The Subspace Problem for
Weighted Inductive Limits of
Spaces of Holomorphic Functions

JOSE BONET & JARI TASKINEN

The aim of the present article is to solve in the negative a well-known open
problem raised by Bierstedt, Meise, and Summers in [ BMSI1] (see also [ BM1]).
We construct a countable inductive limit of weighted Banach spaces of holo-
morphic functions, which is not a topological subspace of the corresponding
weighted inductive limit of spaces of continuous functions. As a consequence,
the topology of the weighted inductive limit of spaces of holomorphic func-
tions cannot be described by the weighted sup-seminorms given by the max-
imal system of weights associated with the sequence of weights defining the
inductive limit. The main step of our construction shows that a certain se-
quence space is isomorphic to a complemented subspace of a weighted space
of holomorphic functions. To do this we make use of a special sequence of
outer holomorphic functions and of the existence of radial limits of holo-
morphic bounded functions in the disc.

Weighted spaces and weighted inductive limits of spaces of holomorphic
functions on open subsets of C" (N e N) arise in many fields, such as linear
partial differential operators, convolution equations, complex and Fourier
analysis, and distribution theory. Since the structure of general locally con-
vex inductive limits is rather complicated and many pathologies can occur,
the applications of weighted inductive limits have been restricted. The reason
was that it did not seem possible to describe the inductive limit, its topology,
and in particular a fundamental system of seminorms in a way that permits
direct estimates and computations. In the theory of Ehrenpreis [Eh] of “ana-
lytically uniform spaces”, the topology of certain weighted inductive limits
of spaces of entire functions, which are the Fourier-Laplace transforms of
spaces of test functions or ultradistributions, were required to have a fun-
damental system of weighted sup-seminorms. Berenstein and Dostal [BD]
reformulated the problem in a more general setting and used the term “com-
plex representation”. This corresponds exactly with the term “projective de-
scription” used by Bierstedt, Meise, and Summers [BMSI1]}, which is the one
we will utilize in this paper. In [BMSI1] it was proved that countable weighted
inductive limits of Banach spaces of holomorphic functions on arbitrary open
subsets G of CV admit such a canonical projective description by weighted

Received April 29, 1994. Revision received November 15, 1994,
Michigan Math. J. 42 (1995).

259



260 JosE BONET & JARI TASKINEN

sup-seminorms whenever the linking maps between the generating Banach
spaces are compact. This theorem extended previous work by Taylor [Ta]
with a more functional analytic approach and was very satisfactory from the
point of view of applications. It remained open whether the projective de-
scription theorem continued to hold for weighted inductive limits of spaces
of holomorphic functions without any restriction on the linking maps. This
problem is solved here.

1. Notation and Preliminaries

All vector spaces are defined over the complex scalar field C. We denote by
R* (resp. RY) the space of strictly positive reals (resp. RTU{0}).

Let V = (v4)5=; be a decreasing sequence of continuous strictly positive
weight functions defined on an open subset G of CV, NeN. We denote
by VC(G) and VH(G) the inductive limits ind, Cv,(G) and ind; Hv,(G),
where Cuv,(G) (resp. Hvi(G)) denotes the Banach space

{f:G — C continuous (resp. holomorphic) |
Py (f) = 5up;c 6 Uk (2)| f(2)] < 0}.

The canonical embedding VH(G) - VC(G) is continuous; it is a well-known
open problem whether the topologies of VH(G) and VC(G) coincide on
VH(G). (See [BM1, Sec. 1] or [BB4, Sec. 4, Prob. 5].) This is a particular
case of the so-called subspace problem for locally convex inductive limits.

In order to describe the topology of the weighted inductive limits VC(G)
and VH(G), Bierstedt, Meise, and Summers [BMSI1] introduced the system
of weights V, associated with the sequence V,

V = [p: G— R* continuous | vk e N 3C; > 0 such that ¥ < C,v;}.

The projective hull CV(G) (resp. HV(G)) of VC(G) (resp. VH(G)) is the
locally convex space

{f: G— C continuous (resp. holomorphic) |
Ps(f) :=sup,cc 9(2)| f(z)| <o forall eV},

endowed with the locally convex topology defined by the seminorms p; as o
varies in V. Clearly the inclusions VC(G) - CV(G) and VH(G) - HV(G) are
continuous. In [BMSI1] it was proved that VC(G) = CV(G) and VH(G) =
HV(G) hold algebraically, and that the two spaces in each equality have the
same bounded sets. Moreover, one of the main results in [BMS1] shows that
if V satisfies condition (S),

(S) forall k there is / such that v;,/v, vanishes at infinity on G,

then VH(G) = HV(G) holds topologically and VH(G) is a topological sub-
space of VC(G). In [BM2], [Ba] and [BB3], the topological identity VC(G) =
CV(G) was characterized in terms of a condition (D) on the sequence V.
We present here an example showing that if condition (S) does not hold,
then the space VH(G) need not be a topological subspace of VC(G) and
VH(G) = HV(G) need not hold topologically.
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In the construction of our example we need weighted inductive limits of
spaces of sequences on N. We recall the notation from [BMS2]. We will
denote here by A = (A;)7=; a decreasing sequence of strictly positive weights
on N, A, := Ag(n) for k, ne N. The corresponding weighted inductive limit
is denoted by k, = indj /(A;). The system of weights associated with A is
denoted by A and A€ A if and only if A(n) > 0 for every ne N and for every
k € N there is C, > 0 with A < C; A, on N. The projective hull of the induc-
tive limit k., is denoted by K, and it is the space

{x = (x,) | Pa(X) := sup,en A(N)]x,| < oo for all AeAJ.

The spaces K, and k. always coincide algebraically and have the same
bounded sets; however, there are examples of sequences A such that K, and
k., do not coincide topologically, K, has bounded sets that are not metriz-
able, and K is not bornological (see [BMS2; BBI1; K6; Vo]). We refer to
[BB4] for a survey article on spaces of type VC(X).

2. Main Construction

In this section we construct a sequence of weights W = (w,)y-; on an open
bounded set G, of C such that the projective hull HW(G,) contains a comple-
mented subspace isomorphic to a space of sequences K, that is not borno-
logical. Consequently, the space HW(G,) is not bornological and hence it
does not coincide topologically with WH(G,).

We first select a decreasing sequence A = (A);=; of strictly positive func-
tions A (1) = A,x, n, k€N, on N such that 1/n%2 < A, < 1for all n and k, the
corresponding space K, is not bornological and contains bounded sets that
are not metrizable. For example, combine [K0, Sect. 31.7] with [BM1, Thm.
9] and [BBI]. In this case the system of weights A associated with A satisfies:
For each ji € A there are Ae A and C > O with i < CA and 1/n% < A(n) < 1 for
all neN. Indeed, given ji € A, we select ¢; > 0 such that i < inf; ¢, A;. We
put d, = max(cy, 1) for all k¥ and we set A = min(inf, d; A4, A;) € A. Accord-
ingly, K, has a fundamental system of seminorms P given by multiples of
elements A € A satisfying 1/n%2 < A(n) <1 for all neN.

Let G;={zeC|1/2<|z|<1,0< argz < 7} and define the system W =
(Wp) =1 of weight functions on G| by wk(reia) =w;(0), where w;: [0, w[ —» R*
satisfies W (0) =, for 0 eI, := [0,—1/(2°n?), 6, +1/(2°n?)] with 8,,:=1/(2n)
for all ne N, and Wy is extended affinely for other 6.

Now we define a sequence of elements of H(G;) which will be essential
in our construction. For all ne N, let ¢, > 0 be a number satisfying ¢, <
27"=16=6. because of the choice of (A,;) we have, in particular,

—-n-16,,—4
En<2 n /\nk'

For all n, let e, be an analytic function on the disc defined by

1 27 ei0+
en(z)=exp(27rf 70 zlogsan(())d@),
o —
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where ¢,: [0, 27] — R* is the measurable function

1 for 6eJ,:=[0,—¢,,0,+¢,]
on(0):=1 €,27""* for 0eJ,, m#n
€n for other 6.

In fact, by [Ru, Thm. 17.16], e, € H® and |e};(e”)| = ¢,(8), where e} (e”) :=
lim, e,,(re"’) holds for a.e. 8 € [0, 27]. We also denote by e, the restrictions
of ¢, to G;.
For neN, let
D,:={ze G,||z—e®| < 1/(50n?)},  C,:=G\D,.

We have D, C {z€ G,| z = re®, 0 € I,} and, moreover, |e’ —z| > 1/(2%1?) for

6 e J, and ze C,. Since
2 12
———df =27,
Jy o= 0=
we can apply the Jensen inequality ([Ru, Thm. 3.3]; take exp for the con-

vex function and (1—|z|?)/(27|e”—z|?) d6 for the probability measure) to
derive, for ze C,,

1 2 ol 4 7
<expl— Ref .
len(2)] p(27r 0o ef—z

1 % 1-|zf
12 1=z

log ¢,(0) d0>

< . 6) do
27‘_ 0 |e’0—'2|2 S"n( )
1—|z]? 1—|zf?
< L[ L=l do+ ot [ EL I
27 J, |el _ZI 2w [0,2x]\J, Iel '—‘ZI

< 7', 2%n* +e, <2747,

Analogously, one can show that |e,(z)| <1 for all z€ G;.

In the proof of our main result in this section we need the following tech-
nical lemma. It shows that given an arbitrary weight function w’e W, we can
choose a dominating weight function on G, that has some specific properties.

LEmMA 1. Given a weight function w'e W, we can find a weight function
we W with the following properties.

(1°) There exists C > 0 such that Cw' <= w < 1.

(2°) If w”e W is defined as wy except that A, is replaced by 1/n2, we
have w”" < w.

(3°) The weight w is constant on every D,, so that

A(n):N->R*,  X(n):=w(z), z€D,,
satisfies 1/n* < X(n) for all k and n and A€ A.
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Proof. Let p(n) := max{1/n? sup{w’(z)]arg(z) € I,}} and define w") as w,
but replace A,; by p(n). Now it is easy to see that the weight w, defined by

w(z) = min{w,(z), max{w, w'(z)}}

for z € G;, has all the desired properties; the property (3°) follows from the
facts that w(* and w, are constants on D, and w") = w’ on D,,. O

Our next lemma is essentially known.

LEMMA 2. Let E and F be complete locally convex spaces. Let y: E—F
and ¢: F— E be continuous linear maps such that ¢ : E — E satisfies the
following condition: there exist a fundamental system of seminorms P on
E and 0 <6 <1 such that

p((¢y—idp)x) =ép(x) VxeE VpeP.
Then E is isomorphic to a complemented subspace of F.

Proof. We put B:= ¢y —idg and déﬁne A:E—- E by

Ax:= > (-1)"B"x, xeE.

n=0
Then A is a well-defined continuous linear operator on E. Indeed, for xe E,

the series X, —o(—1)"B"x is absolutely summable in £ and, for pe P and
xe E, we have

p( io(—l)"mx) < ij;o D(B"x) <
Moreover ¢(YA) = idg. Indeed,
S(A) = (GY)A = (idg+B) 3 (~1)"B" =id;.

n=0

0

_oa”p(x) < Cp(x).

n

This implies that (yA)¢ is a projection on F whose image is isomorphic to
E (see e.g. [Hor, pp. 122-3]). O

THEOREM 3. The space HW(G,) contains a complementecz subspace iso-
morphic to the nonbornological space K .. In particular, HW(G,) does not
coincide topologically with the weighted inductive limit WH(G),).

Proof. We construct continuous linear maps ¢: K, — HW(G,) and ¢:
HW(G,) — K, satisfying the assumptions of Lemma 2.

First define y: K, — HW(G,) by ¥(a) :=3_,a,e, for a=(a,); - € K.
To see that y is well-defined and continuous, we fix w’e W and select we W
and Ae A as in Lemma 1. If (a,);-, is a sequence of scalars such that

sup, A(n)|a,| =1,

we have |a,| < n? for all n. Every zo€ G, has a neighborhood U that inter-
sects at most one of the sets D,,. It follows from the estimates of |e,(z)| es-
tablished after the definition of e, that X a,e,(z) converges uniformly for
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z € U and thus defines a holomorphic function on G;. Moreover, denoting
D:=N%_,C,, by the choice of (a,) we have

M8

pﬁ,( i a,,e,,) < sup w(z) X A(n)7'e,(2)]

n=1 z2e G,

I

meN zeD, neN
n#m

= sup sup (W(z) D X(n)‘lle,,(z)|+W(z))_\(m)“‘lem(z)l)

+sup W(z A(n)™! Ie,,(z)l)
zeD n=1

< sup( §; X(n)—12—4—"+X(m)X(m)—1)

meN\n=1

+ 3 An) 12747 < 3 = 3sup A(n)|a,|.
n=1 n
This shows that the map ¢ is continuous.

To define ¢ : HW(G;) — K, we need radial values of elements of HW(G,).
We fix fe HW(G,;). There is a ke N such that fe Hw,(G,). Given neN,
since the weight wy is constant in {re®:0e1I,, 1/2 <r<1} it follows that
f*e®) =lim,_,, f(re®®) exists a.e. for 0 eJ, (see [Hof, pp. 34ff] or [Du,
p. 170]). Accordingly, we define f *(e™) a.e. 6 € J,, which is an element of
L*(J,). Observe that the radial limits of e, in each J, are the restriction of the
ones of e, in the disc, and that, if (a,) € K, it follows from the inequalities
established in the first part of this proof that (X a,e,)*(e”) =X a, e} (e®?).
We set x,(0) := exp[—i arg e} (e’)] and define ¢: HW(G,) — K, by

¢(f) = ((26,,)“ f, @) x,(8) de)

nelN

We first check that ¢ is well-defined and continuous. Given Ae A with 1/n? <
)_\(n) =<1 for all n, we define the weight we W as wy, but replacing A, by
A(n). If fe HW(G,) and ne N we have

A(n)(2€,)”!

f e x,(6) de} < A(n) sup| f*(e”)| = sup w(z)| f(z)|.
I Jn ze G,
This shows ¢(f) € K., and the continuity of ¢.
It remains to demonstrate that ¢y —id_ satisfies the condition in Lem-
ma 2. First observe that, for all ne N,

2e,)! fj e1(e®) xn(0)d6 = 1.

On the other hand, for neN fixed: |e,*(ei0)| = ej2"""4 for all jeN; j# n;
a.e. € J,; and the series X a;¢; converges absolutely for (a,) € K. Indeed,
select Ae A with 1/n% =< A(n) = C for all n € N. We have S := sup; A(j)|a;| < ©
and ¢; < 277/716j76 < 27/-16i74x( ), so S|aj|e; < SX 277! In particular,
for every A as before,
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>|ajle; < (1/8) sup, A(n)|a,]|.
Moreover,
¢y —idg_)(a,) = ((2en)“ > a f e;-*(e"">x,,(0)d0)
Jj#En I neN

If AeA satisfies 1/n2 < A(n) <1 for all neN, and if ae K, is such that
pi(a) = sup, A(n)|a,| =1, then for n e N we have

Am)(2e,)™ 3 ajL e}"(e"o)xn(f))dﬂl

Jj#n n

=AM 2e)™ X la;| | lef(e®)x,(60)|do

Jj#n Iy
< A(n) 3 |aj| suplef(e®)| =27""*A(n) I |ajle; < L
Jj#n 0eJ, Jj#n 128

Therefore
Pi((@y —idg _)(a)) < (1/128) p;(a).

Since the multiples of the weights Ae A with 1/n2 <A(n) <1 for all neN
form a fundamental system of seminorms of the space K, the conclusion
follows from Lemma 2. O

3. The Subspace Problem

In this section we set G = G; X C C C% We construct a decreasing sequence
V = (v)7~; of weight functions on G such that VC(G) = CV(G) holds topo-
logically, but VH(G) is not a topological subspace of VC(G). Moreover, the
projective hull HV(G) is not even a (DF) space.

If z, € G,, we write d(z;) to denote the distance of z, to the complement
of G,. We define the system V = (v;)¢=; of weight functions on G by

Uk (21, 22) = Wi (21) 4 (21, ]22)s
where u;: G; X R{ —» R? is defined by

= (1+¢)~k=D/2k t=k+1,
ez, 1) = (1+1/d(zy)+¢)~ D2k ¢ <k,

and, for each fixed z;, u,(z, t) is extended affinely for Kk < ¢ < k+1. It is
easy to see that the functions v, are continuous on G.

Bierstedt and Meise [BM2] introduced the following condition (M) on the
sequence V = (vy)g=1: For each ke N and each subset Y of G which is not
relatively compact, there exists k' = k'(k,Y) > k with inf, .y v (¥)/ /v () =
0. They proved that this condition is equivalent to the fact that CV(G) in-
duces the compact open topology on each bounded subset and that condi-
tion (M) implies the topological identity VC(G) = CV(G). Moreover, if V
satisfies (M) then HV(G) is a Montel space. It was an open problem (see
also [Bi]) whether VH(G) is a Montel space when V satisfies (M). In fact,
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if VH(G) is a Montel space, then VH(G) = HV(G) holds topologically by a
direct application of the Baernstein open mapping lemma as in [BMS1].

PROPOSITION 4. Thq_ sequence V = (V)= satisfies condition (M). Conse-
quently, VC(G) = CV(G) holds algebraically and topologically, and HV(G)
is a Montel space with metrizable bounded sets.

Proof. Let ke N be given, and let Y be a subset of G which is not relatively
compact. We have two possibilities: either

(i) 3(z"™) = ((z{™, 23™)) C Y supy|25™| = 00 or
(ii) 3(z"™) = ((z{™, z{™)) C Y:|z{™| = M and inf,, d(z{™) = 0.

In the first case it follows easily from the definition of u, that, taking &' =
k+1,

Ue(z™) > sup u, (2™, |z5™|)
meN vk+1(z(m)) meN uk+l(zl(m)’ |z1(2m)l)

> sup |z£m)l—(k-—1)/2k+k/2(k+l) = 00,

meN
|24 > k+2
In case (ii), we choose k'’ > M and k' > k+1 to obtain

(m) —(k—1)/2k k/2(k+1)
v
sup LZ(E)—)'Z sup(%+l+M) -( l(m) > =oc0. [
meN Vg (2'")  meN d(zl ) d(Zl )

It is very easy to see that every fe HV(G) is constant with respect to the
second variable. Indeed, if fe HV(G) then there are ke N and C > 0 such
that p, (f) < C, so that for every fixed z, € G, we have

C = sup wi(21) Uk (21, |22])]f (21, 22)]
ZzEC

{ ~1/2
> wk(zl)zszll%(l+m+|zz|) | f(z1, 22)|-

Now it is an elementary fact of complex analysis that a holomorphic g:
C — C, satisfying sup{(|z|+¢co)™"?|g(z)|| z€ C} < oo for some constant ¢,
must be constant. Accordingly, f must be constant with respect to z,. Now
we define 4A: HV(G) - HW(G,) by Af(zy) = f(z;, 0). To show that A4 is well-
defined, we observe that

pwk(Af) ‘= SUPzegq, Wk(Z)If(Z, O)I = SuPzeg, Wk(Z) Ckuk(z: k+ 1)|f(z, O)l
= Ckpvk(f)

for all fe Hu (G) and Cy := (k+2)*~1/2h),

Given g e HW(G,), we define g: G — C by §(z;, 2,) = g(z;) for all (25, 2,) €
G. To show that ge HV(G), we fix ke N with ge Hw;(G;). We then have
the estimate

SUP(z,, 2,)e G Uk (215 22)|8(21, 22)| < sup; e g, Wk (21)|g(21),
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since 0 < u; < 1. This shows that A4 is bijective and A~': Hw,(G;) —» Hvi(G)
is continuous for every k € N. By the closed graph theorem for (LB)-spaces,
this also yields that A: VH(G) —»"WH(G,) is a topological isomorphism.
Moreover, A~': HW(G,) » HV(G) is continuous. Indeed, if o eV is given
then we define w(z,) = sup,,c U(z;, 22) for z, € G,. For all k, we have

W(z1) = supg,ec 9(21, 22) = SuPz,ec Crk (215 22) = Crwi(2y),

hence w € W. Moreover,

Ps(f) =8uP(y, z,)e6 U(21, 22)| f(21, 0)]
< sup; e, i (21, 0)|supz,eclt(z1, 2201} = pu(AS).

On the other hand, 4: HV(G) - HW(G,) is not continuous. In fact, HW(G,)
and HV(G) cannot be isomorphic, since the former contains a complemented
subspace isomorphic to K., (by Theorem 3) and hence contains bounded
sets that are not metrizable; whereas every bounded subset of HV(G) is
metrizable, by Proposition 4.

THEOREM 5. The space HV(G) is not bornological; VH(G) = HV(G) does
not hold topologically; and VH(G) is not a topological subspace of VC(G)
and is not a Montel space. Moreover, HV(G) is not a (DF)-space.

Proof. If HV(G) is bornological (or, equivalently, if VH(G) = HV(G) holds
topologically), then the linear map A~': HW(G,) » VH(G) is continuous.
Consequently the identity id = AA™': HW(G,) » WH(G,) is continuous.
This implies HW(G,) is bornological, which contradicts Theorem 3.

By Proposition 4, VC(G) = CV(G) holds topologically. Since HV(G) is
clearly a topological subspace of CV(G), we conclude that VH(G) is not a
topological subspace of VC(G). If VH(G) were Montel, we could apply di-
rectly the Baernstein open mapping lemma (see e.g. [PB, 8.6.8(5)]) to con-
clude that VH(G) would be a topological subspace of VC(G); a contradiction.

Finally, assume H¥V(G) is a (DF)-space. Since it is a complete (DF) space
which is Montel, HV(G) is bornological (cf. [PB, 8.3.48]). This is a con-
tradiction. O]
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