 1-spec'(T\G, g), 1-spec ™ (I'\G, g), and 1-spec!V(T'\G, g)
similarly. Because the Laplace operator acting on functions acts through the
representation, the multiplicity of an eigenvalue in 1-spec(I'’\G, g) is equal
to the sum of its multiplicities in each of the four components.

Step 2: By Lemma 3.4, the representations of G on JC}¥ and 3C}Y are
unitarily equivalent and

1-spec!V(I'\G, g) = 1-spec!V(I',\G, g).

We will now show that the representations of G on 3CI!! and JC!! are uni-
tarily equivalent.

The irreducible representations of G corresponding to elements of g* that
are zero on the center may be viewed as irreducible representations of G =
G/Z(G). It is easy to see that such representations of G are unitarily equiv-
alent if and only if the corresponding representations of G are unitarily
equivalent.
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For all 7e 3", 7(3) =0. We may thus use the following proposition to
calculate the representations of G on 3C{! and JCi!.

ProprosiTION A.2 (cf. [P2]). Let N be a simply connected, two-step nil-
potent Lie group with T' a cocompact, discrete subgroup of N. Let 7€ R*.
Define N, ={YeN: 7([Y,N]) = 0}. Then the irreducible representation ,
appears in the quasi-regular representation of N on L>*(T'\N) if and only if
7(log'NN,) C Z. The multiplicity of =, is 1 if 7(NY) = 0. Define a nonde-
generate, skew-symmetric bilinear form on N/N, by B.(U,V)=7([U,V])
for all U,VeR/N,. Then, if 7(ND) %0, the multiplicity of =, is equal to
\det B,, where the determinant is calculated with respect to any basis of
L, =logI/(logI'NN,).

REMARK. The occurrence condition above actually follows directly from
a more general occurrence and multiplicity theorem due independently to
Richardson [R] and Howe [H].

Let {o;, aa, By, B2, {1, $, w} be the dual basis to the orthonormal basis { X, X,
Y,,Y,,Z, Z,, W} of g. If 7€ 3!, then

7= Ao+ Ayay+ BB+ B, 3, +Ci 51+ Cr b

for some Al’ Az, Bl! Bz, Cls Cz € R with Cl #0.
Now g, = spang{Z,, Z,}. Hence

logTyNg, =1logl,NG,
= log(exp(ZZ,) exp(ZZ,))
= spanz{Z,, Z,}.

Hence 7(logT;Ng,) C Z if and only if C;eZ and C,eZ. By Proposition
A.2, we see that 7€ 3! if and only if C,€ Z and C, € Z. Moreover, distinct
values of C; and C, determine distinct coadjoint orbits of g*. Since these
conditions are the same for both 3! and 3!, we may assume 3{!! = 33!,
We now calculate multiplicities. A basis for £, =log I‘l/(log LN g,) is
{2X,,2X,,Y,,Y,}. A basis for £, =log I',/(log I‘zﬂg,) is { X, X5, 2Y;, 2Y5).
In both cases, v/det B, = 4C2. Thus for 7€ 3/ = 311 the multiplicities m, (7)
and m,(7) are equal. Hence the representations of G are unitarily equiva-
lent, so the representations of G on JC{!! and 3C2!! are unitarily equivalent.
By Proposition 2.2,

1-spec™(I'\G, g) = 1-spec!(T',\G, g),
as desired.

Step 3: We now show that for any eigenvalue in 1-spec!(T\G, g), its mul-
tiplicity in 1-spec!(I'\G, g) is always congruent to 0 modulo 4. We first com-
pute the multiplicity of the irreducible representations occurring here, using
the same technique as in Step 2.

For all 7€ 3}!, 7= Aja; + Ay + B 81+ B, 8, + C, 5, for some A,, Ay, By,
B,,C, e R with C; # 0. We may again use Proposition A.2.
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Now g, = spang{X;, Y, Z;, Z,}. Hence

log TN g, = log(exp(2Z.X,) exp(ZY;) exp(ZZ,) exp(Z.Z,))
= Spanz[z.i—,z, }71, Zl’ Zz},

and 7(logT',N§,) C Z if and only if A,€1Z, B,eZ, and C, e Z. However,

log ', NG, = log(exp(ZX,) exp(2ZY)) exp(ZZ,) exp(Z.Z,))
= spanzi)?z, 2}71, Zh Zz},

so 7(logT,N§,) C Z if and only if A,€ Z, B,e3Z, and C, e Z.

We now calculate m;(7). A basis for £; =logT',/(logTNg,) is {2.X], Ya}.
A basis for £, =logT',/(logT,N4,) is {X}, 2Y>}. In both cases, v/det B, =
2|C,.

Thus, if 7 is in 3/, the irreducible representation w, occurs in the represen-
tation of G on 3C}' with multiplicity 2|C,|. Since the integer C, # 0, the mul-
tiplicity must be even. Hence, any eigenvalue of A acting on JCI® Al(g*)
must occur in 1-spec’(I'\G, g) with multiplicity congruent to 0 modulo 2.

We now use the following.

PRroPOSITION A.3 [G2]. Let G be a simply connected Lie group with left-
invariant metric g, and let Ty and T', be cocompact, discrete subgroups of G.
Let 3Cy and 3C, be invariant subspaces of py, and py,, respectively. Denote
by p-spec’(I'\G, g) the spectrum of A restricted to acting on 3C; @ AP(g*).
If there exists an automorphism ® of G such that

(1) @ is also an isometry of (G, g) and
(2) pr, restricted to 3C, and pr,°® restricted to 3C, are unitarily equivalent,

then
p-spec’(I'\G, g) = p-spec’(I')\G, g).

Here pr,°® is defined by ((pr,°®)(x))f = f°Rg) for x in G and f in
L3 (T'\G).

Let ¢ be the Lie group automorphism of G defined on the Lie algebra level by

X~ =Xy,
Xy~ X,
Y, - -Y),
Y, —-Y,,
Z,~Z,,
Z,—> —25,
W-o—-W.
The automorphism @ is also an isometry of (G, g). Note that 7%, =

—Aja+Ayay,— BB+ B8, —C5 8. Clearly, if 7 satisfies Condition (*) or
(**), then so does 7-®,. A straightforward calculation shows that since
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C, # 0, the functionals 7 and 7. ®, are not in the same coadjoint orbit of g*,
so m, and ., are not unitarily equivalent. Thus if 7, occurs in JC!' with
multiplicity 2|C,| then so does w,.5,, also with multiplicity 2|C,|.

Note that by (2.3), 7,.¢, = 7,o®. Using Proposition A.3, any eigenvalue
of A acting on JC, ® Al(g*) must also occur as an eigenvalue of A acting on
3C,.s,®A'(g*). Moreover, each of the representation spaces JC, and IC. e,
occurs in JC}' with multiplicity 2|C5|. Consequently, the multiplicity of any
eigenvalue in spec' (T\G, g) is a multiple of 4|C,|, which is clearly congru-
ent to 0 modulo 4, as desired.

Step 4: We now show that the eigenvalue x%+1 does not occur in
1-spec!(I')\G, g) but does occur with multiplicity 2 in 1-spec!(I',)\G, g).

For 7e 3] or 7€ 33, 7(g'"’) = 0. We again use Proposition A.2 to calculate
the irreducible representations occurring here. We write 7 = Ao, + A, a5+
B161+Bz,82 for some Al_’ Az,Bl,BzeR. 3

Now g, = §, so 7(logI;N§,) C Z if and only if 7(logT;) C Z. Thus, 7€ 3]
if and only if

A], AzE%Z and Bl,BzeZ, {*)
and 7€ 3} if and only if
A],Azez and Bb BzE%Z. (**)

Let JC, be the associated representation space of .. Then JC, may be
viewed as the 1-dimensional subspace of L*(I'\G) generated by
F(exp(x;.X}) exp(x2X;) exp(y1Y)) exp(y,Y2) exp(z1Z,) exp(z2 Z;) exp(wW))

= exp{2miT(x; X;+ X2, X5+ 1Y +y,Y5)}
(see Section 2). That is, 3C, = CF,.

We now calculate A acting on 3C,®A!(g*). Note that if we let CAl(g*)
denote A'(g*) with complex coefficients, then

3, ®A\(g*) = F,®CAYg*).
Let F,®pn e F,QCA(g*). Then
p =+ a0+ b1+ 0.8+ 215+ 26+ we

for some a,, a,, by, b,, 21, 2, w € C. Since F, is independent of z;, 2, and w
we have

AF,= —X{F,— X#F, —Y?F, —Y3F,
= 4n2(A?+ A3+ B+ B3)F,
=4712S?F,,

where S? = A?+ A3+ B2+ B2.

Let * denote the Hodge-* operator. One easily sees that d* u = 0 for all
peg*. Hence 6u = + *d * u =0 for all peg*. Consequently A =&d on A'(g*).
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For pe Al(g*), du(U,V) = —u({U, V]) for all U, V eg. Using this fact to-
gether with the definition of 6 as the metric adjoint of d, one easily computes
that Aal = AC\!Z = AB] = ABZ = 0, Ag‘l = 25.1, Ag'z = g'z, and Aw = 3w.

To calculate A(F,®u), it remains to calculate

Verad F, b = 2wiF(A\Vx, p+ AyVx, p + B\Vy, p+ B Vy, ).

For Lie algebras with a left-invariant metric, the covariant derivatives can
be calculated via the following equation:

(VuV, Uy =3(U ULV +3{U, V], U+ U, V1,U",

for U, V, U’ left-invariant vector fields of g. A simple calculation shows that
VU(V") =(Vy V)*’, where V? denotes the dual of ¥ in g* with respect to our
choice of orthonormal basis; that is, V*’(U ) =<V, U) for all U in g*. We thus
obtain Table II.

Table 11
Vor o a; By B> $i %) w
X, 0 0 %6 3h —3bitze —3B  —3h
X, 0 0 0 3h —38, To =36
Y, —%3'1 0 %‘*’ ';‘0‘1 0 _%‘52
Y, "%f’z —%fl —5@ 0 %az 20 ';'31

Using (A.1) and the information from Table II, a straightforward calcula-
tion shows that if we let £, equal

(47282 0 0 0 —2wiB,  —2wiB, 0o )
0 4x%S? 0 0 —27iB, 0 0
0 0 472852 0 27iA, 0 —27iB,
0 0 0 4728?  2wiA, 27iA, 27iB,
2wiB, 2wiB, —2wiA; —2miA, 4x2S?+2 0 27TiA,
2xiB, 0 0 —2miA, 0 4728%4+1  2wiA,
0 0 2miBy  —2miB;  —2miA,  —2mid, 4w’S?+3

then A(F, @ p) = A(F,®u) if and only if A is an eigenvalue of the matrix E,.

We now calculate necessary conditions on 7 = A a;+ A,a,+ B8, + B>,
for w2 +1 to be an eigenvalue of E,. Since 7€ 3} or 7€ 3}, we know A4, 4,,
B, B>€ Q. If det(E,—(w2+1)I;) =0, then = is the root of a polynomial
with rational coefficients. However, 7 is transcendental. Thus, the coeffi-
cients of the powers of = must be zero.
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A straightforward calculation shows that =4 is the highest power of =
occurring in the polynomial, and the coefficient of =4 is equal to (45%—1)".
Thus, if 72+1 is an eigenvalue of E, then S% = 1. Recall that

§? = A} + A3+ B{ +Bj.
For 7 in 3], §? =} if and only if (see (*)) 7 = #3a; or 7= ++a,. For 7in
31, §2 =1 if and only if (see (**)) 7= +16, or 7 = +13,.
For 7= +1a;, 7= +3a,, or 7= *103,, a simple calculation shows that
det(E,—(w2+1)I;) # 0. Thus, the eigenvalue 72+ 1 does not arise from the
Laplacian acting on 3.1, ® A'(g*), 3C.1,,®A(g*), or H.15®A(g*), and

724 1¢ 1-spec!(T\G, g).

However, for 7 = +18;, det(E,— (x2+1)I;) = 0. Thus 72+ 1is an eigenvalue
for the Laplacian acting on JCi%ﬁl@)A'(g*). Indeed, the eigenspace of w2 +1
in 3C'@Al(g*) is

spanc{Fig &8, F_i15 X 81,

which has dimension 2. Thus 7241 e 1-spec!(I',\G, g) with multiplicity 2,
as desired.
The proof of Proposition 4.7 is now complete. O

ProrosITION 4.9. The nilmanifolds (I')\G, g) and (I',)\G, g) as presented
in Example IV are not isospectral on 1-forms.

Proof. Again using the notation of Section 2, for i =1, 2 let J; be a subset
of ¢g* such that

LX(T\G) = P m(1)3C,.

7€3;
Let 3; = 3; U3/ UJ/", where
3i={red;: r(gM) =0},
3 =(redi (g =0,7(g") =0},
30" = {re 3;: 7(g'?) = 0}.

As in the proof of Proposition 4.7, decompose the representation spaces

and spectrum accordingly.
By Lemma 3.4, the representations of G on JC{" and JC7 are unitarily
equivalent and

1-spec”(I'\G, g) = 1-spec”(I')\G, g).
A calculation almost identical to Step 2 in the proof of Proposition 4.7

shows that the representations of G on JC{ and JCj are unitarily equivalent.
Thus

1-spec”(I')\G, g) = 1-spec”(I';)\G, g).

It remains to show that 1-spec’(I'\G, g) # l-spec’(I';)\G, g). The proof of
this corresponds to Step 4 in the proof of Proposition 4.7.
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Let {ay, 81, 82, v, w} be the dual to the orthonormal basis { X}, Y, Y5, Z, W}
given in Example IV. For 7€ 3}, 7 = Ao+ B0, + B, 8, for some A, By, B €
R. We again use Proposition A.2.

Now g, =§. Hence 7(logT;Ng,) C Z if and only if 7(logI;) C Z. Thus,
7€ 3! if and only if

Ae3Z and B, B,eZ,
and 7€ 3} if and only if

A, B,eZ and Bje;Z.

(*)

(**)
Let JC, be the associated representation space of .. As in the proof of
Proposition 4.7, 3¢,®Al(g*) = F,® CAl(g*), where
F,(exp(x1 X)) exp(y1Y)) exp(y2Y>) exp(zZ) exp(wW))
= exp[27ri'r(x1X1 +y1 Yl +y2 Yz)}.
Let F,.®ue F,QCAYg*) with p = a0+ b,6y+ b,8,+ 28 + ww for some

ay, by, by, 2, we C. Then AF, =4x%S*F,, where S?= A?+ B+ B3. Also,
Aoy =AB,=AB,=0, A{ =¢, and Aw = 2w. We thus obtain Table III.

Table III

\: (44] 31 B, ¢ w
X, 0 W 0 —1B+3e0 -3¢
Y, —';‘i' 0 70 %011 —%Bz
Y, —sw 0 0 18,

Using (A.1) and the information from Table III, if we let

(47282 0 0 —27iB, 0 )

0 47282 0 27iA, —27iB,

E.=| 0 0 47282 0 2wiB,
2wiB;, —2wiA, 0 4728%*+1  2mwiA,
0 2wiB, —2wiB; —2wiA; 4x’S’+2 ]

then A(F, @ pn) = A(F,®@u) if and only if A is an eigenvalue of the matrix E..

We calculate necessary conditions on 7= 4,0+ B,8,+B,83, for ©2+1
to be an eigenvalue of E,. We assumed 7€ J; or 7€ 33, so we know that
Ay, By, Be Q. If det(E, — (w%+ 1)I5) = 0, then 7 is the root of a polynomial
with rational coefficients. However, 7 is transcendental. Thus, the coeffi-
cients of the powers of «# must be zero.

A simple calculation shows that #'®is the highest power of 7 occurring in
the polynomial, and the coefficient of #'° is equal to (4S%2—1)°. Thus, if
72+1 is an eigenvalue of E, then S? = 1. Recall that $? = A} + B+ B3.



184 RutH GORNET

For 7 in 3{, $* = { if and only if (see (*)) 7 = +1a,. For r in 33, §2 = Lif
and only if (see (¥*)) 7= +16,.

For 7 = +1«, the determinant of (E,—(w?+1)I5)is 0. The eigenspace of
w2 +1in JC'®A(g*) is

spanc [ Fiq, @ (7iBy+§ + wiw), F_i0 @ (7B —{ + wiw)},

which has dimension 2. Thus w241 € l-spec’(I')\G, g) with multiplicity 2.
However, for 7 = +18,, det(E,—(w2+1)I5) # 0. Thus w2+1 cannot occur
in 1-spec’(I',)\G, g) and

1-spec’(I\G, g) # 1-spec’(I')\G, g),
as desired.
The proof of Proposition 4.9 is now complete. U

PROPOSITION 4.11.  The nilmanifolds (I'\G, g) and (I',)\G, g) as presented
in Example V are not isospectral on 1-forms.

Proof. Using the notation of Section 2, for i =1, 2 let J; be a subset of g*
such that
L*T\G) = (P m;(1)3C,.
TEJ[

Let 3; =3}/U3MU3M U3 be defined as in the proof of Proposition 4.7,
and decompose the representation spaces and spectrum accordingly.

By Lemma 3.4, the representations of G on 3C}Y and 3CYV are unitarily
equivalent and

1-spec™V(I'\G, g) = 1-spec'V(I',)\G, g).

A calculation almost identical to that in Step 2 in the proof of Proposition
4.7 shows that the representations of G on 3Ci!! and 3CY! are unitarily equiv-
alent. Thus

1-spec'™(I'\G, g) = 1-spec''(T',\G, g).

A calculation almost identical to that in Step 3 in the proof of Proposition
4.7 shows that the representations of G on 3C}! and JCY! are unitarily equiva-
lent. Thus

1-spec!(T\G, g) = 1-spec'(I',\G, g).

It remains to show that 1-spec!(I'\G, g) # 1-spec'(T|\G, g).

For 7€ 3] or 7€ 3}, 7(¢'V) = 0. We again use Proposition A.2 to calculate
the irreducible representations occurring here. Let {e;, ..., €7} be the dual
to the orthonormal basis {E}, ..., E;} given in Example V. Then 7 = A,¢;+
Azer+Ajez;+ Ayey for some A4y, ...,A4€R.

Now §, =3§. Hence 7(logI;Ng,) C Z if and only if 7(logT}) C Z. Thus,
7€ 3] if and only if

2A1+A2—%A3+%A4EZ, 2A2+%A3EZ, and A3,A4EZ, (*)
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and 7€ 3} if and only if
2A1+A2+%A3+%A4EZ, 2A2+%A3EZ, and A3,A4EZ. (**)

Note that the only distinction between the two conditions is in the sign of
1
A
713,

Let JC, be the associated representation space of w,. As in the proof of
Proposition 4.7, 3¢. ® Al(g*) = F,® CAl(g*), where
F,(exp(e, E;) exp(e, E5) exp(es E3) exp(es E4) exp(es Es) exp(eg Eg) exples E7))

= exp{27ri1(elE1 +€2E2+€3E3+84E4)}.
Let F,®pu € F,®CA'(g*) with
p=ae;tae,+azeytagest+ases+agegt+areq

for some q;€C, i=1,...,7. As in the proof of Proposition 4.7, AF, =
47%S%F,, where S? = A3+ A3+ A%+ A3, Also, Ae) = Aey = Aey; = Aey =0,
Aes = 2€s5, Aeg = €4+ €7, and

1 1 3
A67 = ZE6+<3+'2—§6'+E>67.

We thus obtain Table IV.

Table IV
Vun € €2 €3 €4 €s €6 €7
1 1 1 1 1 1 1 1 ! 1 1 1
E, 0 —33€7 s€st+g€; et ge; —3E63+76; —3€; 36— g€y gE€s—3€Es
1 1 1 1 1 1 1 1

EZ 33 €7 0 0 5 €5~ g€ —3€4 5 €7 '—“ﬁfl"{" s€4— 7€¢

1 1 1 1 ] 1
E3 _765—78‘57 0 0 367 '2‘61 0 §‘El_3‘54

1 1 1 1 1 1 1 1 1 1
E, —3e—3g€; —yestge; —36 0 € 7€ 61— g€t 7€

Using (A.1) and the information from Table IV, a straightforward calcu-
lation shows that if we let E, be the skew-Hermitian matrix defined by

(47282 0 0 0 2mid,  2mid, mi(—tA,+1A,+14,) )
47282 0 0 2miA, 0 wi(3A;—3Ay)
47282 0 —27iA, 0 Ti(—1 A +2A,)
4728?  27miA, —27iA, Twi(—3A,+3A4,—-2A;)
47282 +2 0 —27iA,
47282+1 —27iA,+ 1
L 472824 817/256

then A(F,®@pn) = AMF,@®p) if and only if A is an eigenvalue of the matrix E,.
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17 ,17
A=—m2+1 — w241,
47r++ 41l'+1

We now calculate necessary conditions on 7=A¢;+ Aye5+ Aze3+ Ages for A
to be an eigenvalue of E,. Since 7€ 3] or 7€ 35, we know that 4,, A,, A3, A€
Q. By a computation using any computer symbolic manipulation package
(such as Maple or Mathematica), if det(E,—AI;) = 0 then x = V(17/4) w2 +1
is the root of a polynomial with rational coefficients. Because x is transcen-
dental, the coefficients of the powers of x must be zero.

A straightforward calculation shows that the leading coefficient is
((16/17)S%—1)". Thus, if A is an eigenvalue of E, then S? = 17/16. Recall that
S2 =A%+ A3+ A3+ A3,

For 7 in 3], §2=17/16 if and only if (see (*)) 7= +(tey+e3) or 7=
+1e,+¢4. For 7in 3}, §2 =17/16 if and only if (see (**)) 7= +(+e,—¢;3) Or
7 = *+¢; * €4. Note that the only difference is in the sign of e;.

For 7 = +(5€3+€3) Or 7= +¢, + ¢4, a calculation using Maple or Mathe-
matica shows that det(£,—Al;) #0. Thus, 17/ 72 +1+JA7/8) 72 +1 ¢
1-spec!(I'\G, g). However, for 7= +(3¢; —€3), det(E,—Al;) =0. Thus
(17/8)72+1+/(17/4)72+1 is an eigenvalue for the Laplacian acting on
3 2e,— ey ®AN(G*), and (17/4) w2 +1+/(17/4) w2 +1 e 1-spec'(T',\G, g). Con-
sequently,

Let

1-spec!(T)\G, g) # 1-spec!(I',\G, g),

as desired.
The proof of Proposition 4.11 is now complete. t
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