A Fibered Polynomial Hull without an Analytic Selection

J. WILLIAM HELTON & ORLANDO MERINO

This note shows that certain polynomial hulls in \mathbb{C}^3 have no analytic selection, thus settling a standing question about such hulls.

Recall that the *polynomial hull* $\mathcal{O}(S)$ of a set S in \mathbb{C}^{M} is the set

$$\mathcal{O}(S) = \{ w \in \mathbb{C}^M : |p(w)| \le \max_{v \in S} |p(v)| \text{ for all polynomials } p \text{ on } \mathbb{C}^M \}.$$

We shall be considering sets S in \mathbb{C}^{1+N} that are fibered over the unit circle $\partial \mathbf{D}$ in \mathbb{C} the complex plane. Thus S has the form

$$\{(e^{i\theta}, \mathbb{S}_{\theta}): 0 \leq \theta \leq 2\pi\},$$

where each S_{θ} is a subset of \mathbb{C}^{N} . Let \mathbb{D} denote the unit disk in the complex plane and let H_{N}^{∞} denote the \mathbb{C}^{N} -valued functions bounded and analytic on \mathbb{D} . Clearly (from the maximum principle) if f is any H_{N}^{∞} function satisfying

$$f(e^{i\theta}) \in \mathbb{S}_{\theta}$$
 for almost all θ ,

then the graph $\{z, f(z)\}$: $z \in \mathbf{D}$ of f lies in $\mathcal{O}(S)$. Such a function f is called an *analytic selection* of $\mathcal{O}(S)$. A significant question about polynomial hulls is which hulls have analytic selections.

An obvious necessary condition is that $\mathcal{O}(S)$ in \mathbb{C}^{1+N} be a set whose projection onto the first coordinate is a set containing \mathbb{D} . We shall refer to such $\mathcal{O}(S)$ as having nontrivial fiber over the unit disk. Also, if the S_{θ} are not connected then it is easy to make up examples where $\mathcal{O}(S)$ has no analytic selection.

QUESTION (Q). Are these conditions sufficient for $\mathcal{O}(S)$ to have an analytic selection?

By giving a highly pathological example (for N=1), Wermer [Wr] showed that in general the answer is No. However, when the S_{θ} are nicely behaved the story is different. For N=1 Slodkowski [Sl] and independently Wegert [Wg] and Helton-Marshall [HM] showed that the answer is Yes. This article gives a simple very well-behaved S in \mathbb{C}^3 for which the answer to (Q) is No.

Now we write down the S that provides our example. Write \mathbb{C}^2 as $\{z = (x_1, y_1, x_2, y_2) = (z_1, z_2)\}$. Let \mathbb{C} denote the semicircle

$$C = \{(z_1, z_2) : |z_1| = 1, \text{ Im } z_1 \ge 0, z_2 = 0\}$$

embedded in the first complex coordinate of \mathbb{C}^2 . Our example is based on rotating \mathbb{C} inside of real 3-dimensional space in a way that varies with θ . Here \mathbb{R}^3 is embedded in \mathbb{C}^2 in the usual way $(y_2 = 0)$. Let R_{θ}^1 denote the map which acts on \mathbb{C}^2 by the rotation of z in the z_1 plane by θ (z_2 is kept fixed), that is,

$$R^1_{\theta}(z_1, z_2) = (e^{i\theta}z_1, z_2).$$

Also, let R_{θ}^2 denote rotation in the (y_1, x_2) plane by θ .

Theorem 1. The polynomial hull $\mathcal{O}(S)$ of S with fibers

$$S_{\theta} = R_{\theta/2}^1(R_{\theta/2}^2(\mathcal{C}))$$

has nontrivial fibers over the disk, since $\mathfrak{P}(S)$ contains the graph

$$\{(z, \pm z^{1/2}, 0) : z \in \mathbf{D}\}\$$

of $z^{1/2}$. Moreover, each S_{θ} is connected, and the sets S_{θ} vary continuously with θ . However, $\mathcal{P}(S)$ contains no analytic selection.

First we need a lemma. For k = 1, 2, let Proj_k be the map on \mathbb{C}^3 given by $\text{Proj}_k(\zeta, z_1, z_2) = z_k$.

LEMMA. $\mathcal{O}(S) \subset \mathbf{D} \times \mathcal{O}(\text{Proj}_1(S)) \times \mathcal{O}(\text{Proj}_2(S))$.

Proof. $S \subset \partial \mathbf{D} \times \operatorname{Proj}_1(S) \times \operatorname{Proj}_2(S)$. Thus

$$\mathcal{O}(\mathbb{S}) \subset \mathcal{O}(\partial \mathbf{D} \times \operatorname{Proj}_{1}(\mathbb{S}) \times \operatorname{Proj}_{2}(\mathbb{S})) \subset \mathbf{D} \times \mathcal{O}(\operatorname{Proj}_{1}(\mathbb{S})) \times \mathcal{O}(\operatorname{Proj}_{2}(\mathbb{S})). \qquad \Box$$

Proof of Theorem 1. Suppose that $f = (f^1, f^2)$ in H_2^{∞} has its graph contained in $\mathcal{O}(S)$. By the lemma, the function f^2 is in $\mathcal{O}(\operatorname{Proj}_2(S)) \subset [-1, 1]$ in **R**. In particular Im f^2 is 0; therefore f^2 is constant, but $f^2(1) = 0$ since $f(1) \in \mathcal{O}$. We conclude that f^2 is 0.

The value of $f = (f^1, 0)$ at θ is in $S_{\theta} \cap \{(z_1, 0)\} = \{(\pm e^{i\theta/2}, 0)\}$ except possibly for $\theta = 0$ or 2π . That is, $f^1 = \pm e^{i\theta/2}$ almost everywhere. No such function exists in H_1^{∞} , so we have a contradiction.

Now we check that the S_{θ} are smoothly varying. If $0 < \theta < 2\pi$, then the maps R_{θ}^1 and R_{θ}^2 on \mathbb{C}^2 are jointly C^{∞} in θ and (z_1, z_2) . The only potential difficulty is at $\theta = 0$ or $\theta = 2\pi$. One can easily visualize S_{θ} since it lies in $R^3 \subset C^2$. The key is the set of points $\pm z_{\theta} = (\pm e^{i\theta/2}, 0)$ which are the image of $\pm i$ under the map $R_{\theta/2}^1 R_{\theta/2}^2$ (and which consequently lie in S_{θ}). Observe that $\pm i = \pm z_0 = \mp z_{2\pi}$, implying that as θ moves from 0 to 2π the points (+1, 0) and (-1, 0) rotate into each other. Thus $S_{2\pi}$ is a rotation of \mathbb{C} in the $(z_1, 0)$ plane which has the same endpoints as \mathbb{C} ; we have $S_{2\pi} = \mathbb{C}$ or $S_{2\pi} = -\mathbb{C}$. However,

$$R_{2\pi/2}^1(R_{2\pi/2}^2(1,0)) = R_{\pi}^1((-1,0)) = (1,0).$$

We have established that the S_{θ} vary continuously in θ .

Lest one complain that our example hinges on degeneracy of S_{θ} , we now give an example where S is the closure of an open set in \mathbb{C}^3 in addition to maintaining other nice properties.

THEOREM 2. For $n \in \mathbb{N}$, let \mathbb{S}^n be the set in \mathbb{C}^3 with fibers $\mathbb{S}_{\theta} + (1/n)B$, where B is the unit ball of \mathbb{C}^2 . Then there exists $n_0 \in \mathbb{N}$ such that the polynomial hull of \mathbb{S}^{n_0} has no analytic selection.

Proof. Suppose not. Then for each n there exists f_n in H_2^{∞} whose graph lies in \mathbb{S}^n . Let f_0 be a normal families limit of $\{f_n\}$. By polynomial convexity of each \mathbb{S}_{θ} and by Corollary 2 in [HM], the function f_0 has graph lying in $\mathcal{O}(\mathbb{S})$. Thus $\mathcal{O}(\mathbb{S})$ has a selection, contrary to Theorem 1.

References

- [HM] J. W. Helton and D. E. Marshall, *Frequency domain design and analytic selections*, Indiana Univ. Math. J. 39 (1990), 157–184.
 - [S1] Z. Slodowski, Polynomial hulls for \mathbb{C}^2 and quasicircles, preprint.
- [Wg] E. Wegert, preprint.
- [Wr] J. Wermer, *Polynomially convex hulls and analyticity*, Ark. Mat. 20 (1982), 129–135.

J. W. Helton Department of Mathematics University of California – San Diego La Jolla, CA 92093-0112 O. Merino
Department of Mathematics
University of Rhode Island
Kingston, RI 02881