L, Cohomology of Pseudoconvex
Domains with Complete Kdhler Metric
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1. Introduction

Let  be a bounded pseudoconvex domain with smooth boundary in C”.
The Bergman metric of Q is a complete Kdhler metric. Every biholomorphic
automorphism of Q induces an isometry relative to the Bergman metric. We
use JC2 9(Q) to denote the space of square integrable harmonic (p, g) forms,
associated to the Bergman metric. The following result was proved several
years ago [5].

THEOREM 1.1. If Q is strictly pseudoconvex, then

dim 3¢5 %(Q) = {0 pra=n,

© p+qg=n.
Ohsawa has developed this work by giving both alternative proofs and appli-
cations to extension problems in the analysis of several complex variables
[11; 12; 13].

More recently, Gromov [7] studied the L, cohomology of complete Kahler
manifolds. Suppose that M is a complete, simply connected, Kidhler mani-
fold. Assume that the Kdhler form w = dy, where 5 is bounded in L* norm.
Under these hypotheses, Gromov proved this next theorem.

THEOREM 1.2. If M covers a compact manifold, then

dim 3¢ 9(M) ={O ptq#n,
© p+qg=n.
Theorems 1.1 and 1.2 have analogous conclusions. However, of all strictly
pseudoconvex domains in C” endowed with Bergman metrics, only the ball
covers a compact manifold. Thus, the hypotheses of both theorems are only
satisfied in a single example.
The purpose of the present article is to show that, nevertheless, the tech-
niques of Gromov can be employed to give a more transparent proof of The-
orem 1.1. GromovV’s ideas lead to a sufficient condition for dim 3¢5 %(Q) =0,
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p+q #+ n,interms of certain extremal problems involving holomorphic func-
tions. This condition is easily verified for strictly pseudoconvex domains,
which gives a proof of vanishing L, cohomology outside the middle dimen-
sion n. The new proof is more elementary than the argument of [5], since
it does not use the asymptotic expansion of the Bergman kernel or the diffi-
cult analysis of geodesics in the Bergman metric [6]. Our investigations may
also represent some progress toward generalizing Theorem 1.1 to the Berg-
man metric of weakly pseudoconvex domains.

We thank the referee for suggestions which improved the original version
of this paper. In particular, he pointed out that the proof of Proposition 2.2
is valid in its present generality.

2. Vanishing Cohomology for Complete Metrics

Let M be a complete Kdhler manifold of complex dimension n. Suppose
that 3C5(M ) denotes the space of square integrable harmonic i forms. If one
takes the closure of the image of d, then JC5(M) may be identified with the
L, cohomology of the complex

(M) D Ay (M) L A3(M) — - L AS(M).

That is, JCQ(M ) = kerd/imd. Gromov [7] made the following brilliant ob-
servation.

ProrosiTiON 2.1.  Suppose that the Kdihler form w of M can be written as
w = dn, where n is bounded in supremum norm. Then one has 3C5(M) =0
Jori#n.

Proof. Consider the operator L¢ = wA ¢ for pe JC'zM If i < n, the primi-
tive decomposition theorem [15] implies that L is injective pointwise on each
fiber of A'/M. Since A commutes with L, w A ¢ is harmonic. However, w A ¢ =
d(nAn¢) and yA ¢ is square integrable. It follows from the Hodge decom-
position {14] for L, cohomology of complete manifolds that wA ¢ = 0. This
shows that 3¢5(M) = 0 for i < n. The case i > n follows by Poincaré duality,
since A commutes with the Hodge * operator. ]

Let D be a hyperconvex domain in an n-dimensional Stein manifold N.
Recall that a hyperconvex domain is defined as a bounded domain which
admits a plurisubharmonic exhaustion §,: ! —» [—0, 0). Given 3,, one may
construct an exhaustion 8: Q2 —[—1,0) such that 8 is strictly plurisubhar-
monic and smooth and e C*(Q) [3]. Every pseudoconvex domain with
Lipschitz boundary, in a Stein manifold, is hyperconvex [3]. The next propo-
sition was stated without proof in [7], where it is attributed to J. P. Demailly.

PropPoSITION 2.2. Every hyperconvex domain in a Stein manifold admits a
complete Kihler metric whose Kdhler form can be written as w = dy, where
n is bounded in supremum norm.
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Proof. Define ¢ = —log(—p) and w = V—103dy. Evidently w = dy, where y =
—+/—10y. A calculation in local coordinates on N gives

oy g B

az, azJ
PV _ 29808, 98
62,-62,— - aZ,‘ 62, 32,-62,-'

Since 8: D — [—1, 0) is a strictly plurisubharmonic exhaustion, w corresponds
to a complete Kéhler metric. If X is any complex tangent vector, then

[n(X)* _ 187198 _
(X, X, ‘lﬁ 9R(X)|?

by the fact that § is plurisubharmonic. d

3. Bergman Metric

Let © be a pseudoconvex domain with smooth boundary in C”. For general
pseudoconvex domains, our plan is to give a sufficient condition, for vanish-
ing of L, cohomology outside the middle degree, in terms of certain extremal
problems involving holomorphic functions. Consultation with experts sug-
gests that this condition may always be satisfied, but a rigorous proof appar-
ently lies well beyond the scope of available techniques in several complex
variables. In the strictly pseudoconvex case, our discussion leads to a more
elementary proof of the part of Theorem 1.1 concerning cohomology van-
ishing. Instead of appealing to the asymptotic expansion of the Bergman
kernel, one only needs the weighted L, estimates of Hormander [9].

The Bergman kernel K(z, w) is the kernel of the projection operator from
L, to the subspace of square integrable holomorphic functions. Here L,Q
is the Hilbert space associated to the underlying Euclidean metric. The Kih-
ler form of the associated Bergman metric is = v/—19dlog K(z, z) = dn,
with n = —vV—10log K = —vV—-1K~'9K. If g, is the Hermitian metric cor-
responding to the different form w, then we need to establish the bound-
edness of |7(X)|[¥g.(X,X), for XeTQ a nonzero tangent vector at each
basepoint, in order to apply Gromov’s criterion for the vanishing of the L,
cohomology of g,.

If ¢, L, is an orthonormal basis for the subspace of square integra-
ble holomorphic functions, then K(z, w) = 32, ¢,(z) ¢;(w). Consequently
dK(z,2) = X2, 0¢;¢; and moreover 30K = X2, d¢;0¢;. The Kihler form
of the Bergman metric is given by

w=+—18K 718K = V—1(K 190K — K ~26K3K)
—x/_K”‘ans,acb, ~/—K“2(26¢, )(anb, )

In addition, one also has y = —vV—-1K 19K = —V=1K "' 32 ,08¢;¢,.
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A special choice of orthonormal basis ¢; clarifies the meaning of Gromov’s
criterion. Fix ze @ and X € 7,2 —0. By elliptic regularity, there is a contin-
uous linear functional, on the space of square integrable holomorphic func-
tions, given by Tf = Xf(z). We choose ¢,, ¢3, ... to span the kernel of T,
and ¢; to span the 1-dimensional orthocomplement of the kernel. Evaluat-
ing the crucial ratio at X, we get

O _ K7aeuX)Pe? el
8.(X, X) KX I o> Ziialeil?

Clearly, this ratio is bounded above if and only if 372 ,|¢;|/ =i 1|¢:]? is
bounded above.

The last ratio can be related to certain extremal problems for holomor-
phic functions. Let || f||, denote the L, norm of f, measured with respect
to the Lebesgue measure on . If ze(, consider first the supremum over
all holomorphic functions f of | f(z)|* for || |, =< 1. By elliptic regularity,
sup{| f(z)[*|||f|l2 < 1} is finite. Choose an orthonormal basis so that y5, 3, ...
lie in the kernel of the evaluation map at z. If f= Sa;y;, then | f|5 =

21la? and | f(2)| = ay|¥1(2)]. So supf| f(2)* || fl2= 1} = [¥1(2)]* = K(z, 2).
Consequently, in any orthonormal basis ¢; for the subspace of square in-
tegrable holomorphic functions, we have sup{| f(z)|*|[| fl. = 1} = K(z,2) =

= 1#i ()

If XeT,Qis a fixed tangent vector, we may also consider the extremal
problem sup{| f(z)]*| X,f =0 and | f|], < 1}. As above, we select an ortho-
normal basis ¢, ¢, ... so that X¢,;(z) =0, i = 2. Any square integrable holo-
morphic f satisfying X, f = 0 may be written as f = X7, a;¢;. Moreover,

f@P = Slaf Sleaf =171 SlooP

i=2 i

with equality if and only if @; = c¢;(z) for some constant c. It follows that

sup{| f(2)| XS =0and || fl, = I} = Z2,|6:(2)]>
Combining these observations, we may state the following proposition.

ProposITION 3.1. Let X vary over all nonzero tangent vectors at all points
zof Q. The ratio |n(X)|2/gw(X, X) is uniformly bounded above if and only
if the ratio sup{| f(2)]*| X.f = 0 and || f]l, < 1}/supf] f(2P ||| fll2 < 1} is uni-
formly bounded below by a positive constant.

We now assume that Q is strictly pseudoconvex and establish the validity of
the equivalent conditions of Proposition 3.1.

The model for all strictly pseudoconvex domains is the unit ball in C”. In
the case of the unit ball, one has the closed forniula

K(Z, W) — n(l _|z|2)”‘(ﬂ+])
for the Bergman kernel, which is elementary. One calculates

n=—V—1dlog K = —v—1(n+1)(1-|z|»7'z,0z;
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and
w=+—13dlog K = V—1(n+1)(1—|z|*)?2;2;02,0z;
+V=1(n+1)(1—|z|*)"'0z,3z;.

Thus |9(X)|¥g.(X, X) < n+1.

Standard techniques [4] permit one to localize the problem and subse-
quently to reduce the strictly pseudoconvex case to the case of the unit ball.
Before proceeding further, it is convenient to introduce some abbreviations.
Set K(z, Q) = sup{| f(2)|*||| /|l = 1}, where the supremum is over square in-
tegrable holomorphic functions defined on . Similarly, for X e 7, Q, define
Lx(z,9Q) = sup{|f(z)|*| X,f = 0and || f||, < 1}. The following monotonicity
formulas are immediate from the definitions.

LeEmMA 3.2. If Q,CQ, are bounded domains in C", then
(1) K(z,Q;) < K(z,%);
(1) Lx(z,9Q5) <Lx(z,Q)).

Here ze ), and X e T Q.

It is also straightforward [4] to show that the order of these extremal func-
tionals is locally determined.

LEMMA 3.3. Let Q be a bounded pseudoconvex domain, and let z,€ dQ.
Suppose U, C U,, where U,, U, are small open neighborhoods of zy. Then,
forall ze U N1,

(i) K(z, U,NQ) =< K(z,D);

(ii) ¢;Lx(z,U,NQ) < Lx(z, Q).

Proof. For either (i) or (ii), the proof is similar, so we do both parts togeth-
er. In either case, let f be holomorphic on U, N, and assume that f real-
izes the supremum in the extremal problem for K(z, U;NQ) or Ly (z, U, NQ),
respectively. We showed above that such f exist and that [ no|f|* = 1.

Choose an open set U; satisfying U; C U; and U; C U,. Let x € Cy(U>),
0 < x =1, be a cut-off function whose restriction to Us is identically 1. Define
the plurisubharmonic weight functions

v () =2(n+2)log|t —z|| and w(&) = log(1+|&|]*)-

Set 8 =0d(xf) = fdx, which extends from U,NQ to a C* form on Q and
vanishes identically on U;NQ. Since z € U;NQ, we clearly have

f |82 exp(—v,(£)) d£ < oo.
Q
Consequently [9, p. 94], there exists # € C*Q satisfying d# = 8 and

f | exp(—v,—2w)d§ < f || exp(—v,) d&.
Q Q
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Since z € U;N 1, the weight exp(—v,) is bounded above on the support of 3.
Moreover, the weight exp(—v,—2w) is bounded below on all of Q. Thus

[1r = [ 111 =0,
Q Q

where c; is indepgndent of z, X, and f.
The function f = x f—h is holomorphic on all of @ with

J17r=es.

Since [q|#]?||£ —z|| 7"~ * dk < o0, we have h(z) = 0 and X,/ = 0. The lemma
follows since ¢;1/2f is an acceptable test function for the extremal problems
on . Ol

Now suppose that Q is strictly pseudoconvex. If z,€ 9 and U, is a suffi-
ciently small neighborhood, then we can map U, N biholomorphically to
a domain which is strictly convex at the image point of z,. In the strictly
convex case, U, N} may be squeezed between internally and externally tan-
gent balls. Since the case of the ball was verified by explicit calculations, we
have the following result.

ProposITION 3.4.  If Q is any strictly pseudoconvex domain in C", then the
ratio | n(X)|¥g. (X, X) is uniformly bounded above.

Combined with Proposition 2.1, this provides a proof of the following cor-
ollary which is independent of any appeal to the asymptotic expansion of
the Bergman kernel.

CoroLLARY 3.5. IfQcCC" is a strictly pseudoconvex domain endowed with
its Bergman metric, then 3C5Q = 0 for i + n.

Corollary 3.5 was first proved in [5] by a different method. The singular
cohomology of a pseudoconvex domain satisfies H(Q) =0 for i > n, but
nonzero groups may appear for i < n. In fact, if M is a compact manifold
embedded in R”, then an e neighborhood of M in C" is strictly pseudoconvex
for sufficiently small e. Corollary 3.5 thus stands in stark contrast to the
Hodge theorem for compact manifolds. The proof in [5] used the vanishing
of singular cohomology for i > n, a Mayer-Vietoris argument, and a certain
integral formula to control the ., cohomology on a neighborhood of 39 at
infinity. Certainly, the criterion of Gromov provides a more transparent ex-
planation of the vanishing theorem for L, cohomology.

4. Infinite-Dimensional Spaces of Harmonic Forms

Assume that Q is a pseudoconvex domain with smooth boundary in C”. If «
is a defining function for Q (i.e., if @ = {ze€ C"|a(z) > 0}), then the Levi
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form —aza/az,-az, is positive semidefinite on the complex tangent space of
dQ. We require throughout that dQ be C? and Ve # 0 on 8. Suppose that Ais
a convex function of one real variable. One may define ¢ = —log a +A(||z[).
A calculation gives
Y 5 0x da ;| B«
=a ‘———«

aziazj 62,- 3ZJ GZ,BZJ
Consequently, if A'(|z|]?) is sufficiently large then w = /=183y is the Kéh-
ler form of a complete metric on M. This leads us to give the following
definition.

+N(12]78;+ A" (l2]*) 2z,

DEFINITION 4.1. A suitable Kdhler metric on a pseudoconvex domain {2 is
a metric obtained by the above construction for some choice of o and A, or
a metric quasi-isometric to such a metric.

Applying the criterion of Gromov, it is straightforward to prove the next
theorem.

THEOREM 4.2. IfQC _C" is a pseudoconvex domain with suitable complete
Kdhler metric, then 3C5Q =0 for i + n.

Proof. Evidently, w = dn with y = —v—1dy. It suffices to verify that 5 is
bounded, relative to the complete Kdhler metric. If X is any complex tan-
gent vector, then

[1QOF _ e 0P+ Izl X )
(X X), ' leTaa(X)P+ (2P X |2

= a1+ X(|z|P)|z]P) = e,
since Q is compact. 0O

If Q is strictly pseudoconvex with C* boundary, then the asymptotic ex-
pansion of the Bergman kernel [6] shows that the Bergman metric is quasi-
isometric to a suitable Kdhler metric. Thus, one has another proof of Coral-
lary 3.5.

Let Q C C” be a pseudoconvex domain, with smooth boundary, endowed
with a suitable complete Kdhler metric g in the sense of Definition 4.1. By
JC2 9(Q) we denote the space of harmonic (p, g) forms that are square integra-
ble with respect to g. If p+gq # n, then Corollary 3.5 implies that 3C5"9(Q) =
0. Our aim is to show that 3¢5’ 9(Q) is infinite-dimensional whenever p+ g =
n. If Q is strictly pseudoconvex and p+gq = n, then dim 3C5"9(Q) = o was
proved in [5; 11]. The alternative demonstration below uses a mixture of
ideas from [5] and [7]. Ohsawa’s approach [11] is quite different. He relies
upon detailed calculations with cleverly chosen test functions.

The preliminary step is to obtain a positive lower bound on the spectrum
of A: L,A(Q)— L,A(Q) for i # n. This follows from a more general state-
ment concerning complete Kdhler manifolds M". Suppose that the Kéhler



440 HaroLD DONNELLY

form of M" is w and consider the operator L¢ = wA ¢. First we observe the
following lemma.

LemMmA 4.3. Ifi+k=n, then L*: L,N(M)— L,AN***(M) is a bijection
and a quasi-isometry.

Proof. The primitive decomposition theory [15] shows that
LX: N M — NFM
is a bijection, pointwise on each fiber. This theory also provides an inverse

for L¥ given by an explicit formula involving L and its adjoint. Since ||o | <
oo, both L¥ and its inverse are bounded on L, A(M). d

The following proposition is proved in [7], but we reproduce the proof for
the reader’s convenience.

PRoPOSITION 4.4.  Suppose w = dy, with y bounded in supremum norm.
Then the Laplacian A: LyAN(M)— L, N(M) has a positive lower bound on
its spectrum for i + n. '

Proof. Supose i <n and i+k = n.If Y € L,A"***(M) then, by Lemma 4.1,
Y = L¥¢ for the form ¢ € L, A{(M). Moreover, c||¢[, < [|[¥]> < 2| ¢ |-

We write ¥ = df+ ¢, with § = nAwf " 'A¢ and ¥'=pAw* " Add. Notice
that

1912 = esllnlloll@ll2 = callnlloll¥1l2

and, when ¢ lies in the domain of A,

19712 = esllnlleo|dd 2 = csl|n]loCAB, $D2 < cglln]leo CAY, D2

(In the last step, we used the spectral theorem and the fact that A commutes
with L.) Furthermore,

I¥ 3= <Y, do+y’y =Y, dOy+ <Y, ¥,

For each piece there is an upper bound,

(b, dfY = (8, 0) < [|6¥ |2 (101, < <AY, ¥)2(|0]}> < calln]lw ¥ ]l 2€AY, YDV,
and

WY = WLVl = csllnllall¥ <A, ¥312

Thus Ay, ¥) = ¢7 ]| | ¥[3- _

We have now shown that A acting on L, A'*2%(M) has spectrum bounded
below. Since the Hodge * operator commutes with A, the spectrum is also
bounded below on L,A'(M). Notice that i+ (i+2k) =2(i+k) =2n. This
accounts for all degrees except n. O

To continue with the proof of infinite dimensionality in the middle degree,
we incorporate ideas from [5]. The simplest example is the ball in C”.
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LeEMMA 4.5. Consider the ball B C C", where B is endowed with its Berg-
man metric. Then dim 3C5"9B = oo whenever p+q = n.

Proof. The semisimple Lie group G = SU(#n, 1) acts transitively, holomor-
phically, and isometrically on B. One has the G-invariant Dolbeault complex:

A;ZJeven(B) d+0* A121 odd(B).

Let 302" and 304" °%¢ be the Schwartz kernels of orthogonal projection
onto square integrable harmonic forms. The index theorem of [1] or [2] gives

Tr 3¢5V (x, x) — Tr 3¢5 °*(x, x) = T,(R),

where Tr denotes the pointwise trace. Here T,(R) is a locally computable
polynomial in the components of the curvature tensor R. The Hirzebruch
proportionality principle [8] guarantees that 7,(R) #0 for all 0< p=<n.
According to our Theorem 4.2, Tr 3C5*9(x, x) = 0 whenever p+q # n. Thus
the space 3C5"9(B) is nonzero when p+ g = n. Since G acts transitively,
dim 3C5" 9B = oo. O

The main result of this section is given in the following theorem.

THEOREM 4.6. Let Q C C" be a pseudoconvex domain endowed with a suii-
able Kihler metric, in the sense of Definition 4.1. Then dim 3¢5 9(Q) = ©

for p+q=n.

Proof. We first show that zero occurs in the essential spectrum of
A: LyAP9(Q) > L, AP 9Q) for p+qg=n.

Note that  has a strictly pseudoconvex point—namely, any point furthest
from the origin of coordinates. Near this point [10], the metric and its first
derivatives are asymptotic (via normal coordinate comparison) to those of
the ball in C”. For any ¢ > 0, Lemma 4.5 and the minimax principle give
a compactly supported ¢ € A”9(B) which satisfies (d¢,d¢) + (6¢,60) <
e(¢, ¢). Since the suitable metric on  is complete, we may transplant infi-
nitely many disjoint copies of ¢ into a small Euclidean neighborhood of
the strictly pseudoconvex point of €.
Let v > 0 be a lower bound for the spectrum of A on

LA” 7N @)@ Ly 7 ().
If E: L,A”9(Q)— L, A”9(Q) is the spectral projection, then E. ¢ # 0 for
those transplanted ¢ of the preceding paragraph. However, Proposition 4.4
gives the vanishing of dE ¢ = E_ 0¢ =0 and 0*E. ¢ = E, 0*¢ = 0. Conse-
quently, E. ¢ must be harmonic. Since zero occurs in the essential spectrum

of Aon LY 9Q) for p+q = n, the space of square integrable harmonic forms
must be infinite-dimensional. 0

Using Theorem 4.6 and the asymptotic expansion of the Bergman kernel
[6], we deduce this final result.
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CoROLLARY 4.7. Let  be a strictly pseudoconvex domain in C", endowed
with its Bergman metric. Then dim 305" 7Q = o for p+q = n.
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