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1. Introduction

The main result of this paper is the explicit determination of the core of
integrally closed ideals in 2-dimensional regular local rings. The core of an
ideal 7 in a ring R was introduced by Judith Sally in the late 1980s and was
alluded to in Rees and Sally’s paper [RS]. Recall that a reduction of 7 is any
ideal J for which there exists an integer » such that JI" =J"*! [NR]. In
other words, J is a reduction of 7 if and only if I is integrally dependent on
J. An ideal is integrally closed if it is not a reduction of any ideal properly
containing it.

(1.1) DerINITION. The core of an ideal 7, denoted core([/), is the intersec-
tion of all reductions of 1.

In general, the core seems extremely difficult to determine and there are few
computed examples. A priori, it is not clear whether it is zero. However, one
can show that, in general, the core always contains a power of 1. A proof of
this for Buchsbaum rings can be found in [Tr, Prop. 5.1]. )

It is quite natural to study the core, partly due to the theorem of Briangon
and Skoda (see [BS; LS; LT; L4; HH; RS; Sa; AH1; AH2; AHT]). A simple
version of this theorem states that if R is a d-dimensional regular ring and
I is any ideal of R, then the integral closure of I¢ is contained in I. In par-
ticular, the integral closure of I is contained in core([). It is an important
question to understand how the core of 7 relates to I. More generally, we are
interested in approximating general m-primary ideals in local rings (R, m)
by intersections of parameter ideals. We hope our results in dimension 2 will
provide insight into the nature of the core in higher dimensions.

Some of the open questions regarding the core are as follows.

(a) If I is integrally closed, is core(/) also integrally closed?

(b) If the completion R of R is equidimensional, does core(/)R equal
core(/)? More generally, how does the core behave under faithfully
flat maps?
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(c) How does core(I") compare to core(/)?
(d) If I and J are integrally closed ideals and I < J, is core(]) € core(J)?

We will assume throughout that R is a 2-dimensional regular local ring
with maximal ideal m. An ideal I in such a ring equals xJ for some xe R
and some ideal J which is either R or m-primary. Let S be the set of all re-
ductions of J. Since every reduction of 7 is of the form xK for some reduc-
tion K of J,

core(I)= () xK=x () K=x-core(J).
KeS KeS
Therefore, to compute the core of ideals in 2-dimensional regular local rings,
we need only consider m-primary ideals.

We will also assume throughout that the residue field of R is infinite. This
assumption serves two purposes: it allows us to choose good guadratic trans-
formations (see Section 2), and it ensures that we have an abundant set of
reductions of every ideal (see [NR, Thm. 1, p. 153]).

We determine in Section 3 the core of an integrally closed ideal 7 in terms of
ideals of minors of any presentation of 7. We prove that core(f) = I-adj([/),
where adj(/) is the adjoint of 7 as defined by Lipman in [L3]. We prove the
equivalent statement that core([) is §(7) F2(I), where §;([) is the ith Fitting
ideal of I. We also answer several of the questions above. For example, in
regular local rings of dimension 2 with an infinite residue field, we prove that
if J< I are integrally closed ideals then core(J) € core(/). We also prove
(again for 2-dimensional regular local rings) that the core of an integrally
closed ideal is integrally closed.

In Section 4 we discuss the various relationships between the core of
an ideal and the adjoint of an ideal. More specifically, we prove that
adj(I™) = I"'adj(I), core(I") = I*""2core(I), adj(core(l)) = (adj(l))?
and core(core(/)) = I(adj(/))>. Lipman also proved in [L4] that adj(I") =
I"~'adj(I). Lipman’s proof uses duality and a vanishing theorem; we give an
elementary proof. For higher dimensions, Lipman conjectures that adj(/") =
ITadj(I"™") for all n larger than the analytic spread of 1.

Section 2 contains the needed background about 2-dimensional regular
local rings.

2. 2-Dimensional Regular Local Rings

Throughout, (R, m, k) will be a 2-dimensional regular local ring with maxi-
mal ideal m and an infinite residue field k. Two-dimensional regular local
rings have many special properties which we will use heavily. We list these
properties and the needed definitions. For an introductory treatment see
[Hu], and for comprehensive treatments and related results see [Za; ZS,
vol. 2, apx. 5; Ko; L1; L2; L3; Cu; G6; HS; No; Re; Ve].

For any matrix A and any integer n, we will denote the ideal generated
by the n X n minors of A4 by 7,,(A). For any nonzero ideal I, the order of I,
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denoted ord([), is the largest integer n such that 7 < m". Since the associated
graded ring is a polynomial ring, ord is a valuation. The order of a reduc-
tion of 7 is the same as the order of /. The smallest number of elements gen-
erating an ideal 7 will be denoted as u([).

The multiplicity of an m-primary ideal I in an arbitrary Noetherian local
ring (R, m) of dimension d is defined as follows: There exists a polynomial
p(n) of degree d such that, for large n, p(n) = length(R/I"); the multiplic-
ity of I is then defined to be the coefficient of n%d! in p(n).

We now recall some facts about 2-dimensional regular local rings.

(2.1) (Hilbert-Burch) For every m-primary ideal 7 there is a free resolution

0— Rr—1 A, gn KX p R/ 0,

where A is an n X (n —1) matrix such that the maximal minors of A4 generate
I. We will refer to A as a presenting matrix of I. In fact, if I =(xy, ..., X,),
we may assume that the (n—1) X (n—1) minor of A4 obtained after deleting
the ith row equals x;. (Here, n needn’t be the minimal number of generators
of I.)

(2.2) For any xe m\ m? and any height-2 prime ideal P in R[%’-], the local-
ization R[-?—] p is a regular local ring. We call any ring of this form a quadratic
transformation of R.

If S=R[Z], x¢m?, and I is an ideal of R, then IS = x°4!)I for some
ideal I’ in S of height 2. The images of I’ in the quadratic transformations
of R are called the quadratic transforms of I.

If J is a reduction of 7—that is, if there exists an integer n such that JI" =
I"*'—then the same equality still holds after extending ideals to R[Z]. As
ord(/) = ord(J), the same equality still holds for the transforms of J and 1.
This implies that the transform of a reduction of an ideal is a reduction of
the transform of the ideal.

For any matrix A with elements in R, é denotes the matrix obtained by
dividing every element of 4 by x. If I is an ideal of order n—1 and with »
generators, and if A is an n X (n—1) presenting matrix of I, then % is a not
necessarily minimal presenting matrix of the transform I’ of I, as we now
explain. Let I = (x, ..., x,,) with A as in (2.1). Then consider the complex

A (Ll an) .
0— S 1 X, gn XX X /,8—S/I”'—0.

Notice that I,_;(2) = I’ since the (n—1) minor of 4 deleting the ith row is
exactly % Then by the Buchsbaum-Eisenbud criterion for exactness [BE],
é is a (possibly nonminimal) presentation of 7’.

(2.3) Anideal 7 is contracted from R[%] for some x € m\ m? if and only if
ord(/) = u(I)—1 (see [Hu, Prop. 2.3]). Any x chosen such that its leading
form in the associated graded ring gr,,,(R) does not divide the leading term of
the image of some element of 7 of degree ord(/) will suffice (see [Hu, proof
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of Prop. 2.3]). Because the residue field is infinite, we can always choose
such an x for a finite set of ideals at a time. Thus the appropriate quadratic
transformations always exist; in the rest of the paper we ignore the issue of
existence.

For any m-primary ideal 7 of R, the multiplicity of 7 is strictly larger than
the multiplicity of the transform I’ of 7 in any localization of R[Z] if x is
chosen such that 7 is contracted from R[%] (see [Hu, Prop. 3.6; Ko, p. 33]).
It will be implicit throughout that our transformations are chosen carefully.

After a finite number of quadratic transformations, an integrally closed
m-primary ideal transforms to a power of the maximal ideal.

(2.4) We will need to use several more properties of integrally closed ideals.

(a) Let I be integrally closed and m-primary. Then ord(Z) = u(I)—1 (sez
[Hu, Props. 2.3 & 3.1]). Thus every integrally closed m-primary ideal
in R contracts from some R[%] (This is false for an arbitrary m-
primary ideal.)

(b) The product of two integrally closed ideals in R is integrally closed
(see [Za, Part II, 12]).

(c) For any reduction (x,, x,) of an integrally closed m-primary ideal 1,
(x1, x) = I? (see [LT, Cor. 5.4; Hu, Thm. 5.1; HS, Thm. 3.1]).

(d) The quadratic transform of an integrally closed m-primary ideal is
integrally closed, and is either the whole ring or has height 2 [Hu].

(2.5) More generally, let R be a 2-dimensional regular local ring and let
R € S, where S is a 2-dimensional regular local ring between R and its field of
fractions. If I is an ideal of R, we define IS := (gcd(IS))~'IS, the S-transform
of I. This will be a height-2 ideal of S (or possibly S itself). The point basis
of I is the family of integers {ordg(I5)}gcs, where S runs over all the 2-
dimensional regular local rings containing R and contained in its fraction
field. There are only finitely many S for which ordg(Z/5) is nonzero; these §
are called the base points of I (see [L3, p. 225]). Two m-primary ideals of
R have the same point basis if and only if their integral closures are equal
[L2, p. 209, (1.10)]. It will follow from our theorems that the core of an
integrally closed ideal 7 is exactly the integrally closed ideal whose point
basis is {max{0, 2 ordg(/5) —1}}gcs-

3. The Core

We analyze a free resolution of an m-primary ideal I = (x,..., X,) more
carefully:

Xn

F:0 — RA-! 2, gn o) o | p/r—s0, )

where A is an n X (n—1) matrix. The columns of A4 generate all the relations
on xy, ..., X,. Assume that (x;, x,) is a reduction of 7 and let B be the sub-
matrix of A4 consisting of the last n —2 rows.
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Recall that for ideals 7 and J in a ring R, 7:J denotes the ideal {re R|
rJ € I'l. With this we state a result from linkage theory.

(3.1) LEMMA. With notation as above, (x;, x,):1=1,_,(B).

Proof. Let [K be the Koszul complex

X2

K:0 — R (-5 )> R ¥, R s R/(xy, %) — O.

There is an obvious complex homomorphism A: K — [F with A, being the iden-
tity on R and A, taking (ry, r,) to (ry, 7, 0, ..., 0). Let M be the mapping cone
of the dual of A:IK— . It is easy to see that M is acyclic (see [PS, Prop.
2.6}), that Hy(M) = R/((xy, x,) : I'), and that the presenting matrix of Hy(M)
is B (the transpose of B). In particular, B' is injective and by the Hilbert-
Burch theorem, (x, x3): I=1,_,(B). O

(3.2) LEMMA. Let I be a contracted ideal. Then
p(l, —2(B)) —1=ord(l,_»(B)) =n—2;

that is, I,_,(B) is contracted from a quadratic transformation.

Proof. The elementary column operations on 4 do not change 7;(A) or I;(B)
for any integer i. The same is true for the elementary row operations on
rows of A which do not modify the rows of B by subtracting multiples of
the first two rows of A.

Suppose that some entry a;;in A is a unit. This means that x; is contained
in the ideal (xy, ..., X;_1, Xj+1, ---» Xp). Thus, as x;, x, are part of a minimal
generating set of /, any a;; or a,; being a unit would imply that, for some
[ = 3, a;;is also a unit. Thus, if some g;; is a unit, we may assume that i = 3.
Then by elementary row and column operations as prescribed above, and by
possibly changing the element x;, we may without loss of generality assume
that all the other entries of A in the ith row or in the jth column are zero.
Then the matrix A’ obtained from A by deleting the ith row and the jth col-
umn is still a presenting matrix of 7, but we are leaving out the redundant
ith generator of 1. Note that for all integers i, I;(A) =1;_1(A’) and I;(B) =
I;_1(B’"), where B’ is the submatrix of A’ consisting of all but the first two
rOWS.

Thus we may assume that n = u(7I). Since all the entries of A lie in m,
ord(Z,_,(B)) = n—2. If ord(f,,_,(B)) = n—1, then I,_,(B) € m" ™. By ex-
panding x, (resp. x,) (as determinants) along the second (resp. first) row, we
see that (x, x,) € ml,_,(B) € m". Thus (now we use that 7 is contracted)

n—1=u(ly—1=ord(I) =ord((x;, x,)) = n,

which is a contradiction. So ord(/,,_,(B)) = n—2.
Furthermore, B" presents I,,_,(B) and every entry of B is in the maximal
ideal, so by the Hilbert-Burch theorem u(Z,_,(B)) =n—1. (|
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Thus, if x is such that I,_,(B) is contracted from R[Z], then this lemma
says that

B

I, _»(B) = In—z(B)R[ﬁ] NR=x""2 -I;:-z(—)R[ﬂ
X X

]HR. ’
X

Furthermore, we have the following proposition.

(3.3) ProposITION. Let I be an integrally closed m-primary ideal and let A
and B be as in (1). Then the m-primary ideal I,_,(B) equals I,_,(A) and is
integrally closed.

Proof. By the elementary row and column operations we may assume with-
out loss of generality that n = u([I') (see the discussion in the proof of Lemma
3.2). We know that I, _,(B) is contracted from some R[Z]. AsZ presents the
integrally closed ideal

I . m . X1 X2
yord(l) n Rl_x—] and since < xord(I)* yrord(I)

is a reduction of I, by induction on the multiplicity of 7 (cf. (2.3)),

nes()el], - s (E){2],

is integrally closed for any height-2 prime ideal P in R[%] Now note that the
order of 1, _,(A) equals ord(7,_,(B)) = n—2. Hence In_z(é) (resp. I,,_z(g))
is the transform of the m-primary ideal 7,_,(A) (resp. I,,_»(B)). It follows
that I,_,(2) and I,,_,(£) have height at least 2 and so the above means that
I,_»(4) equals I, _,(£) and that this ideal is integrally closed in R[%]. Thus

n

|3

In_z(A)gx""ZIn_z(%>R NR

= xn_zln_z(E)R

X
=1,_,(B)
c In—Z(A)s
and equality holds throughout. Moreover, these containments show that

I,_,(A) is contracted from the integrally closed ideal x"~2I,_,(2)R[Z],
hence I,,_,(A) is integrally closed. O

NR

2|3

We record here the following corollary.

(3.4) CoroLLARY. Let I be an integrally closed m-primary ideal and let A
and B be as in (1). Then I;(A) equals I;(B) and is integrally closed for all
Jj=0,...,n=2.

Proof. If n =2 then there is nothing to show, so assume that n > 2. By Prop-
osition 3.3, I,_,(B) = I,_,(A) is integrally closed. As B" presents I,,_,(B),
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induction on n shows that I;(B) = Ij(B“) is integrally closed for all j =0, ...,
n— 3. By induction on multiplicity of ideals (cf. (2.3)),

I(A) xj-g(%)R[ﬁ]ﬂR

X
ooz
= I;(B)
S I;(A). O

Proposition 3.3, together with Lemma 3.1, gives the next proposition.

(3.5) ProposITION. For an m-primary integrally closed ideal I and any re-
duction (xy, x3) of I, (x1, x3) : I =I,,_»(A) for any n X (n—1) presenting ma-
trix A of I. 0l

There are other ideals for which the results above also hold. For example,
let I be (¥2, x4, yx?) in the power series ring in two variables x and y over a
field. I has order 2 and is generated by three elements. It is easy to see that
(% x*) is a reduction of I. A presenting matrix of I is

x3 0
A= 0 -y
-y X

The matrix B is just the last row of A. Note that I,(A) = (x, y) = [;(B) but
that I is not integrally closed, as x2y is in the integral closure but not in /.

We now prove several corollaries for integrally closed ideals. For some
statements we need only the weaker hypothesis that for a finite number of
reductions (x;, x,) of I, the corresponding matrices B satisfy I,_,(B) =
I,_,(A). However, in order to avoid messy hypotheses, we state the results
only for integrally closed ideals.

(3.6) CoroLLARY. For an integrally closed ideal I,
I'In—Z(B) = (X1, XZ)In—Z(B) = (xls Xz)In—z(A)

Sor any reduction (x,, x,) of I, where A and B are defined as in (1). In par-
ticular, I,_,(A)I is contained in core([).

Proof. We have to show the first equality and in particular that the left-hand
side is contained in the right-hand side. Note that 7-1, _,(B) = I-((x;, X3) : I)
is contained in (x,, x,). In fact, when the matrices 4 and B are replaced by
generic matrices A* and B*, I'*-1,_»,(B*) € (xy, x3)1,_,(A*) where I'* is the
ideal of (n—1) minors and x{, x5 are (n—1)-size minors, as in (1). (This can
be seen easily by using (x§, ..., x;)A* = 0 and summing the rows of this equa-
tion times suitable (n — 3)-size minors of B*, or alternatively by using the
straightening relations on the minors.) Thus 7-1,,_,(B) S (x;, X3) - I,,_2(A).
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But in our case this equals the right-hand side. The last claim follows as any
reduction contains a reduction generated by two elements (see [NR, Thm. 1,
p. 153]). ]

(3.7) CoroLLARY. Let I be integrally closed and let (x,, x;) be a reduction
of I. Then (x{, x3) : I* = I, _5(B)(x1, X»).

Proof. We use Corollary 3.6. Because
L _2(B)(xy, X)I* = I, _»(B)(x1, x3)° € (x{, x3),

the right-hand side is contained in the left-hand side. Now let a € (x£, x3)
I In particular, ax; x, € (xZ, x3), so a € (x;, x,). Write @ = a,x,+ a, x,. Then
ax,I < (x?, x2) implies that a;x;x,1 S (x£, x3), s0 a; € (xE, x3): x,x,1 S
(xy, X2) : I =1I,_»(B). Similarly, a,eI,_,(B). Hence a is contained in the
ideal on the right. O

In what follows, we prove that 7,,_,(A)I is the core of 7 when 7 is integrally
closed.

(3.8) LEMMA. Let I be an integrally closed m-primary ideal in a 2-dimen-
sional regular local ring (R, m) with infinite residue field. Let x, be part of a
minimal reduction of I; that is, there exists x, (actually, infinitely many by
[NR, Thm. 1, p. 153]) such that (x,, x,) is a reduction of I. Then

M (X1, X2) = (x1) + 1, _2(A)]

X2
for any nx(n—1) presenting matrix A of I, where x, varies over all ele-
ments such that (x,, x,) is a reduction of I.

Proof. The right-hand side is contained in the left-hand side, by Corollary
3.6. It is easy to see that, in general, if J; € J, are m-primary ideals then to
prove the equality J, = J, it is necessary and sufficient to prove the equality
Jy=J,N(J;: m). Thus, to prove the lemma let o be arbitrary in the inter-
section of M, (xy, X3) and ((x;) + 1, _»(A)]) : m. We will show that « is con-
tained in (x;) + 1, _,(A) L.

Fix one x, and write o = rx; + sx,. Note that, for any xe m, xsx; =
xa—xrxy€(xy)+1,_»(A)I=(x;)+1,_,(A) x,. The last equality follows from
Corollary 3.6. Because x;, x, form a regular sequence, xs€ I,,_,(A)+(x;) =
I,_>(A). Since this holds for all xe m, se I,,_,(A): m. We will show that s
is contained in 7, _,(A), which will finish the proof of Lemma 3.8.

Suppose that s is not in ,,_,(A) = (X, x3) : I. Then there exists an ele-
ment x5 of I such that (x;, x3) is a minimal reduction of I and such that s¢
(x1, X3) : x3. This also follows by [NR, Thm. 1, p. 153]: The set of all ele-
ments x; in I such that (x;, x3) is a reduction of I generates all of I and is
Zariski-open in I/mI; the condition s & (x;, X,) : X3 means we must also avoid
the proper subideal ((x;, x,):s)N 7 in 1. It also follows by [NR] that there
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exist infinitely many units # such that (x;, x, + u#x;) is a reduction of /. For
each such u write « = r, x;+ 5, (X, + ux;).
For any xe m,

XS (X +ux3) =xa—xr,x1€ 1, _>(A)+(x;) = I,_,(A)(x3+ ux3)+(x3).

As x;, x,+ux; is a regular sequence, xs, is contained in 7,,_,(A) for all u.
Since this holds for all x e m and all allowable u, the s, generate a R/m vec-
tor space in R/I,_,(A). Let u,, ..., u; be such that the images of s, , ..., s,
form a basis of this vector space. Now choose a u different from all the u;;
we can do this because we have infinitely many units at our disposal. Then
there exist /;€ R such that us, — X lju;s, € I, _,(A).

First suppose that s, — 2 /;s, is contained in I, _5(A). Then in the vector
space (1,_,(A): tm)/I, 2(A) (the images there marked with an overbar )
we get s, = S lu;s, iSy, and s, = X I;s, which is only possible if all the [; are
zero and hence only if s 5, =0. But then o =r w X1+ 8, (X2 4+ ux;) is contained
in (x1) +1,_5(A)1, which proves the lemma in the case s, — X /;s,, € I,_,(A).

Next suppose that s, — > /;s, & I,_»>(A). Let / = X [;—1. Then

Irx;+1Isx, = lo

=> la—a

= 211y, X1+ 5, (X2 + Ui X3)) — (1, X+ 5, (X2 + ux3))

= 2 iy, x1—ry X + 2018y, X — 5, X2+ (X Liui s, — S, 1) x3.
Since X lu;s, —s,u is in I,,_,(A), we may write

(X liujs, —s,u)x; = tjx;+ 1, x, for some t;el,_»(A).
Thus
Irxy+Isx, = 2 i, Xy — 1, X1+ 2018, X2 — S, X2+ Ly + 15X,

It follows that

xi(Ir=210ir, +r,—t) =x(X i, —5,~Is+1)

and hence that X /;s, —s,—Is+ ¢, € (x;). This forces / to be a unit, for other-
wise Is is contained in 7,,_,(A) and hence X I;s, —s, € I,,_,(A), contradicting
the hypotheses.

Thus / is a unit and the above says that

S€ (X1, 83) + ({8, 54, }) € I _2(A) + ({54, 50, })-
As sy, s, € (X1, X3) : X3, this proves that s € (X, x3) : X3, which contradicts the
choice of x3 and finishes the proof of the lemma. O

A corollary is the following main result of this paper.

(3.9) THEOREM. If I is integrally closed in a regular local ring of dimen-
sion 2 with infinite residue field, and if A is an n X (n—1) presenting matrix
of I, then core(I) =1,_,(A)l.
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Proof. By Corollary 3.6, we need only prove that the left-hand side is con-
tained in the right-hand side, so let o be an element of core(/). Then, by
Lemma 3.8, for any reduction (x;, x,) of 7,

a € ((x1) + 1, _,(AY) N ((x3) + 1, _,(A)]).

SO0 a = rx;+a; = sx,+«a, for some «; in I,,_,(A)I. Thus, by Corollary 3.6,
SXy—rX)=o;—ay =l x;+1t,x, for some t;€l,_»(A). Hence (s—1,)x,=
—(r+1t)x;. It follows that s e (#;) +(x;) € I,,_,(A). Similarly, re I,_,(A).

O
Thus, once we find a presenting matrix of 7, it is easy to calculate the core
of I.

Now we mention a construction from [RS] that is related to the core.
Let I =(ay, ..., a,) be an m-primary ideal. If d is the dimension of R, let ¥};
(i=1,...,d, j=1,...,n) beindeterminates over R. Then define the ring S to
be the localization at the extension of m of the polynomial ring in all the Y;;
over R. With this, Rees and Sally define X(1) = (X7~ 4;Y;;|i=1,...,d)SNR
and show that X(7) is contained in the core of 1. By using the theorem above
and some technical lemmas from [RS] one can obtain the reverse inclusion
also. Thus another characterization of the core is:

n
COI'C(I) = ( E anull"-'—" 1, cvey d)R[Yll, Ifl?.s ceey de]mRD/]nR.
Jj=1

However, note that Rees-Sally’s formulation of the core does not make the
actual computations of the core any easier, as one must introduce many new
variables.

Another consequence of Lemma 3.8 is that when a is part of a minimal
reduction of 7 then the core of 7/(a) equals the image of core(/) in R/(a).
Furthermore, we have the following proposition.

(3.10) ProrositioN. If (a, b) is a reduction of I, then
b1, (AT =1-1,_,(A)T,

where T = R/(a). If C is any other ideal in R that satisfies bCT = ICT for
all such b, then C is contained in the integral closure of I,,_,(A)T.

Proof. The first statement follows from (2.4).

For the rest, note that IC < (\,(a, b) = (a) + II,_,(A). Hence, modulo (a),
ICT < II,_,(A)T. As IT contains a nonzero divisor, this inclusion implies
(using the determinant trick) that CT is contained in the integral closure of
I, _»(A)T. O

We combine this with Lemma 3.2 from [RS] in the case when a is square-
free. Let C be the ideal of all elements of R which multiply the integral
closure of R/(a) into R/(a) (i.e., the conductor). Lemma 3.2 in [RS] says
that C has the property as in the proposition. Thus C is contained in the
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integral closure of the image in R/(a) of I,_,(A) for any m-primary inte-
grally closed ideal 7 in R for which «a is part of a minimal reduction. In par-
ticular, C is contained in m°4@—1,

With the main theorem we are also able to calculate the multiplicity of an
integrally closed ideal 7 using elementary means. Recall the definition of mul-
tiplicity of an m-primary ideal in a Noetherian local ring of dimension d
given in Section 2. In a Cohen-Macaulay ring (which regular local rings cer-
tainly are) the multiplicity of I also equals the length of R/(xy, ..., xz), where
(x1, ..., X4) is a reduction of I. However, the calculation of multiplicities
following either of these two definitions can be difficult. There is a simple
method for calculating the multiplicity of integrally closed ideals in a 2-
dimensional regular local ring:

multiplicity of (I) = length(R/I?)—2length(R/I).

We given another simple method as follows.

(3.11) ProvrositioN. If I is integrally closed and m-primary in a 2-dimen-
sional regular local ring (R, m) with infinite residue field, then

multiplicity of (/') = length(R/core(/)) —2length(R/I,_,(A)).

Proof. Let (x;, x;) be a reduction of I. Then the multiplicity of 7 equals the
length of R/(x;, x;). We use that

length(R/(x, x,)) = length(R/(x, x3) I, _>(A))
—length((xy, x2)/(xy, x2)I,,—2(A)).

Now, (x;, xX3)/(x1, X3)I,_»(A) is isomorphicto R/I,, _,(AY®R/I,_,(A), and
the product (x;, x3)1,,_,(A) equals core(]). O

Theorem 3.9 also allows us to answer some of our questions about the core.
(3.12) CoroLLARY. The coreof an integrally closed ideal is integrally closed.

Proof. When I isintegrally closed, I,,_,(A) is also integrally closed by Prop-
osition 3.3. As the product of two integrally closed ideals is integrally closed
(see (2.4)(b)), the result follows. O

(3.13) CoroLLARY. If R and S are 2-dimensional regular local rings with
infinite residue fields and S is a faithfully flat R-algebra, then core(l)S =
core(IS) whenever both I and IS are integrally closed. In particular, this
holds if S is the completion of R.

In the next section we shall answer more questions, but we first want to in-
troduce a simpler notation. So far we have written about 7,_,(A) for any
ideal 7 and any n X (n—1) presenting matrix A of I. In [L4, Prop. 3.3] it
is proved that the adjoint of an integrally closed ideal 7 in R is equal to
(x1, X) : I for any minimal reduction x,, x, of I (see [L4] for the definition
of the adjoint). By our results, it follows that the adjoint of 7 is exactly
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I,_>(A). Thus, from now on we will denote 1,,_,(A) as adj([), the adjoint
of 1. We refer the reader to [L3; L4] for the rich theory of adjoints devel-
oped by Lipman.

We may therefore rephrase Theorem 3.9 in terms of adjoint ideals.

(3.14) THEOREM. Let (R, m) be a 2-dimensional regular local ring with
infinite residue field. Let I be an integrally closed m-primary ideal. Then
core(l) = I-adj(J) = adj(1?).

Proof. The first equality is simply a change of notation. The second equal-
ity follows from the fact that (x£, x3) is a reduction of 72 and from Corol-
lary 3.7. O

The definition of the adjoint in {L4] makes it clear that adj(J) < adj([) if J
and 7 are integrally closed and J is contained in /. Thus we have our next
proposition.

(3.15) ProposiTION. Let R be a 2-dimensional regular local ring with infi-
nite residue field. If J and I are integrally closed ideals and J is contained in
I, then core(J) < core(]).

This result is interesting insofar as the inclusions on cores do not hold in
general. For example, let I be an integrally closed m-primary ideal of order
greater than 1 and let J = (a, b) be a minimal reduction of 7. Then core(J) =J
and core(/) € m° D ~1J which does not contain an ideal of order equal to
ord(7).

It is worthwhile to rephrase some of our results in terms of the Fitting
ideals of 1. Recall that if M is a finitely presented module with an n X m pre-
senting matrix 4 (so that under our conventions, M is the cokernel of the
map from R to R" determined by A), then the ith Fitting ideal of M, de-
noted §;(M), is the ideal generated by the (n —i)-size minors of A. By con-
vention, the ideal generated by the k-size minors of A is equal to R if kK <0,
and is 0 for k > min{m, n}. The Fitting ideals are independent of the pre-
senting matrix. Our results may be summarized as follows.

(3.16) ProrosiTION. Let (R, m) be a 2-dimensional regular local ring with
infinite residue field. Let I be an integrally closed m-primary ideal. Then:

(@) §(1) =1, F(I) =adj(l), F1(I)F2(I) = core(]);
(b) Fj1(1) =F;(adj()) for j =1; and
(©) Fj+1(1)=adj(F;(1)) forj=1.

Proof. Part (a) is immediate from the definition of the Fitting ideals and the
results above; only (b) and (c) require comment. By Corollary 3.4, if Aisa
presenting matrix of I and B is defined as in (1), we obtain that 7;(A4) = I;(B)
for all j < n—2, where Ais an n X (n—1) matrix. Moreover, Lemma 3.1 proves
that B is a presenting matrix for adj(/). Hence §;(adj(/)) = I,_)—j(B) =
L,_j+1y(A) = §F;+1(1), proving (b). Part (c) follows by repeated use of (b);
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it follows easily from (b) that §;(/) = adj(adj(...(7))...), where we take the
adjoint j—1 times. (By Corollary 3.4, all of these Fitting ideals are integrally
closed.) Taking adjoints once more on each side yields that adj(§;(/)) =
adj(adj(...(]))...), where now the adj is taken j times, which again by (b) is
equal to §;41(1). O

4. The Arithmetic of Cores and Adjoints

Throughout this section, R is a 2-dimensional regular local ring with maxi-
mal ideal m and with an infinite residue field.

(4.1) LEMMA. Let (X, X;) be an m-primary ideal which is a reduction of
the integrally closed ideal I. Then (x;, x,)": I = (xy, x,)" "' adj(]).

Proof. Note that (x, x,)" " 'adj(J)I = (x}, x,)"adj(I) by Corollary 3.6, so
the right-hand side is always contained in the left-hand side.

Proposition 3.5 gives the lemma for n = 1. Now let n > 1 and assume
that the result is true for » —1. Then any « € (x;, x,)": I is contained in
(x1, X2)" " %adj(J). Write a = I r;x{x?~2~" for some r; € adj(). By as-
sumption, ax, = X s;x{x5 " for some s;€ R. Hence ax, =S rixixy 17 =
> s; x{x5 % says that r; e (xy, X,) for all i. Thus we may write o = 3 ¢; x{x3 ~1~*
for some ¢;€ R. Now let ¢ be any element of I. Then ac = 3 s;x{x¥ " for
some s;€ R. As x;,x, form a regular sequence, ac = t;cxixy 17 =
> s;x{x5 " says that t;c € (x;, X,). Since this holds for all c € 1, all the ¢ lie in
adj(/) and hence « lies in (x;, x,)" ~adj([I). O

The next results lead toward the determination of the core of the core and
the core of higher powers of the ideals.

(4.2) ProposiTioN. If I is integrally closed, then adj(I") = I""'adj(I).

Proof. Let (x;, x5) be a reduction of I. Then (x{, x7) is a reduction of the
integrally closed ideal I”, so adj(/") = (x{, x3') : I" by Proposition 3.5. By
(2.4), I" = (xy, x,)"~I; thus adj(I"™) = (x{, x¥) : (x;, X,)" "I, which equals
(Xl x3) 1 (x1, X2)" Y : I = (%, x,)" : 1. Hence, by Lemma 4.1, adj(/") =
(x1, X2)"~'adj(J), and we are done by Corollary 3.6. O

(4.3) REMARKS. Proposition 4.2 gives a proof in dimension 2 of a conjec-
ture of Lipman [L4, 1.6]. The conjecture states that if R is a regular local
ring of any dimension and 7 is an ideal of R, then adj(/”) = Iadj(J"™!) if
n = [/, where [ is the analytic spread of /. Lipman proves this in the 2-dimen-
sional case [L4, 2.3]; however, his proof uses some machinery including
duality and a vanishing theorem. Proposition 4.2 furnishes an elementary
proof.

(4.4) ProposiTioN. If I is integrally closed, then core(I") = I*"'adj(/) =
I*"=2core(]).
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Proof. We know that core(/”) = I"adj(I"), and we finish by using Prop-
osition 4.2. O

Now we want to understand core(core(/)) and’higher iterates, too. We first
need a lemma.

(4.5) LEMMA. For an integrally closed ideal I, adj(core(I)) = (adj([))>

Proof. Let (x1, x,) be a reduction of 1. Then core(f) = (x;, x,) adj(7). If
n=u(l), let A be a nx(n—1) presenting matrix of 7 whose first two rows
correspond to x; and Xx,, respectively. Let the ijth entry be g;;, let B be
the submatrix composed of the last n—2 rows, and let R; be the ith row.
Let ¢; be the signed n—2 minor of B after deleting the ith column. Thus
adj(l) =(ty, ..., t,_1), X1 = 2 ay;t;, and X, = —X; ay;t;. Since p(core(l)) =
ord(core(/))+1 =ord(/)+ord(adj(/))+1=2n-—2, it is not hard to show
that the ¢;x; and the #;x, minimally generate core(/). We want to find the
relations on #,x,, ..., t,—1 X1, {1 X2, ..., [,—1X>. As B is a presenting matrix of
ti, ..., t,_; (see the proof of 3.1), the columns of

c-[B"] 0 |RE
0 |B" | Rf

are some of the relations on the given generators of core(/). We now prove
that they generate all the relations.

Let X r;it;x;+ X s;t;x, = 0. Then there exists 8 € R such that X r;#; = 8x;, and
ES,'I‘,' = —Bxl. As Xy = - ait;, the (n— 1)-tuple ("1 +Ball’ ceey 'p—1 +6a1,,,_1)
is a relation on the ¢;. Similarly, (s;+8ay, ..., s, +8a,, ,—1) is a relation on
the ¢;. Thus our relation (ry, ..., 7,—1, Sy, ---» S, —1) lies in the span of the col-
umn space of C. This proves that C is a presenting matrix of core(/).

By Proposition 3.5, adj(core()) = I, _4(C). Thus adj(core(J)) = (adj(I))>

O
(4.6) REMARK. Proposition 4.4 follows quite easily from the work of Lip-
man [L4, 3.1.2], where he proves that if 7 is integrally closed then adj(7) is
the unique integrally closed ideal with point basis {max{0, ordg(I5) —1}}gcs.
(See (2.5) for remarks concerning the point basis.) It is worth noting that
this characterization for the adjoint of I also follows easily from our work.
One uses that adj([/) is the second Fitting ideal of 7, and the order of this
Fitting ideal is 1 less than the order of 7 by Lemma 3.2. These properties are
preserved under quadratic transformations. Similarly, it also follows that
the adjoint commutes with transforms, which is Corollary 3.1.3 in [L4].
(Here we use the factorization theorem of Zariski, which states that any 2-
dimensional regular local ring birationally dominating R can be reached by
a finite number of quadratic transformations. See [Sa] for a generalization.)

Now we introduce some notation: core!(/) = core(Z) and, for n > 1,
core™(I) = core” " Y(core(])).

(4.7) PRrOPOSITION. For an integrally closed ideal I, core”(I) = I(adj(I))*"~\.

In particular, core(core(I)) = I(adj(I))>.
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Proof. If n =1, this is just Theorem 3.9. Now let n > 1 and assume that the
proposition holds for n—1. Then

core™(I) = core” ~(core(]))
= core(Z)(adj(core(Z)))?>""'~! (by induction)
= Iadj(I)((adj(7))»?*"'~!  (by Lemma 4.5)
= I(adj(I))*"~ L O
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