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1. Introduction

The results in this paper aim at giving information on the position of K(X, Y),
the space of compact linear operators between Banach spaces X and Y, in
L(X,Y), the space of bounded linear operators.

It is known that for a number of spaces, for example X =/? and Y =17
(1< p,g<), K(X,Y) is an M-ideal in L(X, Y) (the definition of an M-
ideal is given in Section 2); thus the position of K(X, Y) in L(X, Y) vaguely
resembles the position of ¢y in /® in this case. We show in Section 2 that, in
several instances, a necessary condition for K(X, Y) to be an M-ideal in
L(X,Y) is that K(/', Y) be an M-ideal in L(/', Y); and we go on to investi-
gate those Banach spaces Y for which the latter holds. We prove that such a
space is a nonreflexive (unless finite-dimensional) Asplund space; in fact, it
is even an M-ideal in its bidual. For the proof of the latter assertion we offer
a characterization of M-ideals X in X** which yields in particular that this
property is separably determined. Moreover, we prove for a separable space
with the metric compact approximation property that K(/!, Y) is an M-ideal
in L(/\,Y) if and only if K(X, Y) is an M-ideal in L(X, Y) for every Banach
space X. This class of Banach spaces, called (M,)-spaces in [29], was intro-
duced and investigated in [30].

Section 3 deals with the problem of unique Hahn-Banach extensions from
K(X,Y)to L(X,Y). The results in this section are motivated by two recent
results. For a certain class of Banach spaces X that includes the /7 (1 < p < )
spaces, it is proved in [29] that for any Banach space Y, every continuous
linear functional on K(X, Y) has a unique norm-preserving extension to a
linear functional on L(X, Y). On the other hand, one of us [24] has recently
shown that if x is a denting point of the unit ball X; of X and y* is a w*
denting point of Y;* then the functional x®y* has unique norm-preserving
extension from R(X, Y), the space of finite rank operators, to L(X, Y).

We study the properties of a Banach space X for which, for a compact
Hausdorff space 2, extreme points in the unit ball of K(X, C(Q))* have unique

Received March 17, 1993. Revision received May 25, 1994.
* Work done under a bursary from the Commission of the European Communities.
Michigan Math. J. 41 (1994).

473



474 A. LiMa, E. Osa, T. S. S. R. K. Rao, & D. WERNER

norm-preserving extensions to L (X, C(Q)). We extend the result of [24] men-
tioned above by showing that when A is a w*-denting point of X}** or y* is
a w*-denting point of Y}*, the functional A® y*e K(X, Y)* has unique norm-
preserving extension. This in turn allows us to enlarge the class of Banach
spaces for which the main theorem of [24] is valid. Our approach is based
on a characterization of denting points obtained by Lin, Lin, and Troyanski
[26]. In particular, it turns out for a separable Banach space X that extreme
functionals in the dual unit ball of K(X, c) have unique norm preserving
extensions if and only if X is reflexive and every extreme point in the unit
ball is a denting point.

In this paper we consider for the most part real Banach spaces, although
the transfer to complex spaces should cause no difficulty. For a Banach space
X we denote by X;, S(X), and d, X, the unit ball, surface of the unit ball,
and the set of extreme points of the unit ball, respectively. The symbol 8(¢)
stands for the Dirac measure supported at the point ¢.

2. M-Ideals of Operators on /!

This section deals with M-ideals of compact operators. Recall that a closed
subspace F of a Banach space E is called an M-ideal if there is a linear pro-
jection P from E* onto F*:= [x*e E*: x*(x) = 0 Vx e F} satisfying

[l = | Px*||+ || x*— Px*||  vx*e E™.

In case P is even weak* continuous, F is the range of a projection Q on E
satisfying
x| = max{|Qx]l, |x— x|} vxeE.

In this case F is called an M-summand. These definitions are due to Alfsen
and Effros [1]; a detailed exposition of M-ideal theory appears in {14].

We shall frequently use the following criterion (known as the 3-ball prop-
erty) in order to verify that a subspace is an M-ideal. Its proof can be found
in [20, Thm. 6.17] or [14, Thm. 1.2.2].

THEOREM 2.1. A closed subspace F of a Banach space E is an M-ideal if
and only if, for all xe E\, all y,, ¥, y3€ F|, and all ¢ > 0, there is someye F
such that

|x+yi—yl|<l+e (i=1,2,3).

We shall also need the following characterization of M-ideals of compact
operators from [41, Thm. 3.1 & Remark].

THEOREM 2.2. The space of compact operators K(X,Y) is an M-ideal in
L(X,Y) if and only if, for all Te L(X, Y) with |T|| < 1, there is a net (K,)
in the unit ball of K(X, Y) such that K} y*— T*y* for all y*e€ Y* satisfying

limsup||S+(T—-K)||<1 VvSeK(X,Y), |S]|=1.
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Our first result explains the importance of the space of operators on /! in the
present setting.

PRrROPOSITION 2.3. Assume that K(X,Y) is an M-ideal in L(X,Y). If X*
contains a subspace isomorphic to cy, then K(I', Y) is an M-ideal in L(I',Y).

Proof. If X* contains a copy of ¢y, then, by a theorem due to Bessaga and
Pelczynski, X contains a complemented copy of /!. But more is true: By
James’s distortion theorem [27, Prop. 2.e.3] X* contains, for every e >0, a
subspace (1+ ¢)-isomorphic to ¢y, and hence (see the proof in [27, Prop.
2.e.8]) X contains, for every e > 0, a subspace (14 ¢)-isomorphic to /! which
is the range of a projection of norm < 1+¢. Now a routine application of
Theorem 2.1 yields the claim. O

As an application we will establish the following proposition.

ProprosITION 2.4. Assume that K(X,Y) is an M-ideal in L(X,Y) and that Y
is an order unit space. Then K(X,Y)=L(X,Y).

Proof. Recall that an order unit space Y is a subspace of some C({2)-space
containing the constants. Such a space has a representation as the space of
affine continuous functions A(K) on the compact convex set of states on Y.

To show that K(X, Y) = L(X,Y), it is enough to prove that K(X, Y) is an
M-summand [35, Thm. 2.9]. We distinguish whether or not X™* contains a
copy of ¢y. If this is not the case, then X™* has the so-called intersection prop-
erty introduced in [2] and studied further in [13] (see also [14, §11.4]). But
then also K(X, Y) (= A(K,X*) if Y is represented as A(K)) has the intersec-
tion property, and K(X, Y) is an M-summand {2].

Next suppose that ¢, embeds into X*. Then, by Proposition 2.3, K(/!, Y)
is an M-ideal in L(/', Y); and now the above argument shows that K(/}, Y) =
LI, Y) since /™ = (/!)* satisfies the intersection property. (That K(/},Y) =
L(l', Y) also follows from [21] since both (/!)* and Y are order unit spaces.)
HencedimY <o and K(X,Y)=L(X,Y). O

We are now in a position to provide an answer to a question raised by
E. Behrends.

COROLLARY 2.5. Let X be a Banach space and ? be a compact Hausdorff
space such that K(X, C()) is an M-ideal in L(X, C(R)). Then X or C(R) is
finite-dimensional.

Proof. Proposition 2.4 yields that K(X, C(Q)) = L(X, C({2)). The assertion
now follows since for infinite-dimensional X there is a noncompact bounded
linear operator from X into ¢y (the Josefson-Nissenzweig theorem, see [4,
Chap. XII]) and for infinite-dimensional C(f2) the sequence space ¢y em-
beds into C(f). g

For a related result involving L!-predual spaces, see Corollary 2.14.
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In the following we try to gain some insight into the nature of those spaces
for which K(/!, Y) is an M-ideal in L(/!, Y). First we show that Y is necessar-
ily an Asplund space. Such spaces are studied in some detail for instance in
[32]; we remark that Y is an Asplund space if and only if Y* has the Radon-
Nikodym property (RNP) if and only if every separable subspace of Y has
a separable dual [32, pp. 34, 75]. In due course we need the very simple fact
that for each bounded sequence (y,,) in Y there exists some T'e L(/', Y) such
that 7e, = y,. The operator T is compact if and only if {y,: n € N} is rela-
tively compact.

LEMMA 2.6. If K(I,Y) is an M-ideal in L(I',Y), then Y is an Asplund
space.

Proof. Let Z CY be a separable subspace. We shall show that Z* is sepa-
rable. Let e > 0 and 0 < ¢ < 1. We assume that Z* is not separable. Then, by
a result of Stegall [5, Lemma 5, p. 194], there exist sequences (z,,) in the unit
ball of Z and (f,) in the unit ball of Z* such that

Jm(z)=c for m=n, (1)
|fn(za)| <€ for m<n. 2)

See [22, p. 33] for the argument leading to (1) and (2). We now consider
norm-preserving extensions of the (f,,) to all of Y, and we retain the nota-
tion (f,,;) for these extensions. Let fe Y* be a weak* cluster point of the f,,
and z**e Y** be a weak* cluster point of the z,. Then we have

fz) =c vn, (1)
|fn(z*)| =€ vm. (2%)

Define T: I' > Y by Te, = z,and S: /' > Y by Se,, = z; for all n. Then | T|| < 1,
|S|| <1, and S is compact. By Theorem 2.1, there is some Ue K(/!, Y) such
that |7+ S—U| < 1+e¢. Consequently

lzix(z,—Uey)||=1+e vneN.

Since U is compact, we may assume that (Ue,) converges (otherwise we pass
to a subsequence), say to u€ Y. Then

lz1£(z,—uw)||<1+2e Vn=ny,

and again there is no loss of generality in assuming that this holds for all
n eN. Now we deduce from (1) that

1+2e = max. | f(z)) £ (f(z,) — f(u))|
=|f(z)|+]f(za) = f(w)|
= c+|f(z)| = f(w)],
so that
|f(w)| = | f(z,)|+c—1—-2¢ vneN.
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Thus
| f)| = | f(z2**)|+c—1—2e=2c—1—2e.
On the other hand we obtain, from the weak* lower semicontinuity of the
norm,
|21 (2" —u)|| < 1+ 2e.
Hence, by (1) and (2'),

14 2¢e = max, | f,(z1) = (f;n(2**) — [ (0))|
=S (@) + S (2**) = fin ()]
= c+|fin ()| =] fiun(z*)]
= c+|fin(u)|—e.

Thus | f,,(#)] < 1+ 3e—c and therefore
|f(u)]=1+3e—c.

Hence we get 1 +3e—c=2c—1—2¢ and 2+ 5¢ = 3¢. Choosing ¢ small enough
and c close enough to 1 yields a contradiction. O

In the case of separable Y, we can easily supply a stronger result.

LEMMA 2.7. IfK(\,Y) is an M-ideal in L(I',Y) and Y is separable, then Y
is an M-ideal in its bidual, and if Y is infinite-dimensional then it is nonre-
Sflexive.

Proof. Let y|, y,, y3€Y;, y**e Y™, and € > 0. We wish to find some yeY
such that

ly**+yi—y|=1+e for i=1,2,3

holds. Then Theorem 2.1 shows that Y is an M-ideal in Y**,

To achieve this, consider a quotient mapping O from /! onto Y. Hence there
is some £ € (/N)**, ||¢]| =1, such that Q**(£) = y**. Next pick x*e (/')* such
that £(x*) =1 and || x*|| < 1+¢/2, and define compact operators S;: /' >Y
by S;(x) =x*(x)y;. An appeal to Theorem 2.1 yields a compact operator
S: ' >Y such that

|Q+Si—S|<1+e for i=1,2,3.
Consequently, for y := S**(£) e Y (since S is compact), the estimate

I7** 4y =y = Q™)+ SF*(¢) —S™(§)|| < 1+
holds.
If Y were reflexive and infinite-dimensional, then L(/,Y) = L(Y*, )
canonically and hence K(Y*, /®) would be an M-ideal in L(Y*, [*®), contra-
dicting Corollary 2.5. Il

Since Banach spaces which are M-ideals in their biduals are Asplund spaces
({22] or [14, Thm. III1.3.1]), Lemma 2.7 implies Lemma 2.6 for separable Y.



478 A. Lima, E. O1aA, T. S. S. R. K. Rao, & D. WERNER

Actually, we shall eventually prove in Theorem 2.12 that Lemma 2.7 holds
without the assumption of separability. However, in order to prove this, we
need Lemmas 2.6 and 2.7 and another two auxiliary results. The first one
says that the property of being an M-ideal in the bidual is separably deter-
mined. Its proof is inspired by [8, Prop. 2.3].

PROPOSITION 2.8. For a Banach space X, the following assertions are equiv-
alent:

(i) X is an M-ideal in its bidual.
(ii) For all xe X,, all sequences (x,) in X,, all weak* cluster points x**
of (x,), and all ¢ > 0, there is some u € co{x,, X5, ...} such that

| x+x**—u|| < 1+e.

(iii) For all x € X, all sequences (x,) in X, and all ¢ > 0, there is some
neN and there are u e co{xy, ..., x,} and t € co{x, 1, X425 ...} such
that

|x+t—ul|<1+e.

(iv) For all xe X, and all x**e X{**, there is a net (x,) in X, weak* con-
verging to x** such that

lim sup|| x+x**—x,|| < 1.

(v) Every closed separable subspace Y of X is an M-ideal in its bidual.

Proof. (i) = (ii): If this were false, then the inequality || x+x**—u|[> 1+
would hold for all ¥ € A := co{xy, x5, ...}. Consequently, 4 and the ball
B(x+x**,14+¢€/2) could strictly be separated by some x***e X***, with
| x***|| =1 say. By assumption we have a decomposition
x*** — x*+x;**eX*®Xl, "x***" — ||x*||+||x;"**||
Hence
1+e/2 < x**(u—(x+x**))

< | x*(x)| 4| x*(x** —u)|+ | x5 (x*)]

= max{]| x|, [|x**[B(l*[ -+l + [ (x** — )|

< 14|x*(x**—u)|
for all u € A; however |x*(x**—x,)| < ¢/2 for some n since x** is a weak*
cluster point of the sequence (x,). This leads to a contradiction.

(ii) = (iii): Let x** be a weak* cluster point of the sequence (x,). We ap-
ply (ii) to obtain

|x+x**—u||<1+e/3

for some u € co{xy, x5, ...}, say u € co{xy, ..., X,}. Suppose that || x+¢—ul| >
1+¢ holds for each tecof{x, 1, X423, ...} =t A. Again this implies that A
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and B(u—x, 1+¢/2) can strictly be separated. Thus, for some x*e X™* with
x| =1,

14+e/2<x*(t—(u—x)) VteA.
But since x**e A"*, this yields

l+e/2 < x*(x+x*—u)
<|x+x**—u
<1+¢€/3,

a contradiction.

(iii) = (iv): Again we argue by contradiction. Suppose that, for some
x € X; and x**e X**, there is no such net. Consequently there is, for some
e > 0, a convex weak* neighborhood V of x** such that

|x+x*—v|>1+e vveV. (3)

Pick x, e VN X, and put By = —x+x; + (1 +¢) X;**. This is a weak* com-
pact set not containing x** (by (3)), so there is a convex weak* neighbor-
hood W, C V of x** such that W,N B, =@. This means

|[x+w—xi||>1+e vweW,.

Next choose x, e Wi N X, put B, = —x+cofxy, X2} +(1+€) X and find a
convex weak* neighborhood W, C W, of x** satisfying W,N B, =@, that is,

|x+w—u||>1+e vweW,, uecofx, x,}.

Continuing in this manner, we inductively define a sequence of points (x,,)
in X; and a sequence of convex weak* neighborhoods VO W, D W, D ---
such that x,, ., € W, and

|x+w—u||>1+e vweW,, uecoix,..., x,}

for all n e N. This is a contradiction to (iii), since co{x, 1, Xy42, ...} C Wj,.
(iv) = (i): We shall verify that the canonical projection from X*** onto X
is an L-projection. To this end, decompose a given x***e X;*** into x*** =
X*+x**e X*®X™. For an arbitrary € > 0, pick xe X, and x**e X;** such
that x*(x) = [|x*|| —e and x;**(x**) = | x5**|| — €. By (iv) there is a net (x,)
such that, for sufficiently large «,
|x*(x*™*—x,)|=e and |x+x**—x,|=<1+e.
This yields
][4+l 2| — 2e = x*(x) + x5 (x**)
S{X* XN XX —x,)te
< ||x***||- (1 +€) +e,

so that in fact || x*||+ || x3**|| = || x***||-
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(i) = (v): This follows from the fact that the class of Banach spaces satis-
fying (i) is hereditary ({12] or [14, Thm. III.1.6]).
(v) = (iii): This holds since we already know that (i) implies (iii). O

Next, we have the following stability result. Recall that a Banach space E
has the bounded compact approximation property if there is a bounded net
(u,) of compact operators on E such that u,x— x for all xe E. The metric
compact approximation property requires in addition that sup||u,| < 1; if
E = F* is a dual space and the u, can be chosen to be weak* continuous,
we say that F* has the bounded or metric compact approximation property
with adjoint operators.

ProrosITION 2.9. Suppose that X* or Y is an Asplund space and that
K(X,Y) isan M-ideal in L(X, Y).
(a) If X* has the bounded compact approximation property with adjoint
operators and V C Y is a closed subspace, then K(X, V') is an M-ideal
in L(X,V).
(b) If Y* has the bounded compact approximation property with adjoint
operators and E C X is a closed subspace; then K(X/E,Y) is an M-
ideal in L(X/E,Y).

Proof. (a) We apply Theorem 2.2. Let ve L(X, V), |v| =1, and denote by
J: ¥V =Y the inclusion operator. Pick bounded nets (#,) C K(X) such that
uyx*— x* for all x*e X* and (Kg) C K(X, Y) as in Theorem 2.2, applied to
Jve L(X, Y). After switching to the product index set we may suppose that
the K are indexed by the same set as the (u,), hence we shall write X, from
now on. Then the net (7,,) = (Jvu, — K,) converges to 0 in the weak topology
o(K(X,Y),K(X,Y)*); in fact,

(x**, Ta*y*> — (Tas x**®y*> — O,

and the linear span of these functionals is dense in K(X, Y )* since X** or ¥*
has the RNP (see [6] and [16]). Consequently, S}Jitable convex combinations
of the T, converge in norm; hence there are K, € co{K,: a’> ]} and i,€
cofu,: a’> o} such that |Jvit,—K,||— 0. Thus we have, for we K(X, V)
with |w| =1,
lim sup||w+ (v —vit,)|| < lim sup||Jw+ (Jv—K,)|| = 1.

A second appeal to Theorem 2.2 finishes the proof since (v#,)* — v* point-
wise.

(b) The proof is similar, the basic observation being (g: X — X/E the quo-
tient map) that this time v, ,vg — K, — 0 weakly. EI

COROLLARY 2.10. IfK(!\,Y) is an M-ideal in L(1',Y) and V C Y is a closed
subspace, then K(I', V) is an M-ideal in L(I', V).

Proof. We know from Lemma 2.6 that Y is an Asplund space. Further, we
observe that /* has the metric approximation property and hence, as an easy



Geometry of Operator Spaces 481

application of the principle of local reflexivity reveals, the metric approxi-
mation property with adjoint operators. It is left to apply Proposition 2.9.
O
In connection with the last argument, we mention the recent example of a
dual space with the metric compact approximation property which fails the
metric compact approximation property with adjoint operators [11].
Concerning quotients of the range space, we have the following easy result.

ProposiTION 2.11.  If K(I},Y) is an M-ideal in L(I',Y) and V is a closed
subspace of Y, then K(I', Y/V) is an M-ideal in L(I', Y/V).

Proof. Thisis an immediate consequence of the lifting property of /!, which
says that for each (compact) Te L(/', Y/V) with || T|| < 1 there is some (com-
pact) Te L(I', Y) with | T|| <1 such that g7 =T, and the 3-ball property.
(Here g: Y — Y/V denotes the quotient map.) H

We now come to the main results of this section. A Banach space Y is called an
(M)-space'if K(Y®,Y) is an M-ideal in L(Y®. Y). This class of Banach
spaces is introduced and studied in [30]; see also [29] and [42]. In [30] it
is proved that Y is an (M,)-space if and only if K(X, Y) is an M-ideal in
L(X,Y) for every Banach space X if and only if the same conclusion holds
for X = Y@, Y. This will be used below. The class of (M_)-spaces encom-
passes co(I') and those of its subspaces or quotient spaces which enjoy the
metric compact approximation property [30; 39]. It was recently proved in
[18] that a separable (M, )-space embeds almost isometrically into cg.

In particular, K(/', Y) forms an M-ideal in L(/, Y) for an (M,.)-space Y.
Part (c) of the following theorem provides the converse for separable spaces
with the metric compact approximation property.

THEOREM 2.12.  Suppose K(I',Y) is an M-ideal in LI, Y).

(@) Then Y is an M-ideal in its bidual, and every infinite-dimensional
subspace of a quotient of Y is nonreflexive.

(b) IfY has the metric compact approximation property, then K(X,Y) is
an M-ideal in L(X, Y) for all separable spaces X.

(c) If Vis a closed separable subspace of a quotient of Y and if V has the
metric compact approximation property, then V is an (M, )-space.

Proof. (a) Let VCY be separable. Then, by Corollary 2.10 and Lemma
2.7, V is an M-ideal in V**. Proposition 2.8 shows that Y is an M-ideal
in Y**. Likewise, it follows that no infinite-dimensional subspace of a quo-
tient is reflexive (note Proposition 2.11).

(b) Since Y is an M-ideal in Y**, we deduce from [10] that Y * has the met-
ric compact approximation property with adjoint operators. Now X is iso-
metric to a quotient of /!, hence Proposition 2.9(b) shows our claim.

(c) By (b), K(V® V, V) is an M-ideal in L(V®, V, V'), which is enough
to prove the assertion of (c). O
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CoroLLARY 2.13. If Y is a closed subspace of a quotient of an (M)-space
Z, then K(1',Y) is an M-ideal in L(I', Y), and Y contains a copy of c, unless
it is finite-dimensional.

Proof. First of all, K(/', Z) is an M-ideal in L(/', Z) [30]. The first asser-
tion follows from Corollary 2.10 and Proposition 2.11, and the second from
Theorem 2.12(a) and [12]. O

COROLLARY 2.14. Suppose X* contains a copy of cy, and let Y denote an
L'-predual space. Then K(X,Y) is an M-ideal in L(X,Y) if and only if Y is
isometric with cy(T').

Proof. The ‘if’ part is clear since co(I") is an (M, )-space. On the other hand,
Proposition 2.3 and Theorem 2.12(a) imply that Y is an L'-predual which is
an M-ideal in its bidual. Now the converse follows from [12, p. 259]. O

We finish this section with some comments and questions on the above results.

(1) An inspection of the proofs of Proposition 2.9 and Theorem 2.12 re-
veals that it is enough to assume that V is almost isometric to a subspace
of Y, meaning that for every € > 0 there is an operator 7_: V' — Y satisfying
(1-o|v||=||T.v]l= 1 +e)|v| for al ve V.

(2) It appears that the relation between the class of spaces for which K(/ 1Y)
is an M-ideal in L(/!, Y) and the quotients of subspaces of (M)-spaces is
quite intimate; see Theorem 2.12 and Corollary 2.13. Do these classes ac-
tually coincide?

(3) It is essentially shown in [17] that a (separable) Banach space Y is an
(M,)-space if and only if K(Y) is an M-ideal in L(Y) and

lim sup||y + y,|| = max{|| y|, lim sup|| y, |}

whenever y,, — 0 weakly. Let us call this condition (7). What is the exact
relation between spaces with the (m,)-condition and the M-ideal property of
K, Y)in L/, Y)? We would like to mention at this stage the recent result
from [18] that an (m.)-space with a separable dual embeds almost isometri-
cally into ¢y. Therefore, for a Banach space Y with a separable dual, K(/ 1Y)
is an M-ideal in L(/', Y) if Y has property (). It is tempting to conjecture
that the converse holds as well. Let us note that—unlike the (M,)-case—
property (m,) does not imply the approximation property, and neither does
the fact that K(/',Y) is an M-ideal in L(/!,Y) (Corollary 2.13). Another
result from [18] implies that quotients of subspaces of separable (M)-spaces
have (m.,), so problems (2) and (3) are closely related.

(4) More specifically, we note that the little Bloch space 3, has the prop-
erty that K(/', By) is an M-ideal in L(/!, By); in fact, it is an (M,)-space, as
shown in [18]. Recall that the Bloch space 3 consists of those analytic func-
tions f on the open unit disk @ for which f(0) =0 and

[./1ls = sup, e ol S ()1 —=|2[*) < .
The little Bloch space (3, is the subspace where
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lim,)_|f(2)|(1-|z) = 0.

More precisely, Corollary 5.9 in {18] states that (3, is almost isometric to a
subspace of cg; previously it was shown in [40] that G, is an M-ideal in its
bidual.

(5) Actually, B, is known to be isomorphic to ¢y [37]. We remark that one
can deduce this fact using results from M-ideal theory: On the one hand,
the space 3, is a complemented subspace of Cy([D) [36, Thm. 1] and hence a
separable £*-space. On the other hand, 3, is an M-ideal in its bidual (see
above). Therefore, B, must be isomorphic to ¢y, by [9] or [38].

3. Uniqueness of Norm-Preserving Extensions of
Functionals on Operator Spaces

Now we turn to the problem of unique Hahn-Banach extensions. It is one
aspect of M-ideal theory that, for an M-ideal F' in a Banach space F, unique-
ness of norm-preserving extension holds. However there is no nontrivial
example of an M-ideal K(X, C(})) in L(X, C(Q)), as shown in Corollary
2.5. On the other hand, uniqueness of norm-preserving extension holds in
this setting—for instance, for X =/ (1 < p < o) [28]. Hence we shall take
a closer look at this situation.

Basic to our investigation is a result of Ruess and Stegall [34] (see also
[25] and [14, Thm. VI.1.3]) that for any subspace H C K(X, Y') containing
the finite rank operators, d, H; = 9, X{"*®a, Y}".

THEOREM 3.1. Let X be a separable Banach space and Q a compact Haus-
dorff space with a convergent sequence {t,} of distinct terms, say t,, — t,. Let
A€ 3, Xi*. If the functional AQ6(ty) has unique norm-preserving extension
Jrom K(X,C(Q)) to L(X, C()), then A is w*-continuous, and if x,€ X,
and x,, — A weakly, then x, — A in the norm.

Proof. Since X is separable, it is enough to show that A is sequentially w*-
continuous. Let f,, f€ X7, £, f. Since, for any T K(X, C(Q)), T*(5(,)) —
T*(6(tp)) in the norm, we have A®6(,) ‘—"—;A®6(t0) in K(X, C(2))*. Since
any w*-accumulation point of the sequence {A®d(Z,)} in L(X, C(Q))} is a
norm-preserving extension of AR d(4), we get from the uniqueness assump-
tion that AQ6(1,) 5> AR (1) in L(X, C(Q))*.

It is canonical to define an operator T € L (X, C()) such that T*(8(¢,)) = f,
for all n and T*(6(¢y)) = f; note that C(Q) contains a 1-complemented sub-
space isometric to ¢ under our assumptions. Now, for this 7, (A®6(,))(T) —
(A®6(1))(T); that is, A(f,) = A(S).

Ignoring the canonical embedding, let us write A = x. Let x,, € X; and x,, >
x. Choose f, € X} such that ||x,—x| = f,(x,—x). Since X is separable, we
may assume that £,*> f. Now x,,®8(Z,) D x®6(%,) in K(X, C(Q))* and hence
in L(X, C(2))* by the uniqueness assumption. Let 7" be defined as before to
give fy(x,) = f(x). Since f(x,) = f(x), we have that | x,—x|— 0. O
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Let us recall that x € X is a denting point if for each ¢ > 0 there is a func-
tional f, € X™* such that, for some «, the slice {y € X;: f.(») = «} contains x
and has diameter <e. A point x*e X} is a weak* denting point if such a
functional f,e X** can always be chosen to be weak* continuous. Clearly,
a denting point is an extreme point.

COROLLARY 3.2. Let X and Q be as above. If all the extreme function-
als {A® 6(ty): A€ 0, X7*} have unique norm-preserving extension from
K(X, C(2)) to L(X, C(R)), then X is reflexive and all extreme points in the
unit ball of X are denting points.

Proof. 1t follows from the arguments given above that 4, X;** C X. Since X
is separable we can apply a result of Haydon [15] to conclude that X is re-
flexive. Since every extreme point is a point of continuity for the weak topol-
ogy on X, we get from a result of [26] that all the extreme points in the unit
ball are denting points. 1

REMARKS. (a) One can relax the assumption of separability on X to “all w*-
sequentially continuous functionals are w*-continuous”. When 4, X;** C X,
one can also apply the celebrated theorem of James [3, pp. 15ff] to con-
clude that X is reflexive. Therefore, the conclusions of the corollary are valid
for a wider class of Banach spaces than separable spaces—namely, weakly
compactly generated, weakly k-analytic, or weakly countably determined
spaces, etc. (see [19]).

(b) The range space C(?) can be replaced by any Banach space Y that
contains an isometric copy of ¢, the space of convergent sequences, as the
range of a norm-1 projection.

These results also go through in the absence of convergent sequences in some
special situations. As an illustration, we now prove the following proposition.

PRoOPOSITION 3.3. Let X be a separable Banach space. Suppose every ex-
treme point of K(X, C(BN))] has unique norm-preserving extension to
L(X, C(BN))]. Then X is reflexive and every extreme point in the unit ball is
a denting point.

Proof. Let us note that 8N denotes the Stone-Cech compactification of the
positive integers.
In this proof we prefer to use the following standard identifications:

K(X, C(BN)) = C(BN, X™);
L(X, C(BN)) = C(BN, (X*, w*)).

(The spaces on the right-hand side consist of continuous functions from SN
into X* when X* has the norm or w*-topology respectively, equipped with
the sup-norm.)
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As before, fix Ae d, X[ and x;;, x*e€ X7 with x;; — x* in the w*-topology.
Note that this gives an he C(BN, (X*, w*)) with h(¢) =x,; if t=neN and
h(t) =x*if te BN\N.

Now fix a t € BN\N and consider the functional 7: C(8N, (X*, w*)) -R
defined by

7(f) =lim, A(f(n)),
where the limit is taken along the ultrafilter . Note that when fe C(8N, X*),

lim, A(f(n)) = A(S(1)).

Hence 7 is a norm-preserving extension of A®d(¢), and therefore by unique-
ness we have

A(x*) = A(h(1)) = (A®S(1))(h) = 7(h) = lim, A(xy).

Since this is valid for all ultrafilters ¢, we conclude that A(x*) = lim A(x;}).
Thus A is w*-continuous. It is now very easy to complete the proof of the
proposition following the ideas of proofs of Theorem 3.1 and Corollary 3.2.
O
Recall that a subspace F of a Banach space E is called Hahn-Banach smooih
if every y*e F* has a unique norm-preserving extension to an element of E*.
Such subspaces are called U-subspaces in [31].

COROLLARY 3.4. Suppose X is such that, for all compact Hausdorff spaces
Q, K(X, C(Q)) is a Hahn-Banach smooth subspace of L(X, C(Q)). Then X
is reflexive and has the Kadec-Klee property, meaning that the weak and
norm topologies coincide on the sphere.

Using the identifications
K(I', X*) = K(X, C(BN)),
L(I',X*) = L(X, C(BN)),

we get that if X is separable and K(/!, X*) is a Hahn-Banach smooth sub-
space of L(/', X*), then X is reflexive and has the Kadec-Klee property. Yost
[43] by explicit construction shows that X (/') fails the uniqueness of Hahn-
Banach extensions in L(/') (note that

K(co, C(BN)) =K(!") and L(co, C(BN)) = L(I"));

this is also done in [28].
Our next proposition gives one more geometric property of this class of
Banach spaces.

ProPoOSITION 3.5. Let X be an infinite-dimensional Banach space and ) an
infinite compact Hausdorff space. If K(X, C(Q)) is a Hahn-Banach smooth
subspace of L(X,C(RQ)), then 3, X\* ¢ S(X**) (closure taken in the w*-
topology).
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Proof. If 3, X{"* C S(X**) then we shall show that, for any T e L(X, C(Q)),
T* attains its norm. We shall obtain the required contradiction by exhibiting
a Te L(X, C(Q)) such that T* fails to attain its norm.

Since, for any T e L(X, C(12)),

17} = sup;eall T* @GN,
it is easy to see that

L(X,C(Q))]=Co{A®(f): A€ d, X{*, te}

(w*-closed convex hull).

Now suppose that d, X|"* C S(X™**). For any 7€ 3, L(X, C(Q))3}, write
7=1lm, A, ®56(¢,) with 1,€Q, A, €0, X7

We may assume that £, — ¢ and A,"> A. By our assumption, ||A[|=1. Now
A®H(¢) agrees with 7 on K(X, C(Q)) so that by the uniqueness assumption
7= A®0d(¢). In other words,

0. L(X,C(Q))] C[ARH(t): 1, A€ d, X[}.
This clearly implies that, for any T e L(X, C(Q)),

175 =1T* @

for some 7€ (1.

Now fix any o € /* such that 1 = ||«|| > |«,| for all n € N. Since X is infinite-
dimensional, by the Josefson-Nissenzweig theorem there exist f,, € X™* such
that || f,]| =1 and f,"5 0 (see [4, Chap. XII]). Since Q is infinite, ¢, is ca-
nonically embedded in C(£2). Now for T: X — ¢y C C(Q) defined by T(x) =

fa, fu(x)}, T* fails to attain its norm. Hence 3, X[™* & S(X**). O

It may be worth recalling here that some of the Banach spaces considered in
[29] are reflexive and locally uniformly rotund.
We next apply some of these methods to a slightly different situation.

ProrosITION 3.6. Suppose that K(X) is a Hahn-Banach smooth subspace
of span K(X)U({Id}. Then on S(X*) the weak and weak* topologies coin-
cide and hence X™* has the Radon-Nikodym property.

Proof. Let f,, fe S(X*) and f,5 f. Let Ae S(X**). As before, AR f,
A®f in K(X)* and hence, by the uniqueness assumption, AR fa‘i;A® f
in (span K(X) U {Id})*. In particular, (A® f,)(Id) - (A® f)(Id); that is,
A(f,) = A(f). Hence f, > f. That X* has the Radon-Nikodym property
follows from standard arguments. Ol

With the help of a characterization of Hahn-Banach smoothness in terms
of intersection properties of balls, it is proved in [23] that if K(X) is a Hahn-
Banach smooth subspace of span K(X)U{Id} then X is a Hahn-Banach
smooth subspace of X**.
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We next prove a result that extends Lemma 11 of [24], and as a conse-
quence obtain the characterization result mentioned in the introduction.

THEOREM 3.7. Let A€ d,X|* and y*€d,Y\. Suppose that either A or y* isa
w*-denting point. Then the functional AQy* has unique norm-preserving
extension from R(X,Y) to L(X,Y).

Proof. We shall make use of the fact that a denting point is a point of con-
tinuity (weak or weak* appropriately). Also, if A is a w*-denting point of
X;* then A = x is a denting point of X); see [26] and [33].

By the result of Ruess and Stegall mentioned in the introduction to this
section, AQ y*e d,R(X, Y)] and hence

F={¢eLl(X,Y)[:¢=AQy*onR(X,Y))

is a w*-closed extreme subset of the unit ball. Since AQ y*e F, it is enough
to show that d, F' is.a single point.

It is easy to see that L(X, Y)] = Co(X;"*®Y,") (w*-closed convex hull), so
that

. L(X,Y)] C X" ®YT.

Now let ¢ € d, F. Since F is an extreme subset, ¢ € d,L(X, Y)7; hence there
exist nets {A,}in X" and {y}}in Y]" and ¢ =lim_, A,®y} in the w*-topology
of L(X, Y)*.
Since ¢ = A®y* on R(X, Y) it is easy to see that A, ¥ A and y;",‘i;y*.
Now suppose that A is a w*-denting point and that A = x. Then A, — x in
the norm topology so that, for any 7€ L(X, Y),

(T) =1limg A (T*(¥2)) = T*(y*)(x) = (x@y*NT).

A similar argument works when y* is a w*-denting point. Hence A®Q) y* has
unique norm-preserving extension to L(X, Y). O

CoRrOLLARY 3.8. For a separable Banach space X, all the functionals in
3, K(X, ¢)] have unique norm-preserving extensions if and only if X is re-
flexive and every point of d,X, is a denting point.

CoOROLLARY 3.9. Let X be a Banach space which is strictly convex and has
the Kadec-Klee property, with X{* the norm closed convex hull of its extreme
points. Then X has the metric approximation property if and only if R(X)*
is the kernel of a norm-1 projection in L(X)*.

Proof. This is one of the 10 statements in Theorem 13 of [24]. The results of
[26] and [33] imply that every point of S(X) = d,X] is a denting point. Now
if xe S(X) and x*€d, X', since x®x* has unique norm-preserving exten-
sion to L(X), in the notation of [24] (proof of (10) = (1)), we get x*(T,x) -
x*(x). Since X7 is the norm closed convex hull of its extreme points, we
deduce that 7, x —» x weakly and, since X has the Kadec-Klee property,
|7, x—x]||— 0. O
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A Banach space is said to have property (*#) if the norm topology and the
weak* topology agree on its dual unit sphere. If Y has property (**) then,
by the arguments in (33, Prop. 3.3], every y*€ 4, Y is a w*-denting point.
Therefore Theorem 3.7 implies the following corollary.

CoroLLARY 3.10. If X* or Y has the property (xx), then every extreme
point of K(X, Y)] has unique norm-preserving extension to L(X, Y)*.

We finish this section with an application of Theorem 3.7 to point-set to-

pology.
Look at

K(I', C(BN)) C L(I', C(BN)).

Using the identifications K (!, C(BN)) = C(BN, C(8N)) = C(BN x SN) and
L', C(BN)) =@, C(BN) = C(8N), we see that the inclusion K(/!, C(8N)) C
L', C(BN)) corresponds to the following.

Let ¢: N—-NxN C BN X BN be any bijection. Denote still by ¢ its exten-
sion from BN onto BN X 8N. Since SN is not homeomorphic to SN x SN [7,
p. 97] this map ¢ is not one-to-one. Consider the inclusion C(8N x SN) C
C(BN) induced by this map ¢.

For (¢,5) € BN x 8N, look at E = ¢'{(¢, 5)}.

For any x € E, note that 6(x) € 3,C(8N)] and is a norm-preserving exten-
sion of 6((¢,s)). The set F =Co E is precisely the set of norm-preserving ex-
tensions. Hence 6((¢, s)) has unique norm-preserving extension if and only
if E is a singleton. Hence, these are precisely the points where ¢ is one-to-
one. From Theorem 3.7 it follows that this set contains {(¢,s): f or s is in NJ.
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