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1. Introduction

In this article we describe completely the invariant subspaces of the oper-
ator S of multiplication by the coordinate function z on the Banach spaces
BMOA and VMOA. BMOA stands for analytic functions of bounded mean
oscillation on the unit circle 7 and VMOA is its subspace consisting of func-
tions of vanishing mean oscillation. Due to the nonseparability of BMOA,
the nature of the invariant subspaces is somewhat like their nature in the case
of H®. Just as in the case of H®, we describe those invariant subspaces of
BMOA that are closed in the weak-star topology when BMOA is treated as
the dual of the Hardy space H!. On VMOA, the invariant subspaces that are
characterized are closed in the norm topology. Inner functions play a central
role in both cases. For precise statements we refer to Section 2, Theorem A
and Theorem C.

We also prove that the maximal ideals of the Banach algebra QA which
correspond to fibers are dense in VMOA. The same kind of density result
holds in the weak-star topology of BMOA for the maximal ideals of H®
that correspond to fibers. See Section 2, Theorem B and Theorem D. Quite
interestingly, outer functions in both spaces turn out to be cyclic vectors for
the operator S. For BMOA the cyclicity is in the context of the weak-star
topology.

In the remainder of this section we outline very briefly those parts of the
theory of Hardy spaces and BMOA that will be needed in the rest of this
paper. Section 2 contains the precise statements of the main results. Section
3 contains preliminary results. Sections 4, 5, 6, and 7 are the proofs of the
main results, namely, Theorems A, B, C, and D (respectively).

T will denote the unit circle in the complex plane and D its interior. L” and
HP will denote the familiar Lebesgue and Hardy spaces on T, with | f||, as
the L? norm of f. It is well-known that each element f of H” can be looked
upon as an analytic function in D satisfying a certain growth condition. Of
great importance is the fact that any analytic f(z) in H” can be uniquely
factorized as f(z) =B(z)S(z)O(z), where B(z)S(z) is the inner factor of
f(z) and O(z) is its outer factor. For further details we refer to [3] or [5].
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THE SpacEs BMOA AND VMOA. Let f be in L' and let I(f) denote
|7|7" §; f, where I is a subarc of T. We say f is of bounded mean oscillaticn
and write f€ BMO if

Ilfl|*=81;p(lf—l(f)|)<oo. (1.1)

BMO is a Banach space under the norm given by

1A= 171« +1£€0)].

The space of functions of vanishing mean oscillation (i.e. VMO) is the clo-
sure in BMO of the continuous functions on 7. BMOA = BMON H! and
VMOA = VMO N H. BMOA is contained in H? for every finite p.

FEFFERMAN’S THEOREM. BMOA is the dual of H'. For each f in BMOA, its
action as a linear functional is given by

limS fre®yg(re’®ydo for ge H.. (1.2)
T

r—1

H'!is the dual of VMOA, and its action is given by (1.2). For further details
on these spaces refer to [5].

2. Statement of Main Results

Given fin BMOA (VMOA), it is easy to see that e’?f is in BMOA (VMOA).
Denoting by S the operator of multiplication by the coordinate function
e'’, we have the following theorem.

THEOREM A. Let M be a proper nontrivial closed subspace of VMOA in-
variant under the action of the operator S. Then there is a unique inner func-
tion I and a unique and dense subspace N of VMOA such that M =I(z)N.
Further, N=VMOA if and only if I(z) is a finite Blaschke product.

Note: For details of the fact that both kinds of subspaces exist (i.e., N=
VMOA and N dense in VMOA), we refer to Remark 4.1 at the end of the
proof of Theorem A in Section 4. We also show there that every inner func-
tion 7(z) arises this way and that no inner function /(z) can give rise to two
different spaces V.

There are some interesting questions connected with the Banach algebra
QA =H"NVMOA,; see [2]. As an application of Theorem A, and adopting
the terminology of [2], we have the next theorem.

THEOREM B. Let M be any maximal ideal in a fiber my, of the algebra QA.
Then M is dense in VMOA.

Due to the nonseparability of BMOA, it is to be expected that there cannot
be an easy characterization of the invariant subspaces of S on BMOA. For
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instance VMOA, B(z)BMOA (B(z) is a finite Blaschke product), and the
closure in BMOA of H® are all proper nontrivial invariant subspaces. How-
ever, as in the H® case, the situation is retrieved by discussing weak-star
closed subspaces of BMOA. For such spaces we have a complete character-
ization given in Theorem C.

THEOREM C. Let M be a weak-star closed subspace of BMOA invariant
under S. Then corresponding to this M there exists a unique inner function
I(2) and a unique subspace N of BMOA such that N is weak-star dense in
BMOA and M =I(z)N. Further, N= BMOA if and only if I(z) is a finite
Blaschke product.

THEOREM D. Let M be any maximal ideal in a fiber my on H”. Then M is
weak-star dense in BMOA.

3. Preliminary Results

Let S* be the operator on H'! that sends f— e ~°( f— f(0)). It is easy to see
that S* is the adjoint of S on VMOA and that ||S*?|<n+1.

THEOREM 3.1. Let M be a closed subspace of H' invariant under S*. Then
there is a unique inner function I such that M =IH}N H".

Proof. Let f(z)=2¢ «,z" be a fixed but arbitrarily chosen element of M.
Let k(e’®) = sup| f(re®)|, where the supremum is taken over 0 < r < 1. Then,
by a theorem of Hardy and Littlewood [3, Thm. 1.9], k¥ belongs to L!. Put-
ting ¢ = exp(—|k|+i|k|) (where ~ denotes the conjugate), we find that ¢k is
in L*. Further, letting 4,(e’°) stand for h(re’®) for h in H', we can see by the
dominated convergence theorem that

|ef,i—&fl2—0 as r—1
and hence
I-P)ef,—(I—P)af| >0 as r—1, (3.1)

where P is the analytic projection, so that 7/ — P is the co-analytic projection.
If we let o(z) = X§ 8,2", then (3.1) can now be rewritten as

§( > ak6k+nr">e-f""—(1—P)¢f

n=i\k=0

-0 as r—1, (3.2)
2

and hence

§:( > ak6k+,,r")r"e-f""—(1—P)¢f

n=1\k=0

—0 as r—1l, (3.3)
2

Thus, using the fact (deduced by the dominated convergence theorem) that

Iz, f~2fi—0 as r—1, (3.4)

we conclude that
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P@f)=af—(I—P)af
= lim &, f—lim i( > ak8k+nr">e"'"”

r—1 r—-1n=1\k=0

=1im<¢,f— E( ) ak6k+nr">r"e""’”) (3.5)
ro1 n=1\k=0

in the norm of L! by (3.2) and (3.3). But for each fixed r, 0<r <1, we find
that

orf— E( E akﬁk+nrk> E Bnr nS*nf (3.6)
n=0\k=0

This is easily established by using the fact that the series on the right con-
verges in L' for each fixed r because || S*"|| < n+1; for each such r, the Fourier
coefficients of the expression on the right-hand side of (3.6) coincide with
the corresponding Fourier coefficients of the expression on the left-hand side
of (3.6). Hence, from (3.5) and (3.6) we find that

—>0 as r—1.

P(pf)— E Bar"S*™f
n=0

But since X5 —o 3,r"S*"f is in M for each r (as f is in M), we conclude that

P(3f)isin M. Now &f isin L™. So P(@f) is in H?, in fact, in BMOA. Hence

MNH?=+{0}.

Fix a p, 0< p<1. In view of Beurling’s theorem - which says that on H?
the invariant subspaces of S are of the form IH?, where I is an inner func-
tion (see [4]) - the invariant subspaces of S* on H? (the adjoint of S) have
the form TH2 N H?. Hence, using the fact that M N H? is obviously S* invari-
ant and closed in H?, we observe that M N H?=IHZN H? Thus IHN H'is
contained in M, being the closure of M N H? in M. On the other hand, let f
be any function in M and let ¢, = exp(—[(|k|+i|k|)/n]) for every natural n,
where k is as chosen in the beginning of the proof. Then it follows by the
same arguments as before that P(3, f) is in M N H? for each n; since ¢, — 1

, it thus follows that P(g, f) — P(f)=/f a.e. Further, in view of the
1nequahty |&ll,= «| gl (due to Kolmogoroff’s theorem on the weak (1,1)
nature of the conjugation operator [4, p. 115]) and the fact that 2P(g)=
g+ig+g(0) for any g in L? we conclude by simple reasoning that P(3,.f);
converges to P(f)=f in L?. But P(3,f) is always in THZNH?, so f lies
in IH{ N H? and hence f=Ih for some 4 in H”. But I is inner and so of
modulus 1 a.e. on 7. This means that % is in H', from which it is easy to
conclude that f is in JHJN H'. Since f is an arbitrary element of M we
see that M C IH{N H'. We have already shown the reverse inclusion, so
M=IA{NH. 7

LEMMA 3.2. Let f=10 be an element of BMOA (VMOA), where I is the
inner part of f and O its outer factor. Let I} be any mner Junction that di-
vides I. Then I f is in BMOA (VMOA).
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Proof. See [2].

LemMA 3.3. The only inner functions in VMOA are the finite Blaschke
products.

Proof. See [2]. O

LEMMA 3.4. Let I be an inner function that multiples BMOA. Then I is a
finite Blaschke product.

Proof. This is a theorem of Stegenga in [6]. [l
LEMMA 3.5. If 1is a finite Blaschke product then I multiplies BMOA.

Proof. Thisis a simple and well-known consequence of fhe duality relation-
ship between H'! and BMOA. O

LeEMMA 3.6. Let M be an invariant subspace in VMOA. Further, assume
that the following conditions are satisfied:

(i) There is a finite Blaschke product B in M.
(ii) B divides the inner part of every fin M.

Then M = B(z)VMOA.

Proof. Let H={B(z)p(z): p is a polynomial in VMOA]}. Since B is in M,
we see that H is in M. In view of Lemma 3.2 and the VMOA-H! duality, it
follows that the operator f— P(Bf) is bounded on VMOA. Hence Bp,, is
convergent in VMOA if and only if {p,} is convergent in VMOA. Thus the
closure of H in VMOA is B(z)VMOA. This closure is contained in M be-
cause M is closed. On the other hand, by (ii) above and by Lemma 3.2, if
fis in M then f= Bg (where g is in VMOA), so that f is in B(z)VMOA.
This proves the result. O

4. Proof of Theorem A

By the duality relation (1.3), A(M), the annihilator of M, is a closed sub-
space of H! which is invariant under S*. Thus A(M) = IH}N H' by Theorem
3.1. Now VMOA is contained in H? and so M is orthogonal to A(M)N H?,
because every element of A(M)N H? is in the annihilator A(M) and this
action as a linear functional coincides with the inner product of A2 In other
words, M C IH?. This means that I divides the inner part of every function
in M. Without loss of generality, let I stand for the highest common factor
of the inner parts of all functions in M. Then there is a set N in A2 such that
M=IN. By Lemma 3.2, N is contained in VMOA. It is also evident that
N is a vector subspace which is invariant under the action of S.

Claim 1: If N is closed then M = B(z)VMOA, where B is a finite Blaschke
product. So suppose N is closed. We show that M = VMOA. If N VMOA
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then by the same arguments used for M we conclude that N= I} N;, where
I, is a nontrivial inner function and N; C VMOA. But then I7; will divide
the inner part of every function in M, contradicting the choice of I as the
highest common factor of the inner parts of all functions in M. Thus if Nis
closed then it is equal to VMOA. Since 1 is in VMOA we conclude that 7 is
in VMOA. But then, by Lemma 3.3, 7 is a finite Blaschke product.

Claim 2: If N is not closed then M = I(z) N, where I is not a finite Blaschke
Jactor and N is dense in VMOA: Suppose N is not closed and let N, be its
closure in VMOA. We shall show that N;= VMOA. If this is not so then
N, is a proper invariant subspace, so that (by the same reasoning as used on
M) we deduce that there is a nontrivial inner function 7; which divides the
inner part of every function in &,. This contradicts the choice of I, thereby
showing that N is dense in VMOA. Now, we have M = I(z) N. We still must
show that 7 is not a finite Blaschke product. So let 7 be a finite Blaschke prod-
uct. Since N is dense, there exists a sequence {f,} in N such that f;, —>1in
VMOA. By Lemma 3.5, multiplication by 7 is a bounded operator on BMOA;
hence If, — I. Since If,, is in M we conclude that 7 is in M. Also, by its very
choice, I satisfies the conditions of Lemma 3.6 and so M = I(z)VMOA. But
this means N = VMOA, contradicting the fact that N is not closed. Hence
I is not a finite Blaschke product.

The uniqueness of N, I, and B is easy to see. This completes the proof of
Theorem A. ]

REMARK 4.1. It is easy to see that both kinds of subspaces, B(z)VMOA
and I(z)N (N dense in VMOA), exist. That the first kind exists follows
from Lemma 3.2 and Lemma 3.4. To see that the second kind exists, let
S(z) be a singular inner function and let f be any function in 4, the Banach
algebra of analytic functions on D which are continuous on 7, such that
f(z) vanishes on the closed support of the measure determining S(z). Then
S(z) f(z) is in A and hence in VMOA. Now let M be the closure in VMOA
of {S(z2)f(z) p(2): p(z) is a polynomial in A}. Obviously, M is an invariant
subspace of the second type.

We next show that every inner function arises as given in the theorem. Let
I be any inner function. By a theorem of Wolff [7], there is an outer func-
tion 4 in QA such that 74 is in QA. Now let M be the closure in VMOA of
{Thp: p is a polynomial in VMOA). Then it is not difficult to see that M=
IN, where N is dense in VMOA. '

Finally, we show that the same inner function cannot give rise to two dif-
ferent dense subspaces N and L. That is for a given inner 7, if IN and IL
are two closed invariant subspaces of VMOA, where N and L are dense in
VMOA, then N= L. To see this, we first observe that Ann(IN)=IH}N H".
This is proved as follows: Clearly IH{N H' C Ann(IN). On the other hand,
by Theorem 3.1 Ann(IN) =1, HYN H' for some inner I; so that IH{NH'C
I, H{N H'. This means IH*> I, H% Also, since I; HiN H' annihilates IN,
we get that LHZNH 2 annihilates 7H? because N, being dense in VMOA,, is
dense in H2. So IH*>C I;H? Hence IH>=1,H? so that I =I,.
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Then, by the preceding paragraph, we have Ann(IN) = IH N H' =
Ann(/L) because N and L are dense in VMOA. This forces IN= 1L by the
Hahn-Banach theorem, so N=L.

COROLLARY 4.2. Let g be an outer function in VMOA. Then g is a cyclic
vector for S. That is, given ¢ >0, for any h in VMOA there exists a poly-
nomial p such that ||h—gp| <e.

Proof. Let N={gp: p is an analytic polynomial}. Let M be the closure of
N in VMOA. M is an invariant subspace of VMOA, and since g is in M, the
highest common factor of the inner parts of all elements of M is 1. Thus
M =VMOA, that is, N is dense in VMOA. U

5. Proof of Theorem B

In view of Corollary 4.2, the proof is quite easy. Let N be a maximal ideal
corresponding to the fiber m2,. Then z — A is an outer function in /N and hence
zZ—A belongs to the closure of N in VMOA, which we call M. As M is obvi-
ously an invariant subspace, we conclude that (z—A)p(z) is in M for every
analytic polynomial p(z). Thus, by Corollary 4.2, M = VMOA.. This means
that N is dense in VMOA. O

6. Proof of Theorem C

Remarks preceding the Proof of Theorem C. We wish to observe here that
the BMOA analogue in the weak-star topology of Lemma 3.6 is valid be-
cause {Bf,} is convergent in the weak-star topology of BMOA, where B is
a finite Blaschke product and { f,} is a sequence. This is a result of Lemma
3.5, which states that if B is a finite Blaschke product then f— P(Bf) is
bounded on H.

Proof of Theorem C. In the proof of this theorem we shall make use of
Lemma 3.4 (which is a theorem of Stegenga [6]), instead of Lemma 3.3 as
in the proof of Theorem A. We also need the following observations: If M
is a weak-star closed subspace of BMOA, then there is a norm closed sub-
space N of H' such that the annihilator of N is M. Further, if M is invariant
under S then it is easy to see, by the duality relation (1.3), that N is invariant
under S*.

Because of the remarks preceding this proof and the above observations,
the proof of Theorem C is almost identical to the proof of Theorem A. [

REMARK 6.1. We observe here that both kinds of subspaces described in
Theorem C exist. The proof is based on the same ideas as contained in Re-
mark 4.1, which show that every inner function 7 arises as in the statement
of the theorem and that an inner function / cannot give rise to more than
one weak-star dense subspace N.
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COROLLARY 6.2. Let f be an outer function in BMOA. Then the weak-star
closure in BMOA of {fp: p is an analytic polynomial} is BMOA.

Proof. The proof is obvious in view of the proof of Corollary 4.2. C

7. Proof of Theorem D

This result is obvious once we observe that the outer function (z—A) is in
every maximal ideal of the fiber m, in H®. Proceeding along the lines of the
proof of Theorem B, the result follows by Corollary 6.2.
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