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Introduction

There is a well-developed index theory of elliptic operators on compact man-
ifolds. On noncompact manifolds a variety of approaches to index theory
of elliptic operators has yielded interesting information under various as-
sumptions. On a class of noncompact, but finite-volume, locally homoge-
neous spaces, elliptic differential operators descended from invariant opera-
tors on the associated homogeneous spaces can be used to define Fredholm
operators with interesting indices. In general, to define the Fredholm oper-
ator one must restrict the elliptic operator to the “discrete summand” of a
spectral decomposition determined by the Lie group used to define the lo-
cally homogeneous space. There is a large literature on this subject. A con-
cise discussion of the aspects relevant to our paper appears in [Mo].

There is also an index theory of operators elliptic in directions transverse
to group actions or to foliations, especially on compact manifolds [At; NZ;
Si; Ve; Co; CS; HS]. In [FH2] we studied operators 7 invariant under and
elliptic in directions transverse to locally free actions of noncompact Lie
groups G on compact manifolds. Such an operator is not generally Fred-
holm, but each irreducible G-representation occurs with finite multiplicity
in the kernels of the operator and its adjoint. In [FH2] we showed how to
use the indices of elliptic operators on compact manifolds to calculate, for
some irreducible G-representations @, the difference: multiplicity of § in
kernel(7") minus multiplicity of 8 in kernel(7T*).

In the present paper we extend the above results to certain noncompact
locally homogeneous settings. We give in Section 1 the precise assumptions
under which we work, as well as an indication of the variety and complexity
of examples that occur. In this introduction we describe our setting less care-
fully as follows. Let G, and G, be noncompact, connected, semisimple Lie
groups. Assume that H is a compact subgroup of G, and that I' is a lattice
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in G| X G,. Let K| be the maximal compact subgroup of G,. Let T be a first-
order differential operator on (G, X (H\G,))/T that is invariant under and
elliptic in directions transverse to the left G;-action. T"must also be descended
from a (G, X G,)-invariant operator on G; X (H\G,). (Note that G,-orbits
may be dense in (G X (H\G,))/T" and that (G, X (H\G,))/T" may be non-
compact.) T acts on sections of locally homogeneous vector bundles. The
underlying role of the Lie group G;X G, in these definitions determines a
decomposition of the Hilbert spaces of L? sections of these bundles into dis-
crete and continuous summands. 7 respects this decomposition, and in the
rest of this paragraph we use 7 to denote the restriction of 7T to the discrete
summand. Each irreducible G,-representation occurs with finite multiplicity
in kernel(7") and kernel(7*). For certain of these representations 8 we de-
scribe an elliptic operator on (K; X H)\(G; X G,)/T" whose Fredholm index
(in the sense appropriate to noncompact locally homogeneous spaces that is
mentioned in the first paragraph) equals the difference: multiplicity of 3 in
kernel(7") minus multiplicity of 8 in kernel(T*).

In outline, our methods are as follows. A Dirac operator on K;\ G, defines
an element of KK(C, C*G,). The operator T defines two different cycles rep-
resenting the same element of KK(C*G;, C). We use the two different cycles
to do two different calculations of the same Kasparov product (of the Dirac
operator and the transversally elliptic operator) over C*G;. The Kasparov
products lie in KK(C, C) = Z. One calculation leads naturally to the index
of an elliptic operator. The other, when the Dirac operator realizes a discrete
series representation 3, leads to the multiplicity expression.

Our reasoning relies heavily on the analysis appearing in [BG], [CM],
[K2], and [Mo]. Sometimes—when the details of calculations are the same
as those used in [FHI1] or [FH2]—we substitute a reference to the previous
papers for the details. The relation of our work to [Co], [CS], and [HS] is
moré complicated. In spirit our work is based upon theirs: longitudinally and
transversally elliptic operators define KK classes whose products are repre-
presented by interesting elliptic operators. However, the foliation algebras
in the papers mentioned above involve algebras of continuous functions,
and such algebras in our setting would not respect the spectral decomposi-
tions we use. Our contribution to the index theory of transversally elliptic
operators lies in adapting analysis arising in representation theory to prove
an index theorem for transversally elliptic operators on a class of noncom-
pact locally homogeneous spaces.

1. Assumptions

In this section we state the assumptions that hold for the rest of the paper,
and we indicate a source of examples satisfying these assumptions.

Let G = G| X G, be a product of linear, connected, semisimple Lie groups,
and let I" be a torsion-free discrete subgroup having finite covolume in G.
(More generally, assume that G and I" satisfy the assumptions of Section 2.1
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of [BG].) Let H be a compact subgroup of G,. We think of H as a subgroup
of G by identifying it with {e;} X H.

Let 7 be a first-order differential operator on A \G/T" that maps sections
of a locally homogeneous bundle F, to sections of a locally homogeneous
bundle F;. (A locally homogeneous bundle F arises from a right unitary rep-
resentation of H on a vector space F via the construction F=F Xy G/T" =
H\G/T.) Assume further that 7 is the descended version of a first-order G-
invariant differential operator 7 on H\G from sections of Fy Xy G to sec-
tions of Fi Xy G.

The natural left action of G; on H\ G determines actions of Gy on F; Xy G
and on F; X G/T". We assume that T is G,-invariant and that 7 is transvers-
ally elliptic relative to the G;-action. Using Haar measure to place a measure
on H\G/T in the standard way, we can define Hilbert spaces of L2 sections
of F; on which the actions of G, are unitary.

ExaMpPLE. Let G;and G, be SL(2,R). Let H be SO(2). Let I' be a torsion-
free subgroup of finite index in SL(2, Z[V2]). I" is imbedded in G via the map
la;;+b;;V2] - ([a;;+ b;;V2], [a;; — b;;V2]). Gj-orbits are dense in H\G/T.
A discussion of this example and of the method called restriction of scalars,
with which many similar examples can be constructed, appears in [Zi]. In
our example the operator T is the tensor product of the identity operator on
functions on the first factor of SL(2, R) with the Dirac operator on spinors
over SO(2)\SL(2, R).

2. Locally Homogeneous Constructions

In this section we describe some constructions and arguments that work on
locally homogeneous spaces of the type we consider.

Using Haar measure on G, one can define L2(G/T"). Translation defines a
unitary representation of G on L?(G/T"). This representation decomposes
into the direct sum of two unitary representations, called the discrete and
continuous summands:

L*(G/T)y=L%(G/TY®L*G/T).

If K is a compact subgroup of G (K need not be the maximal compact
subgroup), and if there is a right unitary representation of K on a vector
space W, we denote the corresponding homogeneous bundle by

W - K\G
and the corresponding locally homogeneous bundle by
W - K\G/T.

W may be graded, in which case W and W are also. We denote by Ew the
Hilbert C*G-module defined by sections of W (see [K2]). We denote by
L?(W) the Hilbert space of L? sections of W.
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ProposiTioN 2.1 [FH1]. L*(W) = E¢®c+c LH(G/T) = (WR L*(G/T))X,
by which we mean the set of K-invariant elements of WQL*(G/T). If we
replace L*(G/T") in the preceding sentence by L%(G/T') (resp. L*(G/T")), we
get a Hilbert space that we denote by L3(W) (resp. L:(W)).

ProrosITION 2.2. A G-invariant, properly supported, pseudodifferential
operator of nonpositive order acting on sections of W descends to define an
operator on L*(W) that is block diagonal with respect to the decomposition
L2(W) = L%(W)®L2(W). If the order of the pseudodifferential operator is
negative, the discrete block of the descended operator is compact.

Proof. See [CM] and [K2]. The proof of the last sentence depends on a re-
sult of [BG] and is given in detail in [FH1, Proof of Prop. 3.15]. The gist of
the argument involves relating the kernel representing (a high enough power
of) the negative-order pseudodifferential operator to a continuous function
on G, the action of which on L3 72(G/T") [BG] shows to be compact. O

ProrositiOoN 2.3 [CM]. A G-invariant, properly supported, elliptic pseu-
dodifferential operator L of positive order acting on sections of W has a
parametrix S that is a G-invariant, properly supported pseudodifferential
operator of negative order. LoS—1I and S-L —1I are G-invariant, properly
supported smoothing operators.

COROLLARY 2.4. Let L and S be the descended operators on L*(W) associ-
ated with the I and S of the preceding proposition. Then the restrictions of
LeS—1Iand SeL—1I to L3(W) define compact operators.

Proof. The argument proving [FH1, Prop. 3.15] applies. O

COROLLARY 2.5. In the setting of the preceding corollary, assume further
that L has a bounded inverse L=\, Then the restriction of L™ to L3(W) is
compact.

Proof We restrict to L%(W) where S is compact. LoS—1 is compact, and
LoL™'—I=0. Thus L<(S—L™!) is compact, and so is S—L~\. O

Let U(g®) denote the universal enveloping algebra for the complexification of
the Lie algebra of G. Associated to each G-invariant differential operator on
sections of W — K\G is an element 3; A;®X; of (Hom(W, wW)RU(gC)X
(see e.g. [Mo]). (If we replace Hom (W, W) by Hom(W;, W;) then the same
framework applies.) Associated to the representation of G on L*(G/T)=

L%(G/T)Y@®LA(G/T) is what is known as the set of C* vectors of this rep-
resentation, L*(G/T)o, =L‘3}(G/ Mo ®L2(G/T)w. The G-representation de-
fines derived representations p = p;@® p. of U(g%) on

L2(G/T) oo = L3(G/T)0e ® L2(G/T) .

There is an action of (Hom (W, W)® WU(g®)X on L2 (W)= (WR L*(G/T))X
via
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EiAi®XiH2iAi®p(Xi)'

This action and the following results respect the decomposition into discrete
and continuous parts.

ProPOSITION 2.6 [Mo]. If X; A;®X; is elliptic of positive order and if
i A;®p(X;) is symmetric on (WRL2(G/T).)X, then 2 AR p(X;) is es-
sentially self-adjoint on L*(W). If 3; A; ® p(X, ;) has eigenvectors, they are
smooth and thus lie in (W@ L*(G/T')s)X.

COROLLARY 2.7. Let >; A;QX; be an invertible positive-order operator of
the type described in the preceding proposition. Then (W® L3(G/T)X has
a basis consisting of eigenvectors of 2; A; R pa(X;). Each eigenvector lies
in (WQRL3(G/T))X. Each eigenspace is finite-dimensional.

Proof. This is a consequence of Proposition 2.6, Corollary 2.5, and the
spectral theory of compact self-adjoint operators. U

ProposiTION 2.8 (see [Mo]). ;4;®X;e(Hom(W, W)R W)X has a
“formal adjoint”>; A*Q@ X} e (Hom(W, W)R WU(gE)X. Here A is the usual
adjoint of A;, and X} is defined by extending X* = —X from g€ to U(g®).

REMARK 2.9. One can check that for u,ve (WQ®L?*(G/T").)%, the inner
product for L?(W) satisfies

(XA @ p(X))u, v)=(u, (Z; AiQ p(X))v).

PropPOSITION 2.10. Let >; A;®X; be as in Corollary 2.7. Assume that
i Bi®pq(X;) is defined on and symmetric on (WQL4(G/T")..)X and that
it commutes with %; A;® pa(X;) on (W L3(G/T')o.)X. Then 3; B;® py(X;)
is essentially self-adjoint.

Proof. 3; B;® py(X;) is symmetric on each eigenspace for X; A4;® p( X)),
so the finite-dimensional spectral theorem provides a dense set of analytic
vectors for XI; B;® py(X;). Nelson’s analytic vector theorem [RS] implies
that >; B;® py(X;) is essentially self-adjoint. L

3. The Cycle Defined by a Transversally Elliptic Operator

In this section we use the transversally elliptic operator introduced in Sec-
tion 1 to construct a Kasparov (C*G;, C)-bimodule and thus an element of
KK(C*G,, C).

Let T be the transversally elliptic operator of Section 1. Following Sec-
tion 2, we associate to T an element ; 4;® X; of (Hom(Fy, F;)® U (g®)H7.
As in Proposition 2.8, there is a “formal adjoint”

> AA® X} e (Hom(Fy, Fp) @ W(g®)F.

Let p= p ;@ p. denote the derived representation of U(g%) on L>(G/T"),, =
LY(G/T)o®LA(G/T),. Let the vector bundle F be graded by F = Fy®F;.
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NotatioN 3.1. Let 3 denote the degree-1 operator on (F® L3(G/T).,)
defined by X; 4;® ps(X;) in the lower left corner and X; A7® p4(X*) in
the upper right corner.

DEFINITION 3.2 (see [War, p. 267]). Let {Z;} be a basis for the Lie algebra
g; of G;. Then 1-3; Z? € U(gT). We denote 1 —3; Z? by 1—A,.

REMARK 3.3. Under the action of G; on F, 1—A, defines a second-order
differential operator on sections of F that is descended from a G-invariant
operator on sections of F.

NotaTION 3.4. By a slight abuse of notation, we let 1 —A; denote the asso-
ciated element of (Hom (F, F )®‘Lt(g‘13))‘qr and let p(1 —A;) denote the asso-
ciated operator on (F®L*(G/T").)*.

PROPOSITION 3.5. p(1—A,)+32 defines a second-order elliptic operator
that is symmetric on (F® L2(G/T)) and thus essentially self-adjoint, and
bounded below by 1, on L*(F).

Proof. This follows from a calculation (see e.g. [War, pp. 268-269]) and
Proposition 2.6. ]

ProprosITION 3.6. The closure of 3, which we will also denote by 3, defines
a self-adjoint operator on L%(F).

Proof. Apply Proposition 2.10 to 3 and the elliptic operator of Proposi-
tion 3.5. L]

NotaTION 3.7. The functional calculus permits us to define Jo(14+32%)" ¢

L(LY(F)).

THEOREM 3.8. The unitary representation of G, on Lﬁx(F) determines a

representation
0: C*G, - £(LY(F)).

With a grading on L%(F) arising from the grading on F,
(LG(F), 3=(1+3%)712, ¢)
defines a Kasparov (C*G,, C)-bimodule.

Proof. In this proof all operators act on L%(F). Because Jo(1+32)"12isa
self-adjoint operator that commutes with the action of Gy, it suffices to show
that for each a € C°(G,) C C*G,

((3(1+3%)712)2—TI)eq(a)

is compact. We have

(3o(14+3%)7 V22 1= —(1+43%)"L.
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By Corollary 2.5, (p(1 —‘A1)+1+32)“’oo(a) is compact. It suffices to show
that

(1+3) 7 = (p(1-A)+1+3%)")eo(a) (3.9

is compact. The operator in (3.9) equals
(1433 lo(p(1—A))+1+3%)op(1—A))e0(a). (3.10)
By [War, Prop. 4.4.1.2], p(1—A;)~o(a) is bounded. By Corollary 2.5, (3.10)
is compact. U

CoROLLARY 3.11.  Give kernel(3 | ;2(r)) the grading and action of C*G, in-
herited from L3(F). Then (kernel(3|zr)), 0, o) is @ Kasparov (C*Gy, C)-
bimodule representing the same class in KK(C*G,, C) as the bimodule of
Theorem 3.8.

Proof. 3 commutes with ¢(C*G,). O

4. The Kasparov Product

A Dirac operator Dy on K;\G defines an element [(Ey, Dyo(1+D32)" V)]
of KK(C, C*G,) (see [K2]). Here K| is the maximal compact subgroup of
G, and Ey is the Hilbert C*G;-module defined by sections of a homoge-
neous vector bundle V — K;\ G, associated with a representation of K; ona
vector space V. This vector bundle is the tensor product of the spinor bundle
with an auxiliary bundle, and Ey gets a grading from the grading of the
spinors. (We are assuming now that K;\ G, is even-dimensional and has an
invariant spin structure.) Let F and 3 be as in Section 3. In this section we
compute the Kasparov product

[(Ey, Dy(1+ D)) ®cc,[(L5(F), 3=(1+3%) 72, )],
which lies in KK(C, C).
NotaTioN 4.1. Let V denote the product vector bundle VX (H\G/T).

PRroposITION 4.2. The map

Q: C2(Gy, VML (F) » LA(VRF)X
given by

O(f®¢) = SG £(8)®(g-£)(x) dg

extends to define an isomorphism
Q: EyQ®cr6, L} (F)= L>(VOF)™.
If we let K\\(VQF) denote the quotient bundle over (Ky X HY\G/T', then

L2 (VRF)X1 = L2 (K,\(VXF))
= (VRFQRL*(G/T)Xx*4,
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Each of these isomorphisms respects the splittings into discrete and contin-
uous summands, which we denote as usual by subscripts d and c. For in-
stance, we have

LA(VRF)X 1 = L3(K\(V®F))
= (VR FQLY(G/T))KixH,

Proof. The proof is analogous to the proofs of similar statements in [FH1]
and [FH2]. O

REMARK 4.3. Because G| C G and because F is finite-dimensional, the set of
C* vectors for the action of G; on L2(F) contains (F®L?*(G/T')s)*. Thus
the image of CZ(G,, V)X (FQ®L*(G/T)o) under Q is contained in the
tensor product of V with the set of C® vectors for the action of G; on L*(F).

DEFINITION 4.4. Let Ye g;, the Lie algebra of G;. Recall that there is a lin-
ear map cl(Y): V- V given by the tensor product of Clifford multiplication
by Y on the spinors and the identity on the auxiliary factor. Define a vector
bundle map

c(Y):VR®F->VQF
by

c(Y),=cl(Y)®IdF,.

DEerFINITION 4.5. Let Ye g,. Define a differential operator d(Y') on the ten-
sor product of ¥ with the set of C*® vectors for the action of G; on L*(F) by

[d(Y)n](x)=c(Y)% exp(n(exp(¥) ).
t=

DEFINITION 4.6. Give g; an inner product that is invariant under the adjoint
action of K. Let k; be the Lie algebra of K, and let p; be the orthogonal

complement of k; in g;. Let {Y7, ..., ¥,} be an orthonormal basis for p,. Let
n
Dy =2 d(Y). (4.7)
i=1 )

LEmMMA 4.8. Dy is Ky-invariant; thus it defines a differential operator on
(K; X HY\G/T'. This operator acts on (VQ{C vectors for the action of G;
on L2(F)DX. It is the descended version of a G-invariant differential opera-
tor on (Ky X H)\G.

Proof. The proof is a computation analogous to that commonly used to

show that a formula analogous to (4.7) defines a Dirac operator on K{\G,.
O

NoTATION 4.9. Let Dy denote the operator on (K; X H)\G/T" described in
the preceding lemma.

LEMMA 4.10. For fe CZ(Gy, V)X and £ e (FRL*(G/T))",
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Dy (S ®E) = Dy (f®E).

Proof. The proof is a calculation involving a change of variable in the inte-
gral defining Q. O

REMARK 4.11. 3 defines another operator 3, on V&R (F QRL*(G/T)s) as
follows. For v e V of pure degree and for £ € (FQ L*(G/T)s)7,

3y(v®¢£) = (1) Fv@I(£).

Because J is Kj-invariant, 3, defines a differential operator on (K X H)\
G/T that acts on (VR FQ L*(G/T")s.)*1*H, The operator is the descended
version of a G-invariant differential operator on (K; X H)\G.

NortaTtioN 4.12. Let 3, denote the operator on (K; X H)\G/TI" described in
the preceding remark.

NotaTIiON 4.13. Define an operator @y on (VR F R L*(G/T) )5 H by
(PV = EDV + UV'

ProrosiTION 4.14. @y, is a first-order elliptic operator and ®? a second-
order elliptic operator on (Ky X H)\G/I'. Each operator is descended from
a G-invariant elliptic operator on (Ky X H)\G.

Proof. Use ellipticity of D on K{\G, and transversal ellipticity of T to cal-
culate with principal symbols. O

PROPOSITION 4.15.  ®y, and ®%, with domain (VQFQL*(G/T)o) 1% are
symmetric and thus essentially self-adjoint.

Proof. This follows from the symmetry of  and of 3 and from Proposi-
tion 2.6. O

LEMMA 4.16. Dpody=—3,Dy on (VRFQLY(G/T))X1>4,

Proof. The proof is a computation using the definitions of the operators
and the G;-invariance of J. O

PROPOSITION 4.17. Dy and 3y, with domain (VQ FQ L4(G/T) )51 H, are
essentially self-adjoint operators on (VRQFQL%(G/T))Xi*H,

Proof. Dy and 3y, satisfy the assumptions of Proposition 2.10 with respect
to the self-adjoint elliptic operator 1+ ®32. O

NoTATION 4.18. We use notations such as ®y, ®2, Dy, and I, to refer to
the closures of the discrete blocks of the operators of the same names.

REMARK 4.19. Let P be a self-adjoint operator on a Hilbert space. We will
use the identity introduced in a similar context by [BJ]:
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(1+P) 2= — [ X214 P22 a),
0

The right side is interpreted as the norm limit of functional calculus expres-
sions arising from Riemann sums for approximating proper integrals.

LEMMA 4.20. Suppose fe C*(G,, V)X is such that (1+D3)fe CZ(G,, V)X
Then fe Ey. Assume £ € (FQL%(G/T)s). Then

Q((1+DPf®E) = (1+DPQ(f®E)).

Proof. Because 1+ D% is a closed operator, this lemma is a consequence of
Lemma 4.10 and the proof of Theorem 2 of [K2]. O

LEMMA 4.21.  On the discrete blocks Q-((1+D3)~"?®1) = (1+ D)2

Proof. Because the operators in question are bounded, it suffices to estab-
lish the equality for f®¢e CZ(Gy, V)Y@ (FQL3(G/T)s)H. Remark 4.19
enables us to apply Lemma 4.20 to finish the proof. O

LeEMMA 4.22. On the discrete blocks
Q=(Dyo(1+ D)™ 2®1) = Dy o(1+DF) ™2

Proof. Analyze Q-((1+D2)~?D,®1) and (1+ D?)"V2D, as in the proof
of the preceding lemma. O

THEOREM 4.23.

[(Ey, Dyo(1+ D)™ "2)®crg,[(L4(F), 3(1+3%) 712, 0)]
= [(VQF®LYG/T) ", @, -(1+®%)~"*)] e KK(C, C).

Proof. In the rest of this section all operators are restricted to discrete
blocks. We use the connection approach (see either [Sk] or [Bl]) to compute
Kasparov products. Proposition 4.2 identifies the module appearing in the
product. (VQFQL%(G/T)X*H ®,.(1+®2)~'/2) is a Kasparov (C, C)-
bimodule because ®y (1+ ®2)~/2 is self-adjoint and because

(®pe(1+ PP VY2 —I=—-1+@D) 7,

to which Corollary 2.5 applies.

Proposition 4.25, which establishes the positivity condition of the defini-
tion of Kasparov product, and Proposition 4.26, which establishes the con-
nection condition, finish the proof of this theorem. g

NoTATION 4.24. Let U, denote the eigenspace for ®2 associated with eigen-
value «. Let U denote the algebraic direct sum

U=@®,U,.

PROPOSITION 4.25. [Dyo(1+ D) V2®1, ®y(1+ %) ~?] = 0 modulo com-
pact operators.
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Proof. Note that by slight abuse of notation we have ommitted Q. Recall
that commutator brackets denote graded commutators.

It suffices to establish nonnegativity of this bounded operator on the dense
subset U. The following formal manipulations are justified by restriction
to U:

[Dyo(14+ D) 2®1, @pe(1+ 0P ~?]
=[Dy-(1+DPH) V2, D11+ @32
= (1+Dp) 22051+ )~
For each u e U, {(1+ D) V22Di(1+ @)~ V2u,uy = 0. O

The commutator manipulations omitted in the above are analogous to the
ones that appear in full detail in the proof of Proposition 3.27 of [FH2].

ProrosiTioN 4.26. For fe Ey, let Q denote the map
L3 (F) - L3 (K\(VRF))
deﬁned by Qs(§) = Q(f®E). Then for fe C(Gy, VY& of pure degree,
Q3o o(1432) 12 _ (—1)98N@, o(1 + PE)~1/20 °Q;

is compact. Because the ideal of compact operators is norm-closed and be-
cause the adjoint of a compact operator is compact, this result establishes
the connection condition for the Kasparov product.

Proof.
Qro3e(1+3%) 72— (=1)*EN@y o (1+ @F) 7120
— (_l)deg(f)(3V°(1 + 3%/)—1/2_ (PV"(I + 6)12/)—1/2)on
— (—l)deg(f)ﬁy((l + Si?./)—-l/Z _ (1 + @2)—1/2)°Qf _ (1 + 6)2)_1/2°3)V°Qf°
The second term after the last equals sign is compact since Dy QO is bounded
by [War, Prop. 4.4.1.2] and (1+®3%)~? is compact by Corollary 2.5. The
same references establish the boundedness of Do Qy and the compactness

of (1+®7)~2. Therefore, the following calculatlon establishes the com-
pactness of the first term after the last equals sign in the preceding display:

S ((1+3) V2= 1+ 2)-0;
=ﬂ A3 (435 + 0T =1+ @5+ 17O, dA
0
=ﬂ A28, (14+ 35+ 0T A+ @F+A) T DO dA. O
0

REMARK 4.27. The standard identification of KK(C, C) with Z takes the
class represented by the Kasparov bimodule of Theorem 4.23 to the index of
the lower left-hand entry of the discrete block of ®@y.
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5. The Product Revisited: Conclusion

In the preceding section we calculated the Kasparov product of an element
of KK(C, C*G,) defined by a Dirac operator on K;\G; and an element of
KK(C*G,, C) defined by a transversally elliptic operator. The result, inter-
preted as an integer via the standard identification KK(C, C) = Z, is the in-
dex of the discrete block of an explicitly described elliptic operator on a
locally homogeneous space.

Corollary 3.11 identifies a different cycle—one representing the class in
KK(C*Gy, C) used above. If we use this different cycle to calculate the same
Kasparov product, we get a different interpretation of the product. This in-
terpretation identifies the resulting integer as a linear combination of multi-
plicities of irreducible G;-representations in the kernel of the operator J of
Theorem 3.8. The irreducible G-representations whose multiplicities appear
are determined by the Dirac operator Dy.. This approach is completely inde-
pendent of the nature of the space on which the transversally elliptic opera-
tor lives. Thus the calculations in the present noncompact setting are exactly
the same as those done in the compact case in [FH2]. In this paper we restrict
ourselves to noting their most interesting consequences. .

NortAaTION 5.1. Let 8 be an irreducible unitary G,-representation. Let 3 be
the operator on L%(F) of Theorem 3.8. Denote the even and odd parts of
the kernel of 3 by kernel(3)° and kernel(3)’, respectively. Define

mr(B)= 3 (—1)(multiplicity of 8 in kernel(3)’).
i=0,1

THEOREM 5.2. Let J be the operator constructed from a transversally ellip-
tic operator as in Section 3. Let 3 be a discrete series representation of G,
that satisfies the positivity condition of {W1] and [W2]. Let Dy g, be the
Dirac operator on K\\ G, that realizes this discrete series representation. Let

®rie) = Dyg) + v
be the operator constructed in Section 4. Let index(®yg)) be the index de-
scribed in Remark 4.27. Then
mT(B) = indeX(G)V(ﬁ)).

Proof. Each of these numbers is the image in Z of the same Kasparov prod-
uct. ' O
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