The Pluri-Complex Green Function
and a Covering Mapping

KAzuo AzZUkKAwA

1. Introduction

Myrberg [12] proved that, if M is a hyperbolic Riemann surface with the
Green function gM(-, p) with pole at pe M and if =: E— M is a covering
mapping from the unit disk £ = {Ae C;|A| < 1} in C to M, then

1—ab;
b;—

gM(q, p)= 3 log
Jjz0

where a e 7 }(p) and {by, by, ...} = 7 (q).

In any complex manifold M, we can define the pluri-complex Green func-
tion G,ﬁ"’(-) with pole at pe M in such a manner that if M is a hyperbolic
Riemann surface, the negative of G,f,”( -) is nothing other than the Green func-
tion on M with pole at p [9; 10; 11; 2; 3; 6; 8]. Since b — log|(1—ab)/(b—a)|
is the Green function on E with pole at @ € E, Myrberg’s theorem is rewritten
as follows:

Gyl () = % Gz (b)),
Jj=
where ae 7~} (p) and [by, by, ...} = 7 (q).
In this paper we shall show the following.

THEOREM A. Let n: N— M be a covering mapping from a complex mani-
fold N to another one M. For p,qe M, let ac ™' (p) and {bgy, by, ...} =
7 (q). Then
Gyl(@) = X G;(b).
j=0
When the covering is regular, we have the following.

THEOREM B. Let w: N— M be a regular covering mapping from a complex
manifold N to another one M. For p,qe M, let {a =ay,a,,...} =7 (p)
and {b = by, by, ...} = 77(q). Then

Gy'(a) = X GJ(b) = X Gg(b).
j=0 Jj=0
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With respect to the invariant pseudometric P(X) induced from the pluri-
complex Green function G},"’(q) [1; 2; 4; 6; 8], we obtain the following.

THEOREM C. Let w: N— M be a regular covering mapping from a complex
manifold N to another one M. For pe M, let {ay, ay, ...} = m~(p). Then

PNX)= PM(x,. X)= C(p)PN(X)
Jor all holomorphic tangent vectors Xe€ T, N at age N, where

C(p) = I1 exp Ggy(a)) = I1 exp G;)(ao)-

j=1 j=1
The function C(p) is [0, 1]-valued and does not depend on the choice of
-1
ApE T (p)

In Section 4, we quote Poletzkil’s interpretation of the pluri-complex Green
function using holomorphic mappings from the unit disk E, and deduce
some consequences from it. In the final section we give an example that illus-
trates Theorem C and an application of Theorem C to the estimate of the
invariant metric induced from the pluri-complex Green function of a non-
convex Thullen domain.

This work was partially done during the author’s stay at the University of
Michigan as a visiting scholar in 1993/1994. The author is very grateful to
Professor John Erik Fornaess and the other faculty and staff of the Depart-
ment of Mathematics at the University of Michigan for their hospitality.

2. The Pluri-Complex Green Function
and the Invariant Pseudometric

Let p be a point of a complex manifold M. Denote by PS¥( p) the family of
all [—o0, 0)-valued plurisubharmonic functions f on M such that

f(g)—log|lz(g) —z(p)|| = O1)

as g — p for some holomorphic coordinate z around p and the Euclidean
norm |- || on C”, m = dim M. The pluri-complex Green function Gf,”(-) on
M with pole at p is, by definition, given by G},”(q) = sup{f(q); f€ PSM(p)},
q e M (cf. [9; 10; 11; 2; 3; 6; 8]). The following properties are fundamental.

(2.1) (Decreasing property). If & e Hol(NN, M) is a holomorphic mapping be-
tween complex manifolds N and M, then

GHY,,(®(b)) = GN(b)

for all a, be N. Therefore, if ® is biholomorphic then the pluri-complex
Green function is invariant, that is, the equality holds in the last inequality.

(2.2) For every pe M, G)'e PSM(p).

(2.3) When M is a hyperbolic Riemann surface, the function —G,’,”(-) is the
usual Green function on M with pole at p.
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Let XeT,M be a holomorphic tangent vector at pe M. Take a mapping
¢ € Hol(eE, M), € > 0, such that ¢(0) = p and ¢’(0) = X. Define the induced
pseudometric PM on M from the pluri-complex Green function by

M
PM(X) = lim sup SR G2 ()
A=0 Al
(cf. [1; 2; 4; 6; 8]). The definition of PM(X) does not depend on the choice
of the mapping ¢, and P™ is a pseudometric on M, that is, a [0, +o0)-val-
ued function on the holomorphic tangent bundle TM satisfying PM(AX) =
[A|PM(X) for Xe TM, Ae C. From (2.1) we obtain the following.

(2.4) (Decreasing property). If ® € Hol(N, M) is a holomorphic mapping
between complex manifolds N and M, then

PM@®,X)=< PNX)

for all X e TN. Therefore, if ® is biholomorphic then the induced metric
from the pluri-complex Green function is invariant, that is, the equality
holds in the last inequality.

THEOREM A. Let w: N— M be a covering mapping from a complex mani-
fold N to another one M. For p,qe M, let ae =~ (p) and {by, by, ...} =
7 (q). Then

Gl(a)= X GY(by). (2.5)

j=0
Proof. Fix a point p € M, and denote the function of g € M defined in the
right-hand side of (2.5) by f(q). For ge M, let U > q and ¥; 5 b; be neighbor-
hoods such that ==Y (U) = Uj=o0 V), V; are disjoint, and = I'G-: V;— U are bi-
holomorphic. Then
fx) =3 GYe(x|y) (x) for xeU.
Jj=0
Since f is a limit of a decreasing sequence of plurisubharmonic functions on
U, f is also plurisubharmonic on U. In particular, assume that g = p and
by = a. Since
GN(u)—log|z(u) —z(a)|| = O(1)
as u — a for some coordinate z around a (see (2.2)), we have
S(x)—log[w(x) —w(p)|| = GV o (w|y,) " (x) —log|w(x) —w(p)|| = O(1)

as x— p for the coordinate w = zo(w IVO)‘1 around p, so that fe PSM(p).
By definition, we have
GYl(@) = flg) = X G(by),

j=0

as desired. O

3. Regular Covering

For a manifold M and a point m e M we denote the fundamental group
of M with reference point m by = (M, m). A covering n: N— M is said
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to be regular if, for every me M and every ne = ~!(m), the induced group
mxT1(N, n) is a normal subgroup of x;(M, m). In that case, it is known (see
e.g. [7]) that, for every m e M and every pair of points ny, n, in =~ (m),
there exists a unique homeomorphism (called a covering transformation) ®
on N such that 7-® = 7 and ®(n;) = n,. We note that every universal cov-
ering is regular.

THEOREM B. Let w: N— M be a regular covering mapping from a complex
manifold N to another one M. For p,qe M, let {a=ay, ay, ...} =7 (p)
and {b = by, by, ...} = 77(q). Then

Gl = X GJ'(b) = X Gy(b).
Jjz0 j=0

Proof. Let Aut, (N) be the covering transformation group of the regular
covering w: N— M. For every j = 0, take ;€ Aut,(N) such that ®;(a;) =
ap. Then Aut,(N) = {®;; j = 0} and

{2i(bo); j =0} =7"q) = {by, by, ...}

Since Aut,(N) C Aut(N), it follows from the invariant property (2.1) of the
pluri-complex Green function that

Y Ga(b) =% G (®;(bo)) = T Ga(b)).
j=0 j=0 j=0
The proof is completed. O

THEOREM C. Let w: N— M be a regular covering mapping from a complex
manifold N to another one M. For pe M, let {a,a,, a5, ...} = =~ (p). Then

PNX) =z PM(m, X)= C(p)PN(X)
Sor all holomorphic tangent vectors X € T, N at ae N, where
C(p) = I1 exp G{'(a)) = I exp GJ(a).
jz1 jz=1

The function C(p) is [0, 1]-valued and does not depend on the choice of
-1
aen (p).

Here we mean that C(p) =1 when =~ !(p) = {a}, a singleton.

Proof. Take a function ¢:eE — N, holomorphic such that ¢(0) =« and
¢’(0) = X. It follows from Theorem B that

exp Gy'(w > ¢ (A)) = exp GJ'(¢(A)) T exp Gl ().
Jj=1
Divide both sides by |A| and take the superior limit as A — 0. Since the func-
tions exp G;:," are plurisubharmonic, the functions exp Gé:’ o ¢ are subharmonic
around A =0, so that

lim sup G{(¢(A)) = Gg/(¢(0))
A-0
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(see e.g. [11; 13]). Therefore, noting that we¢(0) = p and (we¢)’(0) = T X,
by definition we obtain

PM(r, X) = PM(X) ] exp GJ(a) = PM(X)C(p).

j=z1

For every j, take ;€ Aut,(N) so that ®;(a;) = a. By a similar argument
as in the proof of Theorem B, we have

(®;(a); j=1} =7~ (P)\a} = {a}, a3, ...},

so that
]__[1 exp GJl(a) = ]:I1 exp G (a)(®;(a)) = ]__[1 exp GN(®(a)) = 1__[l exp GN(a;).
j= j= j= j=

Let {b, by, b, ...} ={a, a}, a5, ...}. We want to show that
11 exp G3)(b) = I exp G;(a).
jzl j=1

Take a covering transformation ¢ such that ®(a) = b. Then {®(q)); j =1} =
{bi, by, ...}, so that

I1 exp G)(a) = T] exp Gé,\zaj)(@(a)) =TI exp G§{ay(b) = T] exp G,ﬁ;’(b).

Jj=z1 Jj=1 j=1 j=1
The proof is completed. O

4. Consequences of Poletzkii’s Interpretation

We need Poletzkii’s interpretation of the pluri-complex Green function. Let
feHol(E, M) and t € E. By w(/f, t) we denote the multiplicity of f at t; that
is, w(f, t) is the order of zero at ¢ of the function z f—z(f(¢)), where z is a
holomorphic coordinate around f(#) € M. That is, if g(A) = 2 f(A) —z(f(?))
then

w(f, t) = min{n; g™(¢) # 0).

We note that the definition of w(f, t) does not depend on the choice of the
coordinate z. Indeed, let w be another coordinate around f(¢), and define
® = (w—w(f(2))o(z—2z(f(¢)) ! in a neighborhood of 0 in C™, m = dim M.
Then we f—w(f(t)) = Pog. We want to prove

min{n; g™(¢) # 0} = min{n; (®-g)"(¢) # 0). 4.1)
Let w = min{n; g™ (¢) # 0} and let n < w. We have the chain rule
@-2)"()= I T (@ 0@)eg() g (2) --- gP(n),

!Pl’ ey Pulen(n) jla ---vju

where II(n) is the family of all partitions of the set {1, ...,n}, 8’ = 9/dz;,
Z2=(Zyy+.»2m)> & =(&1» ..., &), €ach j; runs through 1, ..., m, and #P; is the
number of the set P; (cf. [5]). Since for all {P,, ..., P,} € II(n) and for all
ie{l,...,u}, #P; < n, it follows that (®g)"(¢) = 0. Therefore

min{n; (®-g)(¢) # 0} = w = min{n; g (¢) # 0}.
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Since g = 7o (P og), we have
min{n; ($-g)"M(¢) # 0} < min{n; g (¢) # 0},
and have proved (4.1). For fe€ Hol(E, M) and q € M, define
_(ZSresrqolf,Dloglt] if f7H(g) # 8,
uf(Q) = 0 if -1 _
if f7(q) =9.
Poletzkii [14] proved the following.

THEOREM. For any domain M in C”" and any p,qe M,
G)(q) = inf{us(p); fe Hol(E, M), £(0) = g}.

We note that, by virtue of Poletzkii’s theorem, we can prove Myrberg’s the-
orem mentioned in Section 1 for planar cases.

THEOREM D. If n:E— M is a covering of a domain M in C, then for
D, q €M we have
GY(a)= X GF(b) = T GL(b),

j=0 j=0
where {a = ay, ay, ...} = " (p) and {b = by, by, ...} = 77 (q).

Proof. Take ¢, € Aut(E) defined by

A=b
A) = _—, A€E.
®p(A) A1
Since mwep,€ HOl(E, M) and wep,(0) = p, we may consider the quantity
Ur.y,(q). Since me gy is locally biholomorphic, w(weg,, ) =1 for every te
(o) (p). It follows that

Ugop, (D) = > log|t]
te(meopp) (p)

= 3 logley(A)]

Aex~(p)
= E 108|90b(aj)| = E 10g|s0aj(b)|

Jjz0 j=0

By Poletzkii’s theorem we have

GM(q) = inf{us(p); fe Hol(E, M), f(0) =g}
< Up.p(P) = X GL(D).

j=z0
Since the opposite inequality G(g) = ;-0 Gf(b) always holds (Theorem
B), we obtain one of the equalities in the theorem. The other follows from
the regularity of = and Theorem B, and the proof is completed. a

By using Poletskii’s theorem, we can prove the following counterpart of
Theorem A.
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THEOREM A. Let w: N— M be a covering mapping from a domain N in
C" to another one M. For p,qe M, let {ay, a;,...} = 7~} (p) and be w}(q).
Then
G)(q) = 3 G(b).
Jj=z0
Proof. Let fe Hol(E, M) with f(0) = g. Take a lifting g: E— N of f with
g(0)=b. Since f=7wog,

SHpy=¢g7'="1(p)) = U g7'(g)) (disjoint union).
Jj=0
For teg"(aj), the multiplicity w(g, ¢) is given by the order of zero at ¢
of the function g—a;. Take a neighborhood V of a; such that |y is a ho-
meomorphism, and set z = (7 |,)~". Then z is a coordinate around p. Since
z°f—2z(p) =g—a;in aneighborhood of ¢, we see that w(f, ) = w(g, t). Thus

ur(p)= 2 o(f,1)loglt|
te f~(p)

=3 X w(gt)log|t

Jj=0teg™Na,)
= E ug(aj)
j=0
= 3 Gp(b).
j=0
Since f is arbitrary,
Gl(q) = zocé).’(b),
j=
as desired. O

S. Examples

Let D, = {|jw;|>+|w,|*"™ < 1} C C? with m a positive integer. If m > 1, then
D,, is called a Thullen domain and D is the unit ball B. We recall some prop-
erties on automorphisms of B. For any a, z€ B, set

a=Pz—T-[al (- P.2)
1—<Z9 a) ’

where P,z = ({(z,a)/||a||*)a and (-, -} is the natural hermitian inner product
on C2. Then ¢, € Aut(B), ¢,°¢, =id, and ¢,(a) = 0. We have

(A =]a»H =<z, w))

0a(2) =

al@), eyl = 1= o= e T 5.1
— — — 2 —
orta; ) = (0 =25 Vll—l:llellP(X =) 5.2)

(cf. e.g. [8]). If N=B\{z, =0} and M = D, \{w, =0}, then 7: N3(z;,22) ~
(21, 25') € M is a regular covering mapping, so that Theorem C implies
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C(p)PN(X) =< PM(z, X) < PN(X) (5.3)

for pe M, ae n~!(p), and X e T,N. Since plurisubharmonic functions that
are bounded above are uniquely extendable beyond a pluri-polar set, it fol-
lows that

GN=GE for aeN, (5.4)
PM=pP= and PN = PB. Furthermore, P® coincides with the Kobayashi

metric K®Bon B (cf. e.g. [1;5]). Ifa = (0,b)eN,0< b< 1, p=(0,b™) e M,
and X = (a; (X3, X3)) € T,N = {a} X C?, then (5.3) becomes

C(p)K®(a; (X}, X,)) < PP(p; (X, mb™™'X,)) < KB(a; (X1, X3)).  (5.5)

If e = e2™/™ then by definition we have

m-—1

C(p) = I] exp G, 5)(0, €’b)
l \

J:

m—1 .
= TT exp G, 1)(0, e/b)

j=i

l .
exp G, , 0,0)(¢(0,)(0, €7D))

m

Il
~.
1l |

3
I L)

1

exp Gg (0, (0, €7b))

1l
— Ll

3 «
|

=] l]|<P(o,b)(0,t?jb)ll

-1 (1_b2)2 172
- (=)

j=1

Il

I O~

m-1 1___ 2 m-—1 :
- GOt I

1—p2m Fo

In the second equality we used (5.4); the third equality, the invariance of the
pluri-complex Green function for automorphisms; and the sixth equality,
equation (5.1). (For the fifth equality, see e.g. {3, p. 2] or [8, p. 119].) Since
the Kobayashi metric is invariant for automorphisms, we have

K®(a; (X1, X2)) = K% (paula; (X3, X))
= l|¢a*(a; (XISXZ))"
_ NA=b)| X2+ X, |2
B 1-b2 '
Here we have used (5.2). (For the second equality, see e.g. [1, p. 644] or
(8, p. 119].) Observing D,, C B, we have PB < PP~ Summarizing these, we

have the following estimates for the invariant metric P®~ on the Thullen
domain D,,.
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ProrosiTIoN E.  For 0 < b < 1and (X;, X,) € C?, it holds that
max{C, KB((0, b¥™); (X, m~'bY™~1X,)), KB((0, b); (X1, X,))}

< PP=((0, b); (X, X2)) = KB((0, b™); (X, m~'b/™~1X,)),
where

KB((O b). (Xl XZ)) — ‘\/(l—bz)lelz.l.lXZ‘Z .

1—5b2 ’
2m—lbl—l/m(1_b2/m) m-1 . j7l'
Cp,=C(0, b)) = - J]_;[I sin —-.

We note that PP=((0, 0); (X;, X>)) coincides with
w27 (X, Xp) = inf{A > 0; (X, X;) € AD,,),
the Minkowski functional for D,,, and that for every (b, b,) € D, there
exists a & € Aut(D,,) such that &(b,, b,) = (0, |b,|(1—=|b;|>)~™"?) (cf. e.g. [8,
p. 273]). We also note that if m = 3 then D,, is not convex.
Now, assume m = 2. Then D, is convex, so that PPz = KP2, The explicit
formula for X2 is well known [8, p. 274]:
I= X+ XoP
1—b2 ’
20| X,|
1-b4"

| X>| = b| X,
K®((0, b?); (X,,2bX3)) =
Xl = 0

Since C(p) =2b/(1+b?) for p = (0, b?), m =2, this example shows that,
in view of (5.5), in the inequalities (5.3) there exist X!, X?e T, N \{0} such
that PM(z, X') = PN(X") and PM(x, X?) = C(p)PN(X?).
The last example also shows that in higher-dimensional cases the equality
GMlg)= T GNb)
ji=0
in Theorem B does not hold in general, contrary to the 1-dimensional case.

For if the equality holds, then the argument in the proof of Theorem C im-
plies the equality

PMr.X)=C(p)PNX), XeT,N.
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