The PL Fibrators among Aspherical
Geometric 3-Manifolds

ROBERT J. DAVERMAN

Results of [D6] indicate that manifolds in a surprisingly extensive collection
act as PL fibrators. This paper adds evidence for a claim that most mani-
folds, in a psychological rather than a strictly mathematical sense, have this
desirable attribute. Among closed, orientable 2-manifolds the exceptions
are known to consist only of the 2-sphere and the torus. Among closed,
orientable 3-manifolds, those having either hyperbolic, Sol, or SL,(R) geo-
metric structure are all PL fibrators, as are those with infinite first homology
which are connected sums of nonsimply connected manifolds, provided the
fundamental groups are residually finite. A long advance in an effort to clas-
sify 3-manifolds with this feature, the main result here (Theorem 3.4) shows
that an aspherical, virtually geometric 3-manifold is a PL fibrator if it is one
in codimension 2. Similar in tone and next in importance, Theorem 2.10
shows that any closed manifold with (k—1)-connected compact universal
cover is a codimension-k£ PL fibrator if it is one in codimension 2.

To explain what all this means, we begin by setting forth the notation and
fundamental terminology to be employed throughout: M is a connected, ori-
entable, PL (n+ k)-manifold, B is a polyhedron, and p: M — B is a PL map
such that each p~!b has the homotopy type of a closed, connected #-manifold.
When N is a fixed orientable n-manifold, such a (PL) map p: M — B is said
to be N-like if each p~'b collapses to an n-complex homotopy equivalent to
N. (This PL tameness feature imposes significant homotopy-theoretic rela-
tionships, revealed in [D6, Lemma 2.4], between N and preimages of links in
B.) One calls N a codimension-k PL fibrator if, for every orientable (n + k)-
manifold M and N-like PL map p: M — B, p is an approximate fibration.
Finally, if N has this property for all £ > 0, one simply calls N a PL fibrator.

Remarkably, at this stage of development only two types of manifolds
are known not to be PL fibrators: those that already fail in codimension 2,
and those that have a sphere as Cartesian factor. The codimension-2 situa-
tion, reviewed extensively in the introduction to [D5], is fairly well under-
stood and is not treated here.

Earlier work showing certain manifolds to be PL fibrators typically require
the fundamental groups to have no nontrivial, Abelian normal subgroups.
That accounts for the richness of information available about connected

Received November 8, 1993.
Michigan Math. J. 41 (1994).

571



572 ROBERT J. DAVERMAN

sums (to which [D6] readily applies), a richness most evident in dimension 3,
where an object expressed as a connected sum of at least two nonsimply con-
nected, irreducible 3-manifolds is a PL fibrator if its fundamental group is
residually finite and at least one of the factors in its (maximal) free product
decomposition is infinite. However, while investigating aspherical 3-manifolds
one frequently encounters fundamental groups that do contain Abelian nor-
mal subgroups, and the results of [D6] shed no light. This paper includes
some techniques for circumventing the prohibition against these subgroups.

Generally, in the study of proper maps defined on manifolds such that
all point preimages are closed manifolds, a central theme is to understand
relationships among domain, image, and fiber(s). A satisfactory solution oc-
curs when p: M — B is an approximate fibration, for then, just as with Hure-
wicz fibrations, there is a homotopy exact sequence developed by Coram-
Duvall [CD1],

cor = Wy (B) = m(pTb) - mi(M) - mi(B) > -,

providing theoretically computable information about any one of these three
objects when corresponding data about the other two are known. In order
to exploit this easily, it becomes advantageous to develop natural condi-
tions under which maps are automatically approximate fibrations. For any
PL approximate fibration defined on a connected domain, the various point
preimages have the same homotopy type. The natural condition treated here
is the identification of manifolds N sustaining a simple converse—namely,
every N-like PL map p: M — B is an approximate fibration—in which the
hypothesis demands only that all point preimages are homotopy equivalent,
in the aforementioned tame PL sense, to V.

It would have been reasonable to have defined “PL fibrator” in one of
several alternate ways, each depending crucially on the fibers allowed with
N-like maps p: M — B. The most natural approaches, it seems, would re-
quire each p~'b to be either (1) homeomorphic to N or (2) homotopy equiv-
alent to N. The somewhat artificial combination of the two chosen here de-
serves explanation. Although our preference is for (1), we hope eventually
to use the PL setting for gaining insight about what occurs with the non-PL
version—namely, for proper, continuous functions M — B having copies of N
as point preimages. In that broader category S” fails to be a fibrator in codi-
mension #+ 1, the minimal possibility, shown by amap f: S" X R"+! » R"+!
with §” x {0} and {z} X (r-S") (where z€ §” and r > 0) as its point preimages.
Apparently f cannot be realized by a PL map, not if point preimages are
genuine n-spheres, yet it can be with point preimages that collapse to copies
of S" [D4, Example 2.1]. This harmony of the latter class of maps with a
foundational example accounts for the current definition.

We conclude these introductory remarks with a brief description of meth-
odology. With an arbitrary PL map p: M — B, significant benefits accrue
upon investigating collapses R:S’— p~'v, where v denotes a vertex of B
and S’ the preimage of a star of v relative to B; p is an approximate fibration
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if R restricts to homotopy equivalences p~!c— p~!v for arbitrary points ¢
in the corresponding link. When p~!c and p~'v are homotopically equiva-
lent #n-manifolds, this is often confirmed by verifying that R | p~!c induces
H,- and = -isomorphisms. (A certain hopfian property, imposed on fibers
and defined in the next section, postulates that such isomorphisms ensure
R: p~lc - p~'v is a homotopy equivalence.) The usual strategy is to assume
that p restricts to approximate fibrations on L' = p~!(L), where L represents
the link of an arbitrary vertex v € B, to relate homology and homotopy data
of fibers in L’ with that of L’itself, and finally to compare the latter with the
same data concerning S’, for obviously the data of S’ is isomorphic to that
of p~!v. The intricate step involves discerning relationships between L’ and
fibers in L’; see [D6] for a discussion of tools for this purpose.

1. Definitions

A manifold is understood to be connected, metric and boundaryless. When
boundary occurs, the object will be called a manifold with boundary. Keep
in mind the overriding assumption that all manifolds denoted M or N are
orientable.

A proper map p: M — B between locally compact ANRs is called an ap-
proximate fibration if it has the following approximate homotopy lifting
property: Given an open cover  of B, an arbitrary space X, and two maps f:
X —- M and F: X XI— Bsuchthat pf = Fy, thereexistsamap F': XX I - M
such that Fg = f and pF’is Q-close to F. The latter means: to each z X X X[
there corresponds U, € © such that {F(z), pF’'(z)} C U,.

A group I' is hopfian if every epimorphism ¥:I' - I' is an automorphism;
it is cohopfian if every monomorphism &:I' -» I' is an automorphism. Two
related concepts useful for sorting out fibrator properties are: I' is normally
cohopfian if every monomorphism ®: I' - I' with normal image is an auto-
morphism, and I' is hyperhopfian if every homomorphism ¢:I' - T' with
¥(I') normal and I'/¢/(I") cyclic is an automorphism.

The (absolute) degree of amap f: N— N, where N is a closed, connected,
orientable n-manifold, is the nonnegative integer d such that the induced
endomorphism of H,(N; Z) = Z amounts to multiplication by d, up to sign.
A closed manifold N is hopfian if it is orientable and every degree-1 map
N — N which induces a n;-automorphism is a homotopy equivalence. The
term aids in efficiently identifying approximate fibrations.

To streamline the applications envisioned, we write that a PL map p:
M — B has Property R= if, for each b € B, a retraction R: U — p~'b defined
on some open set U D p~'b induces -isomorphisms (R| )y: 7 (p~'b") —
w( p~'b) for all b’e B sufficiently close to b. If this property holds for one
retraction R, then it holds for any retraction U’— p~'b defined on another
open set U’ D p~'b.

Let f: X—Y be a closed map and m€{0,1, 2, ...}. The symbol JC”[ f]
denotes the mth cohomology sheaf of f with integral coefficients.



574 ROBERT J. DAVERMAN

A homotopy (homology) n-sphere is understood to be an n-manifold hav-
ing the homotopy (homology) type of the n-sphere, S”.

A 3-manifold is virtually geometric if it is finitely covered by a geometric
one, meaning that the covering space is a connected sum of 3-manifolds
which are either Haken or have some geometric structure. A 3-manifold N is
irreducible if every PL 2-sphere in N bounds a 3-cell there, and N is Haken
if it is irreducible and contains an incompressible (closed) surface. See [He]
for a definition of “incompressible” and [S1] for more information about
geometric structures. Finally, a 3-manifold is virtually Haken if it is finitely
covered by a Haken 3-manifold.

2. Highly Connected Manifolds as PL Fibrators

We begin by spelling out an elementary connection between normally co-
hopfian groups and regular coverings.

PROPOSITION 2.1.  An aspherical, closed manifold N regularly covers itself,
up to homotopy, if and only if =;(N) fails to be normally cohopfian.

The proof is routine, for if ®: 7;{(N) — 7(N) is a monomorphism with nor-
mal image then the regular covering space of N corresponding to ®(m;(N))
is homotopy equivalent to N.

LemMA 2.2. If X isa CW-complex such that w{(X) =0 for1 <i<kandif
the map f: X — X induces an isomorphism w(X)— w(X), then f also in-
duces isomorphisms

fet H(X) > H(X) and f*:H'(X)->H(X) (i<k).

Proof. Build an Eilenberg-MacLane space K = K(m(X), 1) D X by attach-
ing cells of dimension at least £+ 2 to X. There is no obstruction to extend-
ing f: X— X to a map F: K— K. Dimension restrictions pertaining to the
attached cells cause the inclusion X — K to induce homotopy and homology
isomorphisms for i < k. Since then F, like f, induces a fundamental group
isomorphism, it is a homotopy equivalence; moreover, the consequence that
F,: H(K)— H;(K) is an isomorphism shows f,: H;(X)— H;(X) is one as
well, provided i < k. The identical argument works for cohomology. O

PROPOSITION 2.3. Suppose N" is a hopfian n-manifold and m, k are in-
tegers, 1 <m < k, such that =;(N") =0 for 1<i<m and H(N") =0 for
m < i < k; suppose further that p: M"+** - B is an N"-like PL map. Then p
is an approximate fibration if and only if p has Property R=.

Proof. If R: p~'c— p~'b induces an isomorphism at the fundamental group
level, then it also does so for ith cohomology groups, 0 <i < k, by Lemma
2.2 and a standard universal coefficient theorem. Hence, the ith cohomology
sheaf, 3C'[ p], is locally constant in the same range. According to [DS, Thm.
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2.6], 3C"[ p] is locally constant. In particular, R: p~lc— p~'b is a degree-1
map inducing a m;-isomorphism; by the hypothesized hopfian feature of
these point inverses, this map is a homotopy equivalence. The Coram-Duvall
characterization of approximate fibrations in terms of movability properties
[CD2] completes the proof. O

The preceding and its application to follow are similar to fibrator results of
[D6] involving homology conditions alone.

Before stating the application, we name a group-theoretic condition which
will appear as an hypothesis in many of the results of this paper. We call a
group G sparsely Abelian if it contains no Abelian normal subgroup A #1
such that G/A itself is isomorphic to a normal subgroup of G.

THEOREM 2.4. Suppose N" is a hopfian n-manifold having an m-connected
universal cover. Suppose w(N") is a sparsely Abelian, normally cohopfian
group, and suppose H(N") =0 for m <i < k. Then N" is a codimension-k
PL fibrator if and only if it is a codimension-2 PL fibrator.

Proof. Explanation of the reverse implication proceeds by induction on
k = 2. Assume N" to be a codimension-(j—1) PL fibrator (2 <j—1< k),
and consider an N”-like PL map p: M"*/—> B. Lemma 4.2 (see also the
remark following its proof) of [D6] ensures that p has Property R=, and
Proposition 2.3 does the rest. O

As a consequence, we immediately obtain a result also proved as Theorem
8.1 of [D6].

COROLLARY 2.5. If a closed, aspherical n-manifold N" is a codimension-2
fibrator, and if N" has a sparsely Abelian, normally cohopfian fundamental
group, then N" is a PL fibrator.

COROLLARY 2.6. If N,, N, are closed, nonsimply connected n-manifolds
whose universal covers are m-connected for some m < n—2, and if N\# N,
is a hopfian n-manifold with hopfian fundamental group = + Z,* Z,, then
N, # N, is a codimension-m PL fibrator. Furthermore, if m =n —2 and
B1(N;) = B1(N,) =0, then N, # N, is a codimension-(n—1) PL fibrator.

Proof. By [DS5, Cor. 4.12 & Thm. 5.4], N;# N, is a codimension-2 fibrator,
and by [D6, Cor. 4.3] 7;(N, # N,) is normally cohopfian and sparsely Abelian.
Hence, Theorem 2.4 promises that N, # N, is a codimension-(/m < n—2) PL
fibrator, which it also does for codimension n —1 when 3,(N;) =0, i {1, 2},
since that yields H,,_ (N, # N;) = 0. O

REMARK. In the m = n—2 setting of Corollary 2.6, work of Swarup [Sw]
guarantees that N, # N, is a hopfian manifold whenever it has hopfian fun-
damental group.

The remainder of this section is devoted to developing variations on Theo-
rem 2.4 with no cohopficity assumption on fundamental groups.
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THEOREM 2.7. Suppose the hopfian manifold N" is a codimension-2m PL
fibrator, m = 2. Suppose that ©,(N") =0 for1 <i<2m+1and that n;((N")
is sparsely Abelian. Finally, suppose that N" admits no map f: N" - N"
such that fy(w;(N")) has index 2 in n;(N"). Then N" is a codimension-
(2m+1) PL fibrator.

Proof. The sort of analysis repeatedly done in [D6] confirms that every link
L C B satisfies 7;(L) =0 for 1 <i < 2m. Here are some details. Consider an
N"-like PL map p: M?"*! = B and an arbitrary link L of a vertex v e B. By
[D4, Lemma 3.1], L’= p~'L is a PL 2m-manifold, so the hypothesis on N"
being a codimension-2m PL fibrator implies p|L’ is an approximate fibra-
tion. As

(L) = 7 (S)=m(p vy=0 (I<i+l1<2m)

[D6, Lemma 2.4], the homotopy exact sequence of p|L’ immediately gives
wi(L) = 0 for 2 < i< 2m. The sparsely Abelian restriction fits in merely for
the i = 2 case, causing the homomorphism m,(L) — =(fiber) at the lower
end of the same exact sequence to be trivial and then implying n,(L) =(
as well.

In addition, m,,,(L’) # 0 by [D6, Lemma 2.12], and so the exact sequence

0= 7y, (N") > w3 (L") = 7o (L)
gives m,,,(L) # 0. Now from the sequence
07 (N =m(p~'c) > m (L) > m(L)-0, ceL,

we deduce that (L) is finite, because the universal cover of L is S*™ (it is a
(2m —1)-connected manifold of dimension 2m with nontrivial homotopy
in the top dimension). Euler characteristic considerations ensure that 7(L)
has order at most 2; equivalently, the image of 7;(N") in 7;(L’) has index at
most 2. The order-2 case is ruled out by hypothesis and because Ry: 7(S’) —
71(p~'v) is an isomorphism. This means that 7, (N") - 7,(L’) is an isomor-
phism, which implies the same of the composition

m(p~le) > (L) = 7(S) > m(p~ ),

and indicates that p has Property R=. Application of Proposition 2.3 com-
pletes the argument. O]

CoROLLARY 2.8. Suppose the closed, aspherical manifold N" is a codi-
mension-(2m = 4) PL fibrator, and suppose w(N") is a sparsely Abelian,
hopfian group. Suppose also that every epimorphism of w;(N") onto an
index-2 subgroup is a monomorphism. Then N" is a codimension-(2m+1)
PL fibrator.

Proof. Should there exist a map f: N"— N" such that
[ (N"): fy(m (N™)] =2,
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then by hypothesis N” would 2-1 cover itself (up to homotopy), which would
preclude its being a codimension-2 fibrator. O

The subsequent lemma supplies algebraic information essential to the main
result of this section, Theorem 2.10. Related versions for free Abelian groups
appear in Section 4.

LeMMA 2.9. If Il is a finite Abelian group and X is a closed k-manifold
such that m(L£) =0, 7o(X) =11, and 7w;(X) =0 for 2 < i < k, then 1L is trivial.

Proof. The k =3 case is standard; the k = 4 case is also easy, since duality
implies that H,(¥X) = w,(X) is free.

Suppose k = 5 and IT # 1. Since K(I1, 2) can be obtained by attaching cells
of dimension at least k+1 to I, H;(X) = H;(K(I1, 2)) for i <k, just as in
Lemma 2.2. In particular, H,,,(X) # 0 for 2m < k, since H,,(K(II,2)) #0
for all =0 [EM]. When k is even, H*"}(Z) = H{(Z) = 0 but H,_,(Z) is
nontrivial and finite, which is impossible; when & is odd, Hj _;(X) is nontriv-
ial and finite, but 0 = H(X) = H,_,(X). Since neither possibility can occur,
IT must be trivial. O

The next result represents a restricted extension of [D6, Thm. 7.2] to codi-
mensions greater than 5.

THeEOREM 2.10. Suppose N" has a closed (k —1)-connected universal cover
(k>2). Then N" is a codimension-k PL fibrator if and only if it is a codi-
mension-2 fibrator.

Proof. The cases k = 3, 4 are treated in [D6]. Assume that N" is a PL codi-
mension-/ fibrator, 4 < j < k, and consider a PL map p: M"*/*! > B. Iden-
tify a link L C B of a vertex v in B. With L’= p~'L, since 7;(L’) = m;(N")
for i < j, the homotopy exact sequence for the fibration p | L’ yields 7;(L) =0
for 2 < i < j; moreover, the lower portion of the sequence

0— (L) > m(N") > (L) = (L) =0

reveals that 7,(L) and =,(L) are finite, the first because it is isomorphic to a
subgroup of the finite group w;(N"), and the second because it is an image
of (L) = m;(N"). When we pass to the universal cover L* of L, Lemma
2.9 assures that w,(L) = w,(L*) is trivial. Hence, the monomorphism

T (N = (L) = 7 (N")

is an isomorphism, so m;(L) = 1. In other words, L is a homotopy j-sphere.
That p is an approximate fibration follows directly from [D4, Thm. 5.6].

' O
COROLLARY 2.11. P2?"*!js g codimension-(2n+1) PL fibrator.

Proof. P?"*1is a codimension-2 fibrator [D1, Thm. 6.1]. O
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CoroLLARY 2.12. If T isa finite, hyperhopfian group of orientation-preserv-
ing homeomorphisms acting freely on a (k —1)-connected closed n-manifold,
then the orbit space is a codimension-k PL fibrator.

Proof. The orbit space is a codimension-2 fibrator, as its fundamental group
I' is hyperhopfian [D5]. O

CoROLLARY 2.13.  If N" has a closed, (k —1)-connected universal cover and
is a codimension-2 PL fibrator, and if p: M"***1 5 B is an N"-like PL map,
then B is a (k+1)-manifold.

Proof. The argument given for Theorem 2.10 also establishes that all links
L C B are homotopy k-spheres. O

THEOREM 2.14. Suppose that N" is a closed n-manifold with a (k+1)-
connected universal cover, and that N" is a codimension-k PL fibrator. Sup-
pose w(N") is sparsely Abelian. Finally, suppose that p: M"***! > B isa
PL N"-like map and that L is a link of a vertex in B. Then w (L) is a group
that acts freely on some homotopy k-sphere.

Proof. From the homotopy exact sequence of the approximate fibration
p|L’, standard analysis again yields m;{L) =0 for 1 <i < k. Furthermore,
m(L) #0 [D6, Lemma 2.12], implying finiteness of x;(L) (otherwise the
universal cover L* would be contractible, since it would satisfy H;(L*) = 0 as
well as m;(L*) =0, i < k). Therefore, the universal cover of L is a homotopy
k-sphere. ]

COROLLARY 2.15. Suppose the closed aspherical n-manifold N" is a PL
fibrator in codimension k but not codimension k + 1, and suppose w{(N") is
sparsely Abelian. Then there exists a group T' + 1 which acts freely on both
a homotopy k-sphere and on N" such that the orbit space N"/T' is homotopy
equivalent to N".

Finally, we close this section with a converse to Corollary 2.15. The orbit
space construction of [D1], repeated as Example 2B of {D6], shows how to
produce the required N”-like map.

PRroPoOSITION 2.16. If N" is a closed n-manifold and T is a finite group thai
acts (PL) freely, preserving orientations, on both S* and on N" such tha
the orbit space N"/T' is homotopy equivalent to N", then N" fails to be a
codimension-(k+1) (PL) fibrator.

3. Aspherical 3-Manifolds as Fibrators

LeEMMA 3.1. Let N3 be any closed, aspherical 3-manifold which does noi
have Nil geometric structure but which is a codimension-2 fibrator. Then
w(N?) is sparsely Abelian.
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Proof. Let A be an abelian normal subgroup of x(N?) with 7;(N?>)/A also
isomorphic to a normal subgroup of m,(N?). As it is torsion free (see [He,
Cor. 9.9]) and finitely generated [EJ, Cor. 3.3], A is free on either three,
two, one, or zero generators [He, Thm. 9.13]. We eliminate all but the last
possibility, thereby confirming that A = 1. Since interest here pertains to the
homotopy type of N3, without loss of generality the assumption of aspher-
icity can be boosted to include irreducibility.

The three-generator case is ruled out: N3 itself cannot be S'xS'x S/,
which fails to be a codimension-2 fibrator, making A = Z®Z® Z a finite-
index, proper subgroup of m;(N?) and giving rise to the finite subgroup
7(N3)/A of m(N?), violating torsion freeness.

The two-generator case is a quick consequence of earlier work. By a result
originally due to Hempel-Jaco [HJ] (see also [He, Thm. 11.1]), N 3is a torus
bundle over S'. Depending on the monodromy, N3 has geometric structure
either that of E3, Nil or Sol [S1, Thm. 5.5]. Nil structure is not an issue at this
point, by hypothesis; with Euclidean structure, N fails to be a codimension-
2 fibrator [D3], and with Sol structure the conclusion appears in [D6, Cor.
8.5].

In the single-generator case, we have exact sequences

1—>Z—~>7r1(N3)—>Q—~>1,
15> Q- m(N)>Q'—>1,

where conceivably Q, Q' are distinct groups. The key step involves confirm-
ing that Q’ has infinite order.

Based on the first sequence, recent work of Casson-Jungreis [CJ] and
Gabai [Ga] implies that N3 is a Seifert fiber space. Of the six possible geo-
metric structures, N> cannot have that of Nil, put aside by hypothesis, nor
that of S3 or S?2x R, due to asphericity. Checking that O’ has infinite order
when N3 has Euclidean structure is left to the reader. In the remaining cases
71(N?) contains a finite-index subgroup G which is the group of an S'-
bundle over a closed, orientable, hyperbolic 2-manifold S, and G meets the
named infinite cyclic group Z in the subgroup C of G determined by the
circle in the bundle structure. Nontriviality of ZN C follows, because 7;(S) =
G/C contains no infinite cyclic normal subgroup, after which equality of C
and Z follows easily since their respective images in Q and 7 ;(S) must be
torsion-free. Now order(Q’) = [m;(N?) : Q] = o since Q contains a finite-
index subgroup isomorphic to G/C = m;(S), but no finite-index subgroup
of 7;(N?) can be the fundamental group of an aspherical 2-manifold.

Applying [He, Thm. 11.1] to the second sequence, we find Q to be the
fundamental group of a closed 2-manifold F. Thus, N3 is both an S'-bundle
over F [He, Thm. 11.10] and a surface bundle over a 1-dimensional orbifold
[He, Thm. 11.1]. It cannot carry either E3 or H2 X R structure, for those that
are S'-bundles over F are necessarily product bundles and, hence, obviously
not codimension-2 fibrators. Finally, N3 cannot possess SL,(R) structure,
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the remaining possibility, for no such manifold is a surface bundle over a
1-dimensional orbifold [S1, p. 465]. O

LemMA 3.2. If the closed 3-manifold N3 has the geometric structure of
H?xR and is a codimension-2 PL fibrator, then 7 (N3) is normally co-
hopfian.

Proof. Consider a regular covering : N3 — N3 of degree d = m -/, where m
is the degree of the associated cover of regular fibers and / is the degree of
the induced cover X — X of orbifolds. Then x(X) =/-x(X) [S1, Thm. 3.6],
which implies /=1, since x(X) # 0. Being completely determined by the
self-covering of regular fibers, 6 is a regular cyclic cover, forcingd =m =1,
for anything larger would contradict N3 being a codimension-2 PL fibrator.

[
LemMa 3.3.  If the closed 3-manifold N has the geometric structure of E*
and is a codimension-2 fibrator, then w(N?) is normally cohopfian.

Proof. Only one example N3 with Euclidean geometric structure fails to be
a codimension-2 fibrator [D2]. Its orbifold is P? with 2 cone points of order
2, and it is the unique closed, orientable Euclidean 3-manifold that does
not fiber over S. It is shown in [D2] that every 2-sheeted cover of N3 does
fiber over S'. Supposing m;(N?) fails to be normally cohopfian, we con-
sider a regular covering 0: N> —» N3 of least degree d > 1. Identify the sub-
group G of 7 (N?) generated by 0,(7(N?)) and all elements determined
by covering translations that induce the trivial action at the orbifold level.
One can see that the only nontrivial orbifold self-cover has order 2, so here
[7,(N?3): G] = 2. Form the covering space N corresponding to G. Now note
that # factors through regular, nontrivial coverings N> - N - N3, where by
minimality N fibers over S, an impossibility, as it would force N to do the
same. U

Were this paper organized in strictly linear fashion, next would come an
investigation of Nil manifolds. We isolate that rather technical topic in Sec-
tion 4 and proceed instead to a derivation of the main result.

THEOREM 3.4. Let N? be a closed, aspherical 3-manifold which is virtually
geometric. Then N3 is a PL fibrator if and only if it is a codimension-2
fibrator.

Proof. Again assume N3 is irreducible. Corollary 8.5 of [D6] confirms that
all 3-manifolds having hyperbolic, Sol, or SL,(R) geometric structure are
PL fibrators. The other possible geometric structures each include examples
that fail to be codimension-2 PL fibrators. Nevertheless, for those with ei-
ther Euclidean or H%X R structure, the result follows from Corollary 2.6,
Lemma 3.1, and either Lemma 3.2 or Lemma 3.3; for those with Nil structure,
it follows from Proposition 4.6 in the next section. Finally, for 3-manifolds
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N3 that are virtually geometric but support no geometric structure, the con-
clusion follows from Lemma 3.1 and Corollary 2.5, since then m;(N?) ac-
tually is cohopfian [GW, Thm. 1.1], not just normally so, which would be
sufficient. (The work in [GW] depends significantly on [WW], where the
cohopficity conclusion for the groups of Haken 3-manifolds supporting no
geometric structure is derived.) O

4. Nil 3-Manifolds as Fibrators

Nil 3-manifolds shatter the pattern found in Section 3 for other Seifert fi-
bered spaces: they can be codimension-2 PL fibrators yet fail to possess
normally cohopfian fundamental groups. Nevertheless, Proposition 4.6 cer-
tifies, as promised earlier, that Nil 3-manifolds fulfill Theorem 3.4.

ExaMPLE. A closed 3-manifold N3 which is a codimension-2 PL fibrator
but 7;(N?) is not normally cohopfian. Consider the S'-bundle over the Klein
bottle such that

(N3 =<(a, b, k|a‘ka=k™' =b"'kb, k* = a®b?).

It is easy to check that a, b2, k? generate a normal subgroup of w;(N°>) iso-
morphic to m;(N?), and therefore the associated covering space is another
copy of N3. It turns out that the group of deck transformations is Z,® Z,.

In the same manner one finds that circle bundles over the torus regularly
cover themselves, but they are less interesting because they never serve as
codimension-2 fibrators [D3].

Direct sums such as those in the example above typically arise as subgroups
of the deck transformations associated with coverings stemming from the
failure of normal cohopficity (cf. Lemma 4.4), and ultimately play an instru-
mental role in the key result.

LEMMA 4.1. No 2m-manifold T satisfies all of the following homotopy
data: = (T) is infinite; w,(T) is free Abelian of rank r, 0 < r < «o; and
7i(T)=0 for2<i<2m.

Proof. Assume the contrary. Then construct an Eilenberg-MacLane space
K(mw,(T),2) by attaching cells of dimension greater than 2m to 77, the uni-
versal cover of 7. From this perspective,

Hy, (K(7my(T),2)) =0,

being the image of H,,,(T’) = 0. On the other hand, by applying the Kunneth
formula to the product of r copies of CP*, a standard model for K(w,(T), 2),
one finds that H;(K(w,(T), 2)) must be nontrivial (precisely) when i is even.
The contrary assumption is absurd. N

REMARK. With no fundamental group restriction whatsoever, Lemma 4.1
holds for all noncompact, even-dimensional manifolds.
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LEMMA 4.2. No k-manifold T, k = 3, satisfies all of the following homot-
opy data: w(T) is infinite; wo(T) is free Abelian of rank r, 1 < r < «; and
7i(T) =0 for 2 <i< k. Moreover, there is no such T in the r =1 case unless
w1(T) contains an infinite cyclic subgroup of finite index.

Proof. Suppose otherwise. In light of Lemma 4.1, £ must be odd. Standard
homology computations for the r-fold Cartesian product of CP* with it-
self, the model for K(w,(T), 2), shows H;_;(K(7,(T), 2)) to be free Abel-
ian of rank r’=r. Again the universal cover T’ of T is noncompact, and
H, _(T") = Hy_(K(7,(T), 2)) as in Lemma 2.2. Hence, H(T’") = H,_((T")
is free Abelian of rank r’ = r. It follows from work of Epstein [Ep, Thm. 1]
that 77 has r’+1 > r ends. But this is impossible for r > 1: Epstein also proved
that an infinite-sheeted regular covering has eith\er 1, 2, or infinitely many
ends [Ep, Thm. 10]. It is also impossible for » =1 under the supplemental
m-restriction: When an infinite-sheeted regular covering of a finite complex
has two ends, then the group of deck transformations contains an infinite
cyclic, finite-index subgroup [Ep, Thm. 12]. - O

LEMMA 4.3.  If the Nil 3-manifold N3 is a circle bundle over a torus and J is
an infinite cyclic, normal subgroup of w(N?), then J is contained in the sub-
group C of m{(N?) determined by the circle in the specified (Seifert) bundle
structure.

Proof. Here 7(N?) has the presentation
(a,b,k:a %k l\ak =1=b""%""bk,a” b \ab = k® (e + 0)),

and the element k generates C. Each element of 7,(/N?) can be uniquely ex-
pressed in the form k‘a™b". If the generator vy of J did not belong to C,
then v could be written as y = k”?a"b® with either r #0 or s #0; say r #0
for definiteness. Routine checking will verify that the subgroup generated
by v fails to be normal—indeed, direct computaton yields that 5~ 1yb =
kP*¢a b’ while v" = k'a""b"™ (where ¢ depends on ne€ Z), so y" # b~ 'yb.

O
LEMMA 4.4. Let N3 be a Nil 3-manifold and a codimension-2 fibrator.
Then there exists no pair of exact sequences

1-Z->7(N})=> Q-1 and 1-Q-m(N)->Q'—1.

Proof. Two separate cases must be treated, namely, (1) N3 is a circle bundle
over a Klein bottle and (2) the Seifert structure on N? includes an irregular
fiber.

Suppose otherwise, and name the infinite cyclic normal subgroup C of
71(N?) determined by a regular fiber. Passing to a finite-index subgroup of
71 (N?3) corresponding to a cover by a circle bundle over S' x S! and applying
Lemma 4.3, we obtain CNZ # {0}. That means C C Z, as the image of C in
QO C 7(N?) cannot give rise to torsion elements.
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First consider (1) N3 an S' bundle over the Klein bottle. Let g: N* - KB
denote this Seifert projection. Asphericity of KB implies Z equals the kernel
of g4 (the induced homomorphism on ;). Hence, Q is the fundamental
group of the Klein bottle and therefore Q’ is infinite. However, the Klein
bottle group cannot be an infinite-index normal subgroup of a closed orient-
able 3-manifold, as it would be isomorphic to a finite-index subgroup of
some 2-sided, necessarily orientable surface [He, Thm. 11.1].

Next suppose (2) that the Seifert fibering of N3 includes irregular fibers.
The given epimorphism 7;(N?3) — O induces an epimorphism from the orbi-
fold fundamental group, m(N*)/C, to Q. But 7;(N3)/C has a finite-index
subgroup generated by torsion elements, all of which die in Q, so the image
of the orbifold group itself is trivial. This implies 7;(N?3) = Z, an obvious
contradiction. a

Although Nil manifolds which are S!-bundles over a torus fail to be codi-
mension-2 fibrators, they are relatively exceptional in that, unlike virtually
all the other known examples, they do not regularly, cyclically cover them-
selves. The lemma below strengthens the limitations on the allowable deck
transformations.

LEMMA 4.5. If the closed 3-manifold N* has Nil geometric structure, and
if T' #1is a group acting freely on N3 such that N¥/T is homotopy equiva-
lent to N3, then T acts freely on no homology sphere.

Proof. According to [S2], the orbit space N¥T is actually homeomorphic
to V3. Since every Nil manifold satisfies unique Seifert data, in the given
covering N3 > N¥T = N3, if m denotes the degree with which regular fibers
of the domain cover those of the orbit space and / denotes the degree of
the induced orbifold covering, then 2 =/ [S1, Thm. 3.6]. As in Lemma 3.3,
the covering of regular fiberings is cyclic. Consider any element a € I" cor-
responding to a standard generator of the orbifold group. It follows that
there exists B eI' corresponding to a multiple of the fiber, with order =
order o = ¢ > 1. Inspection of the Seifert bundle data implies that either «, 8
commute or o~ !Ba = B! (standard orbifold generators commute or anti-
commute with the generator from a regular fiber). In the anticommutative
case ¢ is divisible by 2, so «’/?, 8//?> commute. Inevitably I' contains a sub-
group of the form Z,@®Z,. Smith theory (see [Br, p. 81]) assures that no
such group acts freely on a homology sphere. O

ProrosITION 4.6. Every codimension-2 PL fibrator with the geometric
structure of a Nil 3-manifold is a PL fibrator.

Proof. The argument proceeds by induction. Assume that N3 is such a codi-
mension-k PL fibrator, and consider an N3-like PL map p: M**% 5 B. As
usual, for a link L of an arbitrary vertex ve B, p|L’is an approximate fibra-
tion and 7;(L) =0, 2 <i < k (cf. the proof of Theorem 2.7).
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Now we prove that w,(L) = 0. The exact sequence shows w,(L) isomor-
phic to a normal subgroup A of =;(N?). Consider the various possibilities
for mo(L)Y= A. As in Lemma 3.1, A is free on r <3 generators, and the
analysis given there disposes of r = 3. The argument of 3.1 also gives

order(m (L)) = [m(N3): Al =

when r =2, and Lemma 4.2 consequently prohibits this possibility. Finally,
Lemma 4.4 prohibits the r =1 case. Hence, w,(L) is trivial.

The final point involves confirming that p has Property R=. Should
R|p~le: p~lc— p~'v fail to induce a 7;-isomorphism (c € L), the lower end
of the homotopy exact sequence of p|L/,

0 m(p~le) > m (L) - (L)~ 0,

would couple with the isomorphism (L) = 7;(S’) = 7(p~'v) to imply
that «;(L) acts freely on a finite-sheeted cover of N3 (corresponding to p~'c)
with orbit space homotopy equivalent to N> (corresponding to p~'v). On
the other hand, the universal cover of L would be a homotopy k-sphere
on which m;(L) acts freely, in violation of Lemma 4.5. Thus, Property R®
holds, Theorem 2.4 ensures that p is an approximate fibration, and N3 is a
codimension-(k+1) PL fibrator, as required. O

CoNcLUDING REMARKS. The 3-sphere is the only known exception to the
statement: A closed 3-manifold N3 is a PL fibrator if and only if it is a
codimension-2 fibrator. Are there any others? The most prominent matters
are to decide this for 3-manifolds covered by S* and for the ones arising
as connected sums of manifolds with nontrivial, finite fundamental groups
(other than exactly two summands, both with 7, = Z,).
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