The Pluri-Complex Green Function and a Covering Mapping

KAZUO AZUKAWA

1. Introduction

Myrberg [12] proved that, if M is a hyperbolic Riemann surface with the Green function $g^M(\cdot, p)$ with pole at $p \in M$ and if $\pi: E \to M$ is a covering mapping from the unit disk $E = \{\lambda \in \mathbb{C}; |\lambda| < 1\}$ in \mathbb{C} to M, then

$$g^{M}(q, p) = \sum_{j\geq 0} \log \left| \frac{1 - \bar{a}b_{j}}{b_{j} - a} \right|,$$

where $a \in \pi^{-1}(p)$ and $\{b_0, b_1, ...\} = \pi^{-1}(q)$.

In any complex manifold M, we can define the pluri-complex Green function $G_p^M(\cdot)$ with pole at $p \in M$ in such a manner that if M is a hyperbolic Riemann surface, the negative of $G_p^M(\cdot)$ is nothing other than the Green function on M with pole at p [9; 10; 11; 2; 3; 6; 8]. Since $b \mapsto \log|(1-\bar{a}b)/(b-a)|$ is the Green function on E with pole at $a \in E$, Myrberg's theorem is rewritten as follows:

$$G_p^M(q) = \sum_{j \ge 0} G_a^E(b_j),$$

where $a \in \pi^{-1}(p)$ and $\{b_0, b_1, ...\} = \pi^{-1}(q)$.

In this paper we shall show the following.

THEOREM A. Let $\pi: N \to M$ be a covering mapping from a complex manifold N to another one M. For $p, q \in M$, let $a \in \pi^{-1}(p)$ and $\{b_0, b_1, \ldots\} = \pi^{-1}(q)$. Then

$$G_p^M(q) \ge \sum_{i \ge 0} G_a^N(b_i).$$

When the covering is regular, we have the following.

THEOREM B. Let $\pi: N \to M$ be a regular covering mapping from a complex manifold N to another one M. For $p, q \in M$, let $\{a = a_0, a_1, ...\} = \pi^{-1}(p)$ and $\{b = b_0, b_1, ...\} = \pi^{-1}(q)$. Then

$$G_p^M(q) \ge \sum_{j\ge 0} G_a^N(b_j) = \sum_{j\ge 0} G_{a_j}^N(b).$$

Received June 3, 1994. Revision received March 9, 1995.

The author was partially supported by a Research Fellowship in 1993 from the Ministry of Education, Science and Culture, Japan.

Michigan Math. J. 42 (1995).

With respect to the invariant pseudometric $P^M(X)$ induced from the pluricomplex Green function $G_p^M(q)$ [1; 2; 4; 6; 8], we obtain the following.

THEOREM C. Let $\pi: N \to M$ be a regular covering mapping from a complex manifold N to another one M. For $p \in M$, let $\{a_0, a_1, ...\} = \pi^{-1}(p)$. Then

$$P^{N}(X) \ge P^{M}(\pi_{*}X) \ge C(p)P^{N}(X)$$

for all holomorphic tangent vectors $X \in T_{a_0}N$ at $a_0 \in N$, where

$$C(p) = \prod_{j \ge 1} \exp G_{a_0}^N(a_j) = \prod_{j \ge 1} \exp G_{a_j}^N(a_0).$$

The function C(p) is [0,1]-valued and does not depend on the choice of $a_0 \in \pi^{-1}(p)$.

In Section 4, we quote Poletzkii's interpretation of the pluri-complex Green function using holomorphic mappings from the unit disk E, and deduce some consequences from it. In the final section we give an example that illustrates Theorem C and an application of Theorem C to the estimate of the invariant metric induced from the pluri-complex Green function of a non-convex Thullen domain.

This work was partially done during the author's stay at the University of Michigan as a visiting scholar in 1993/1994. The author is very grateful to Professor John Erik Fornæss and the other faculty and staff of the Department of Mathematics at the University of Michigan for their hospitality.

2. The Pluri-Complex Green Function and the Invariant Pseudometric

Let p be a point of a complex manifold M. Denote by $PS^{M}(p)$ the family of all $[-\infty, 0)$ -valued plurisubharmonic functions f on M such that

$$f(q) - \log ||z(q) - z(p)|| \le O(1)$$

as $q \to p$ for some holomorphic coordinate z around p and the Euclidean norm $\|\cdot\|$ on \mathbb{C}^m , $m = \dim M$. The pluri-complex Green function $G_p^M(\cdot)$ on M with pole at p is, by definition, given by $G_p^M(q) = \sup\{f(q); f \in PS^M(p)\}, q \in M$ (cf. [9; 10; 11; 2; 3; 6; 8]). The following properties are fundamental.

(2.1) (Decreasing property). If $\Phi \in \text{Hol}(N, M)$ is a holomorphic mapping between complex manifolds N and M, then

$$G_{\Phi(a)}^M(\Phi(b)) \le G_a^N(b)$$

for all $a, b \in \mathbb{N}$. Therefore, if Φ is biholomorphic then the pluri-complex Green function is *invariant*, that is, the equality holds in the last inequality.

- (2.2) For every $p \in M$, $G_p^M \in PS^M(p)$.
- (2.3) When M is a hyperbolic Riemann surface, the function $-G_p^M(\cdot)$ is the usual Green function on M with pole at p.

Let $X \in T_pM$ be a holomorphic tangent vector at $p \in M$. Take a mapping $\varphi \in \text{Hol}(\epsilon E, M)$, $\epsilon > 0$, such that $\varphi(0) = p$ and $\varphi'(0) = X$. Define the induced pseudometric P^M on M from the pluri-complex Green function by

$$P^{M}(X) = \limsup_{\lambda \to 0} \frac{\exp G_{p}^{M}(\varphi(\lambda))}{|\lambda|}$$

(cf. [1; 2; 4; 6; 8]). The definition of $P^M(X)$ does not depend on the choice of the mapping φ , and P^M is a pseudometric on M, that is, a $[0, +\infty)$ -valued function on the holomorphic tangent bundle TM satisfying $P^M(\lambda X) = |\lambda| P^M(X)$ for $X \in TM$, $\lambda \in \mathbb{C}$. From (2.1) we obtain the following.

(2.4) (Decreasing property). If $\Phi \in \text{Hol}(N, M)$ is a holomorphic mapping between complex manifolds N and M, then

$$P^M(\Phi_*X) \le P^N(X)$$

for all $X \in TN$. Therefore, if Φ is biholomorphic then the induced metric from the pluri-complex Green function is *invariant*, that is, the equality holds in the last inequality.

THEOREM A. Let $\pi: N \to M$ be a covering mapping from a complex manifold N to another one M. For $p, q \in M$, let $a \in \pi^{-1}(p)$ and $\{b_0, b_1, ...\} = \pi^{-1}(q)$. Then

$$G_p^M(q) \ge \sum_{j\ge 0} G_a^N(b_j).$$
 (2.5)

Proof. Fix a point $p \in M$, and denote the function of $q \in M$ defined in the right-hand side of (2.5) by f(q). For $q \in M$, let $U \ni q$ and $V_j \ni b_j$ be neighborhoods such that $\pi^{-1}(U) = \bigcup_{j \ge 0} V_j$, V_j are disjoint, and $\pi|_{V_j} \colon V_j \to U$ are biholomorphic. Then

$$f(x) = \sum_{j \ge 0} G_a^N \circ (\pi |_{V_j})^{-1}(x)$$
 for $x \in U$.

Since f is a limit of a decreasing sequence of plurisubharmonic functions on U, f is also plurisubharmonic on U. In particular, assume that q = p and $b_0 = a$. Since

$$G_a^N(u) - \log ||z(u) - z(a)|| \le O(1)$$

as $u \rightarrow a$ for some coordinate z around a (see (2.2)), we have

$$f(x) - \log \|w(x) - w(p)\| \le G_a^N \circ (\pi|_{V_0})^{-1}(x) - \log \|w(x) - w(p)\| \le O(1)$$

as $x \to p$ for the coordinate $w = z \circ (\pi \mid_{V_0})^{-1}$ around p, so that $f \in PS^M(p)$. By definition, we have

$$G_p^M(q) \ge f(q) = \sum_{j \ge 0} G_a^N(b_j),$$

as desired.

3. Regular Covering

For a manifold M and a point $m \in M$ we denote the fundamental group of M with reference point m by $\pi_1(M, m)$. A covering $\pi: N \to M$ is said

to be regular if, for every $m \in M$ and every $n \in \pi^{-1}(m)$, the induced group $\pi_*\pi_1(N,n)$ is a normal subgroup of $\pi_1(M,m)$. In that case, it is known (see e.g. [7]) that, for every $m \in M$ and every pair of points n_1, n_2 in $\pi^{-1}(m)$, there exists a unique homeomorphism (called a covering transformation) Φ on N such that $\pi \circ \Phi = \pi$ and $\Phi(n_1) = n_2$. We note that every universal covering is regular.

THEOREM B. Let $\pi: N \to M$ be a regular covering mapping from a complex manifold N to another one M. For $p, q \in M$, let $\{a = a_0, a_1, \ldots\} = \pi^{-1}(p)$ and $\{b = b_0, b_1, \ldots\} = \pi^{-1}(q)$. Then

$$G_p^M(q) \ge \sum_{j \ge 0} G_a^N(b_j) = \sum_{j \ge 0} G_{a_j}^N(b).$$

Proof. Let $\operatorname{Aut}_{\pi}(N)$ be the covering transformation group of the regular covering $\pi: N \to M$. For every $j \ge 0$, take $\Phi_j \in \operatorname{Aut}_{\pi}(N)$ such that $\Phi_j(a_j) = a_0$. Then $\operatorname{Aut}_{\pi}(N) = \{\Phi_j; j \ge 0\}$ and

$$\{\Phi_i(b_0); j \ge 0\} = \pi^{-1}(q) = \{b_0, b_1, \ldots\}.$$

Since $\operatorname{Aut}_{\pi}(N) \subset \operatorname{Aut}(N)$, it follows from the invariant property (2.1) of the pluri-complex Green function that

$$\sum_{j\geq 0} G_{a_j}^N(b) = \sum_{j\geq 0} G_{a_0}^N(\Phi_j(b_0)) = \sum_{j\geq 0} G_{a_0}^N(b_j).$$

The proof is completed.

THEOREM C. Let $\pi: N \to M$ be a regular covering mapping from a complex manifold N to another one M. For $p \in M$, let $\{a, a_1, a_2, ...\} = \pi^{-1}(p)$. Then

$$P^{N}(X) \ge P^{M}(\pi_* X) \ge C(p)P^{N}(X)$$

for all holomorphic tangent vectors $X \in T_a N$ at $a \in N$, where

$$C(p) = \prod_{j\geq 1} \exp G_a^N(a_j) = \prod_{j\geq 1} \exp G_{a_j}^N(a).$$

The function C(p) is [0,1]-valued and does not depend on the choice of $a \in \pi^{-1}(p)$.

Here we mean that C(p) = 1 when $\pi^{-1}(p) = \{a\}$, a singleton.

Proof. Take a function $\varphi : \epsilon E \to N$, holomorphic such that $\varphi(0) = a$ and $\varphi'(0) = X$. It follows from Theorem B that

$$\exp G_p^M(\pi \circ \varphi(\lambda)) \ge \exp G_a^N(\varphi(\lambda)) \prod_{j\ge 1} \exp G_{a_j}^N(\varphi(\lambda)).$$

Divide both sides by $|\lambda|$ and take the superior limit as $\lambda \to 0$. Since the functions $\exp G_{a_j}^N$ are plurisubharmonic, the functions $\exp G_{a_j}^N \circ \varphi$ are subharmonic around $\lambda = 0$, so that

$$\limsup_{\lambda \to 0} G_{a_j}^N(\varphi(\lambda)) = G_{a_j}^N(\varphi(0))$$

(see e.g. [11; 13]). Therefore, noting that $\pi \circ \varphi(0) = p$ and $(\pi \circ \varphi)'(0) = \pi_* X$, by definition we obtain

$$P^{M}(\pi_{*}X) \geq P^{N}(X) \prod_{j\geq 1} \exp G_{a_{j}}^{N}(a) = P^{N}(X)C(p).$$

For every j, take $\Phi_j \in \operatorname{Aut}_{\pi}(N)$ so that $\Phi_j(a_j) = a$. By a similar argument as in the proof of Theorem B, we have

$$\{\Phi_i(a); j \ge 1\} = \pi^{-1}(p) \setminus \{a\} = \{a_1, a_2, \ldots\},\$$

so that

$$\prod_{j\geq 1} \exp G_{a_j}^N(a) = \prod_{j\geq 1} \exp G_{\Phi_j(a_j)}^N(\Phi_j(a)) = \prod_{j\geq 1} \exp G_a^N(\Phi_j(a)) = \prod_{j\geq 1} \exp G_a^N(a_j).$$

Let $\{b, b_1, b_2, ...\} = \{a, a_1, a_2, ...\}$. We want to show that

$$\prod_{j\geq 1} \exp G_{b_j}^N(b) = \prod_{j\geq 1} \exp G_{a_j}^N(a).$$

Take a covering transformation Φ such that $\Phi(a) = b$. Then $\{\Phi(a_j); j \ge 1\} = \{b_1, b_2, ...\}$, so that

$$\prod_{j\geq 1} \exp G_{a_j}^N(a) = \prod_{j\geq 1} \exp G_{\Phi(a_j)}^N(\Phi(a)) = \prod_{j\geq 1} \exp G_{\Phi(a_j)}^N(b) = \prod_{j\geq 1} \exp G_{b_j}^N(b).$$

The proof is completed.

4. Consequences of Poletzkii's Interpretation

We need Poletzkii's interpretation of the pluri-complex Green function. Let $f \in \text{Hol}(E, M)$ and $t \in E$. By $\omega(f, t)$ we denote the multiplicity of f at t; that is, $\omega(f, t)$ is the order of zero at t of the function $z \circ f - z(f(t))$, where z is a holomorphic coordinate around $f(t) \in M$. That is, if $g(\lambda) = z \circ f(\lambda) - z(f(t))$ then

$$\omega(f,t)=\min\{n;g^{(n)}(t)\neq 0\}.$$

We note that the definition of $\omega(f, t)$ does not depend on the choice of the coordinate z. Indeed, let w be another coordinate around f(t), and define $\Phi = (w - w(f(t))) \circ (z - z(f(t)))^{-1}$ in a neighborhood of 0 in \mathbb{C}^m , $m = \dim M$. Then $w \circ f - w(f(t)) = \Phi \circ g$. We want to prove

$$\min\{n; g^{(n)}(t) \neq 0\} = \min\{n; (\Phi \circ g)^{(n)}(t) \neq 0\}. \tag{4.1}$$

Let $\omega = \min\{n; g^{(n)}(t) \neq 0\}$ and let $n < \omega$. We have the chain rule

$$(\Phi \circ g)^{(n)}(t) = \sum_{\{P_1, \ldots, P_u\} \in \Pi(n)} \sum_{j_1, \ldots, j_u} (\partial^{j_1} \cdots \partial^{j_u} \Phi) \circ g(t) g_{j_1}^{(\#P_1)}(t) \cdots g_{j_u}^{(\#P_u)}(t),$$

where $\Pi(n)$ is the family of all partitions of the set $\{1, ..., n\}$, $\partial^j = \partial/\partial z_j$, $z = (z_1, ..., z_m)$, $g = (g_1, ..., g_m)$, each j_i runs through 1, ..., m, and $\#P_i$ is the number of the set P_i (cf. [5]). Since for all $\{P_1, ..., P_u\} \in \Pi(n)$ and for all $i \in \{1, ..., u\}$, $\#P_i \le n$, it follows that $(\Phi \circ g)^{(n)}(t) = 0$. Therefore

$$\min\{n; (\Phi \circ g)^{(n)}(t) \neq 0\} \ge \omega = \min\{n; g^{(n)}(t) \neq 0\}.$$

Since $g = \Phi^{-1} \circ (\Phi \circ g)$, we have

$$\min\{n; (\Phi \circ g)^{(n)}(t) \neq 0\} \leq \min\{n; g^{(n)}(t) \neq 0\},\$$

and have proved (4.1). For $f \in \text{Hol}(E, M)$ and $q \in M$, define

$$u_f(q) = \begin{cases} \sum_{t \in f^{-1}(q)} \omega(f, t) \log|t| & \text{if } f^{-1}(q) \neq \emptyset, \\ 0 & \text{if } f^{-1}(q) = \emptyset. \end{cases}$$

Poletzkii [14] proved the following.

THEOREM. For any domain M in \mathbb{C}^n and any $p, q \in M$,

$$G_p^M(q) = \inf\{u_f(p); f \in \text{Hol}(E, M), f(0) = q\}.$$

We note that, by virtue of Poletzkii's theorem, we can prove Myrberg's theorem mentioned in Section 1 for planar cases.

THEOREM D. If $\pi: E \to M$ is a covering of a domain M in C, then for $p, q \in M$ we have

$$G_p^M(q) = \sum_{j \ge 0} G_a^E(b_j) = \sum_{j \ge 0} G_{a_j}^E(b),$$

where $\{a = a_0, a_1, \ldots\} = \pi^{-1}(p)$ and $\{b = b_0, b_1, \ldots\} = \pi^{-1}(q)$.

Proof. Take $\varphi_b \in Aut(E)$ defined by

$$\varphi_b(\lambda) = \frac{\lambda - b}{\bar{b}\lambda - 1}, \quad \lambda \in E.$$

Since $\pi \circ \varphi_b \in \text{Hol}(E, M)$ and $\pi \circ \varphi_b(0) = p$, we may consider the quantity $u_{\pi \circ \varphi_b}(q)$. Since $\pi \circ \varphi_b$ is locally biholomorphic, $\omega(\pi \circ \varphi_b, t) = 1$ for every $t \in (\pi \circ \varphi_b)^{-1}(p)$. It follows that

$$u_{\pi \circ \varphi_b}(p) = \sum_{t \in (\pi \circ \varphi_b)^{-1}(p)} \log|t|$$

$$= \sum_{\lambda \in \pi^{-1}(p)} \log|\varphi_b(\lambda)|$$

$$= \sum_{j \ge 0} \log|\varphi_b(a_j)| = \sum_{j \ge 0} \log|\varphi_{a_j}(b)|$$

$$= \sum_{j \ge 0} G_{a_j}^E(b).$$

By Poletzkii's theorem we have

$$G_p^M(q) = \inf\{u_f(p); f \in \text{Hol}(E, M), f(0) = q\}$$

 $\leq u_{\pi \circ \varphi_b}(p) = \sum_{j \geq 0} G_{a_j}^E(b).$

Since the opposite inequality $G_p^M(q) \ge \sum_{j\ge 0} G_{a_j}^E(b)$ always holds (Theorem B), we obtain one of the equalities in the theorem. The other follows from the regularity of π and Theorem B, and the proof is completed.

By using Poletskii's theorem, we can prove the following counterpart of Theorem A.

THEOREM A'. Let $\pi: N \to M$ be a covering mapping from a domain N in \mathbb{C}^n to another one M. For $p, q \in M$, let $\{a_0, a_1, \ldots\} = \pi^{-1}(p)$ and $b \in \pi^{-1}(q)$. Then

$$G_p^M(q) \ge \sum_{j\ge 0} G_{a_j}^N(b).$$

Proof. Let $f \in \text{Hol}(E, M)$ with f(0) = q. Take a lifting $g: E \to N$ of f with g(0) = b. Since $f = \pi \circ g$,

$$f^{-1}(p) = g^{-1}(\pi^{-1}(p)) = \bigcup_{j \ge 0} g^{-1}(a_j)$$
 (disjoint union).

For $t \in g^{-1}(a_j)$, the multiplicity $\omega(g, t)$ is given by the order of zero at t of the function $g - a_j$. Take a neighborhood V of a_j such that $\pi|_V$ is a homeomorphism, and set $z = (\pi|_V)^{-1}$. Then z is a coordinate around p. Since $z \circ f - z(p) = g - a_j$ in a neighborhood of t, we see that $\omega(f, t) = \omega(g, t)$. Thus

$$u_f(p) = \sum_{t \in f^{-1}(p)} \omega(f, t) \log|t|$$

$$= \sum_{j \ge 0} \sum_{t \in g^{-1}(a_j)} \omega(g, t) \log|t|$$

$$= \sum_{j \ge 0} u_g(a_j)$$

$$\geq \sum_{j \ge 0} G_{a_j}^N(b).$$

Since f is arbitrary,

$$G_p^M(q) \ge \sum_{j\ge 0} G_{a_j}^N(b),$$

as desired.

5. Examples

Let $\mathbf{D}_m = \{|w_1|^2 + |w_2|^{2/m} < 1\} \subset \mathbb{C}^2$ with m a positive integer. If m > 1, then \mathbf{D}_m is called a *Thullen domain* and \mathbf{D}_1 is the unit ball \mathbf{B} . We recall some properties on automorphisms of \mathbf{B} . For any $a, z \in \mathbf{B}$, set

$$\varphi_a(z) = \frac{a - P_a z - \sqrt{1 - \|a\|^2} (z - P_a z)}{1 - \langle z, a \rangle},$$

where $P_a z = (\langle z, a \rangle / ||a||^2) a$ and $\langle \cdot, \cdot \rangle$ is the natural hermitian inner product on \mathbb{C}^2 . Then $\varphi_a \in \operatorname{Aut}(\mathbf{B})$, $\varphi_a \circ \varphi_a = \operatorname{id}$, and $\varphi_a(a) = 0$. We have

$$\langle \varphi_a(z), \varphi_a(w) \rangle = 1 - \frac{(1 - \|a\|^2)(1 - \langle z, w \rangle)}{(1 - \langle z, a \rangle)(1 - \langle a, w \rangle)},\tag{5.1}$$

$$\varphi_{a*}(a;X) = \left(0; \frac{-P_a X - \sqrt{1 - \|a\|^2} (X - P_a X)}{1 - \|a\|^2}\right)$$
 (5.2)

(cf. e.g. [8]). If $N = \mathbf{B} \setminus \{z_2 = 0\}$ and $M = \mathbf{D}_m \setminus \{w_2 = 0\}$, then $\pi: N \ni (z_1, z_2) \mapsto (z_1, z_2^m) \in M$ is a regular covering mapping, so that Theorem C implies

$$C(p)P^{N}(X) \le P^{M}(\pi_{*}X) \le P^{N}(X)$$
 (5.3)

for $p \in M$, $a \in \pi^{-1}(p)$, and $X \in T_aN$. Since plurisubharmonic functions that are bounded above are uniquely extendable beyond a pluri-polar set, it follows that

$$G_a^N = G_a^B \quad \text{for } a \in N, \tag{5.4}$$

 $P^M = P^{\mathbf{D}_m}$, and $P^N = P^{\mathbf{B}}$. Furthermore, $P^{\mathbf{B}}$ coincides with the Kobayashi metric $K^{\mathbf{B}}$ on \mathbf{B} (cf. e.g. [1; 5]). If $a = (0, b) \in \mathbb{N}$, 0 < b < 1, $p = (0, b^m) \in \mathbb{M}$, and $X = (a; (X_1, X_2)) \in T_a \mathbb{N} = \{a\} \times \mathbb{C}^2$, then (5.3) becomes

$$C(p)K^{\mathbf{B}}(a;(X_1,X_2)) \le P^{\mathbf{D}_m}(p;(X_1,mb^{m-1}X_2)) \le K^{\mathbf{B}}(a;(X_1,X_2)).$$
 (5.5)

If $\epsilon = e^{2\pi i/m}$, then by definition we have

$$C(p) = \prod_{j=1}^{m-1} \exp G_{(0,b)}^{N}(0, \epsilon^{j}b)$$

$$= \prod_{j=1}^{m-1} \exp G_{(0,b)}^{B}(0, \epsilon^{j}b)$$

$$= \prod_{j=1}^{m-1} \exp G_{\varphi_{(0,b)}(0,b)}^{B}(\varphi_{(0,b)}(0,\epsilon^{j}b))$$

$$= \prod_{j=1}^{m-1} \exp G_{0}^{B}(\varphi_{(0,b)}(0,\epsilon^{j}b))$$

$$= \prod_{j=1}^{m-1} \|\varphi_{(0,b)}(0,\epsilon^{j}b)\|$$

$$= \prod_{j=1}^{m-1} \left(1 - \frac{(1-b^{2})^{2}}{|1-\epsilon^{j}b^{2}|^{2}}\right)^{1/2}$$

$$= \frac{(2b)^{m-1}(1-b^{2})}{1-b^{2m}} \prod_{j=1}^{m-1} \sin \frac{j\pi}{m}.$$

In the second equality we used (5.4); the third equality, the invariance of the pluri-complex Green function for automorphisms; and the sixth equality, equation (5.1). (For the fifth equality, see e.g. [3, p. 2] or [8, p. 119].) Since the Kobayashi metric is invariant for automorphisms, we have

$$\begin{split} K^{\mathbf{B}}(a;(X_{1},X_{2})) &= K^{\mathbf{B}}(\varphi_{a*}(a;(X_{1},X_{2}))) \\ &= \|\varphi_{a*}(a;(X_{1},X_{2}))\| \\ &= \frac{\sqrt{(1-b^{2})|X_{1}|^{2} + |X_{2}|^{2}}}{1-b^{2}}. \end{split}$$

Here we have used (5.2). (For the second equality, see e.g. [1, p. 644] or [8, p. 119].) Observing $\mathbf{D}_m \subset \mathbf{B}$, we have $P^{\mathbf{B}} \leq P^{\mathbf{D}_m}$. Summarizing these, we have the following estimates for the invariant metric $P^{\mathbf{D}_m}$ on the Thullen domain \mathbf{D}_m .

PROPOSITION E. For 0 < b < 1 and $(X_1, X_2) \in \mathbb{C}^2$, it holds that

$$\max\{C_bK^{\mathbf{B}}((0,b^{1/m});(X_1,m^{-1}b^{1/m-1}X_2)),K^{\mathbf{B}}((0,b);(X_1,X_2))\}$$

$$\leq P^{\mathbf{D}_m}((0,b);(X_1,X_2)) \leq K^{\mathbf{B}}((0,b^{1/m});(X_1,m^{-1}b^{1/m-1}X_2)),$$

where

$$K^{\mathbf{B}}((0,b);(X_1,X_2)) = \frac{\sqrt{(1-b^2)|X_1|^2 + |X_2|^2}}{1-b^2};$$

$$C_b = C((0,b)) = \frac{2^{m-1}b^{1-1/m}(1-b^{2/m})}{1-b^2} \prod_{j=1}^{m-1} \sin \frac{j\pi}{m}.$$

We note that $P^{\mathbf{D}_m}((0,0);(X_1,X_2))$ coincides with

$$\mu^{\mathbf{D}_m}(X_1, X_2) = \inf\{\lambda > 0; (X_1, X_2) \in \lambda \mathbf{D}_m\},\$$

the Minkowski functional for \mathbf{D}_m , and that for every $(b_1, b_2) \in \mathbf{D}_m$ there exists a $\Phi \in \mathrm{Aut}(\mathbf{D}_m)$ such that $\Phi(b_1, b_2) = (0, |b_2|(1-|b_1|^2)^{-m/2})$ (cf. e.g. [8, p. 273]). We also note that if $m \ge 3$ then \mathbf{D}_m is not convex.

Now, assume m = 2. Then \mathbf{D}_2 is convex, so that $P^{\mathbf{D}_2} = K^{\mathbf{D}_2}$. The explicit formula for $K^{\mathbf{D}_2}$ is well known [8, p. 274]:

$$K^{\mathbf{D}_{2}}((0, b^{2}); (X_{1}, 2bX_{2})) = \begin{cases} \frac{\sqrt{(1-b^{2})|X_{1}|^{2}+|X_{2}|^{2}}}{1-b^{2}}, & |X_{2}| \leq b|X_{1}|, \\ \frac{2b|X_{2}|}{1-b^{4}}, & X_{1} = 0. \end{cases}$$

Since $C(p)=2b/(1+b^2)$ for $p=(0,b^2)$, m=2, this example shows that, in view of (5.5), in the inequalities (5.3) there exist $X^1, X^2 \in T_a N \setminus \{0\}$ such that $P^M(\pi_*X^1) = P^N(X^1)$ and $P^M(\pi_*X^2) = C(p)P^N(X^2)$.

The last example also shows that in higher-dimensional cases the equality

$$G_p^M(q) = \sum_{j \ge 0} G_{a_j}^N(b)$$

in Theorem B does not hold in general, contrary to the 1-dimensional case. For if the equality holds, then the argument in the proof of Theorem C implies the equality

$$P^{M}(\pi_{*}X) = C(p)P^{N}(X), \quad X \in T_{a}N.$$

References

- [1] K. Azukawa, Two intrinsic pseudo-metrics with pseudoconvex indicatrices and starlike circular domains, J. Math. Soc. Japan 38 (1986), 627-647.
- [2] ——, The invariant pseudo-metric related to negative plurisubharmonic functions, Kodai Math. J. 10 (1987), 83-92.
- [3] ——, A note on Carathéodory and Kobayashi pseudodistances, Kodai Math. J. 14 (1991), 1–12.
- [4] ——, The ratio of invariant metrics on the annulus and theta functions, Banach Center Publ. 31 (1995), 53-60.

- [5] K. Azukawa and J. Burbea, *Hessian quartic forms and the Bergman metric*, Kodai Math. J. 7 (1984), 133-152.
- [6] S. Dineen, The Schwarz lemma, Clarendon Press, Oxford, 1989.
- [7] S.-T. Hu, *Homotopy theory*, Academic Press, New York, 1959.
- [8] M. Jarnicki and P. Pflug, *Invariant distances and metrics in complex analysis*, de Gruyter, Berlin, 1993.
- [9] M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France 113 (1985), 231-240.
- [10] ——, Infinitesimal pseudometrics and the Schwarz lemma, Proc. Amer. Math. Soc. 105 (1989), 134-140.
- [11] ——, Pluripotential theory, Clarendon Press, Oxford, 1991.
- [12] P. J. Myrberg, Über die Existenz der Greenschen Funktionen auf einer gegebenen Riemannschen Fläche, Acta. Math. 61 (1933), 39-79.
- [13] R. Narasimhan, Several complex variables, Univ. of Chicago Press, 1971.
- [14] E. A. Poletzkii and B. V. Shabat, *Invariant metrics*, Several complex variables III (G. M. Khenkin, ed.), pp. 63-112, Springer, Berlin, 1989.

Department of Mathematics Toyama University Gofuku, Toyama 930 Japan