On the Darboux-Picard Theorem in \mathbb{C}^n

So-Chin Chen

I. Introduction

In one complex variable we have the following Darboux-Picard theorem.

THEOREM. Let D be an open disc, and let $f: \overline{D} \to \mathbb{C}$ be continuous and satisfy:

- (i) f is holomorphic in D, and
- (ii) f is one-to-one on bD.

Then f is one-to-one throughout \overline{D} and f(D) is the inside of the Jordan curve f(bD).

For a proof see, for instance, Burckel [1, p. 310].

In this note we will show that the same result still holds if D is sitting in \mathbb{C}^n for $n \ge 2$. But first, a simple example shows that if we map the unit disc in \mathbb{C} into some \mathbb{C}^n with n > 1, then in general the conclusion does not hold.

EXAMPLE. Let U be the unit disc in \mathbb{C} . Define $G: \overline{U} \to \mathbb{C}^2$ by

$$z \mapsto (z(z-\frac{1}{2})(z+\frac{1}{2}), 2(z-\frac{1}{2})(z+\frac{1}{2})).$$

Then we have $G(\frac{1}{2}) = G(-\frac{1}{2}) = (0, 0)$ and G is one-to-one on bU.

Here is our main result.

MAIN THEOREM. Let $D \subseteq \mathbb{C}^n$, $n \ge 2$, be a bounded domain with bD homeomorphic to S^{2n-1} , and let $f = (f_1, ..., f_n) : \bar{D} \to \mathbb{C}^n$ be a mapping such that $f_j \in H(D) \cap C^0(\bar{D})$ for j = 1, ..., n. Suppose that f is one-to-one on bD; then f is one-to-one throughout \bar{D} .

Some related problems were considered in Globevnik and Stout [2].

The author would like to thank R. M. Range and S. Plotnick for help-ful discussions and to thank S. Bell for bringing the reference [5] to his attention.

Received May 6, 1992.

Research partially supported by a FRAP grant from SUNY at Albany. Michigan Math. J. 40 (1993).

II. Proof of the Main Theorem

We first note that the restriction of f to the boundary bD is a homeomorphism. Hence, by our hypotheses, f(bD) is homeomorphic to S^{2n-1} and f(bD) separates \mathbb{C}^n into two components, a bounded component called Ω and an unbounded component called Ω_{∞} .

We claim that $f(D) \subseteq \overline{\Omega} = \Omega \cup f(bD)$. If not, since $f(\overline{D})$ is compact, there exists a point $x \in D$ such that $f(x) = y \in \Omega_{\infty} \cap b(f(\overline{D}))$ and

$$dist(y, \overline{\Omega}) = \max\{dist(z, \overline{\Omega}) | z \in f(\overline{D})\}\$$
$$= \delta.$$

Hence there exists a point $y_1 \in \mathbb{C}^n - f(\bar{D})$ as well as a small $\epsilon > 0$ such that $\overline{B(y_1, \epsilon)} \subseteq (\mathbb{C}^n - f(\bar{D})) \cap B(y, \delta/3)$. Note that $f(bD) \cap B(y, \delta/3) = \emptyset$.

Now consider the complex line L through the points y and y_1 . L is the intersection of n-1 hyperplanes $a_{j1}w_1 + \cdots + a_{jn}w_n = c_j$ for $j = 1, \dots, n-1$ in \mathbb{C}^n . Then the pullback of L, that is,

$$f^{-1}(\mathbf{L}) = \{z \in \bar{D} \mid a_{j1} f_1(z) + \dots + a_{jn} f_n(z) = c_j, j = 1, \dots, n-1\},\$$

defines a complex subvariety V in D with $\dim_{\mathbb{C}} V \ge 1$. Obviously, $x \in V$ and $x \notin bD \cap f^{-1}(\mathbb{L})$. Also one can find an M > 0 such that

$$f(bD) \cap \mathbf{L} \subseteq B(y_1, M) \cap \mathbf{L}$$
.

Therefore, by Runge's approximation theorem there exists a rational function h(w) defined on L with exactly one pole at y_1 with $|h(y)| \ge 10$ and

$$\max |h(w)| \le 1$$
 for $w \in (\overline{B(y_1, M)} - B(y, \delta/3)) \cap L$.

This implies that $h \circ f(z)$ is a holomorphic function on \overline{V} and that $|h \circ f(z)|$ attains its maximum at some interior point. This contradicts the maximum principle (i.e., see Gunning and Rossi [3]). So we have $f(D) \subseteq \overline{\Omega}$.

Next we show that $f(D) \subseteq \Omega$. Once this is proved, it is easy to see that $f: D \to \Omega$ is a proper map. This claim will be proved using a similar argument. Suppose that there exists $p \in bD$ and $p_0 \in D$ such that $f(p) = f(p_0) = q_0 \in f(bD)$. Consider the subvariety with boundary \bar{V}_0 of \bar{D} given by

$$\bar{V}_0 = \{ z \in \bar{D} \mid f(z) = q_0 \}.$$

Then we must have $\dim_{\mathbb{C}} V_0 = 0$. For suppose that $\dim_{\mathbb{C}} V_0 \ge 1$. Since f is one-to-one on the boundary, we see that $\bar{V}_0 \cap bD = \{p\}$. Therefore, the maximum principle shows that the restrictions of both $|e^{z_j}|$ and $|e^{-z_j}|$ to \bar{V}_0 attain their maxima at p for j = 1, ..., n. Hence $x_j = \operatorname{Re} z_j$ is constant on connected components of \bar{V}_0 . Similarly, $y_j = \operatorname{Im} z_j$ is also constant on any connected components of \bar{V}_0 . This gives the desired contradiction. Hence $\dim_{\mathbb{C}} V_0 = 0$.

It follows that p_0 is an isolated point of V_0 . Now choose a polydisc $\Delta^n = \Delta^n(p_0; r) \subset\subset D$ centered at p_0 with the same radius r in each direction so that

$$\overline{V}_0 \cap \overline{\Delta^n(p_0;r)} = \{p_0\}.$$

Since the boundary $b\Delta^n$ is a compact subset, we see that $f(b\Delta^n)$ is a compact subset of $\bar{\Omega}$ and $q_0 \notin f(b\Delta^n)$. Put $d = \operatorname{dist}(q_0, f(b\Delta^n))$. Since q_0 is a boundary point of $\bar{\Omega}$, there exists a point q_1 in $\Omega_{\infty} \cap B(q_0, d/10)$. Let L be the complex line through q_0 and q_1 , and let $\bar{W} = f^{-1}(L)$ be the complex subvariety of \bar{D} defined as before. Then there exists an M > 0 such that

$$f(W \cap (b\Delta^n)) \cap \mathbf{L} \subseteq (B(q_0, M) - B(q_0, d/2)) \cap \mathbf{L}.$$

Hence (again by Runge's approximation theorem) there exists a rational function g(w) on L with exactly one pole at q_1 with $|g(q_0)| \ge 10$ and

$$\max |g(w)| \le 1$$
 for $w \in f(W \cap (b\Delta^n)) \cap \mathbf{L}$.

It follows that the modulus of the nonconstant holomorphic function $g \circ f|_{\overline{W} \cap \Delta^n}$ attains its maximum at an interior point of $W \cap \Delta^n$. This is impossible. Hence $f^{-1}(q_0) = \{p\}$ and $f(D) \subseteq \Omega$.

Thus we have shown that $f: D \to \Omega$ is a proper map. Let $J = \det(f')$ be the Jacobian associated with f, and let Z = Z(J) be the zeros of J in D. Denote by S the subvariety f(Z) of Ω . Then a standard result (i.e., see Rudin [4]) shows that

$$f: D-f^{-1}(S) \to \Omega-S$$

is an m-to-one covering map for some $m \ge 1$. Here m is called the *multiplicity* of f. The following lemma is proved in Rudin [5].

LEMMA. If $f: D \to \Omega$ is a proper holomorphic map with multiplicity m, then there exist m pairwise f-related sequences $\Sigma_1, ..., \Sigma_m$ in D that converge to distinct points $\zeta_1, ..., \zeta_m$ of bD.

Here two sequences $\{a_i\}$ and $\{b_i\}$ in the domain of f are said to be f-related if $f(a_i) = f(b_i)$ for all i. Since, by our hypotheses, f is continuous up to the boundary and one-to-one on the boundary, we see that m = 1. This then implies that f is one-to-one throughout \bar{D} , and the proof of the main theorem is now completed.

Finally, we remark that the proof given here also works for the 1-dimensional case.

References

- [1] R. B. Burckel, An introduction to classical complex analysis, vol. 1, Academic Press, New York, 1979.
- [2] J. Globevnik and E. L. Stout, *The ends of discs*, Preprint series, Dept. Math., Univ. Ljubljana, 23, No. 129 (1985), 201-219.
- [3] R. C. Gunning and H. Rossi, *Analytic functions of several complex variables*, Prentice-Hall, Englewood Cliffs, NJ, 1965.

- [4] W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer, New York, 1980.
- [5] ——, *Proper holomorphic maps and finite reflections groups*, Indiana Univ. Math. J. 31 (1982), 701–720.

Department of Mathematics State University of New York at Albany Albany, NY 12222