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1. Introduction

In various Feynman integration theories, the integrand F of the Feynman
integral is a functional of the standard Wiener (i.e., Brownian) process. In
this paper we first define a Feynman integral for functionals of more general
stochastic processes. Then, for various classes of functionals, we express this
generalized Feynman integral as an integral operator whose kernel involves
the conditional Feynman integral.

In defining various analytic Feynman integrals of F, one usually starts,
for A> 0, with the Wiener integral

S FOT 25+ )Y\ 2x(T) + £)m (d),
Col0,T]

and then extends analytically in A to the right-half complex plane. In this
paper, our starting point is the Wiener integral

| Foz00)+ 9902205, T) + Him(a), (L.1)
Col0,T]

where Z is the Gaussian process

Z(x,t)= S; h(s)dx(s) _ (1.2)

with # in L,[0,T], and where jg h(s) dx(s) denotes the Paley-Wiener-Zyg-
mund (PWZ) stochastic integral.

A very important class of functionals in quantum mechanics are func-
tionals on Wiener space Cy[0, T'] of the form

T
F(x)=exp{§ 0(s, x(s)) ds} and G(x)=FXx)y(x(T)) (1.3)

0
for appropriate functions 6 and . Functionals like these have appeared in

many papers, including [1-4; 7; 8; 14; 15; 19], involving various Feynman in-
tegration theories. In particular, Cameron and Storvick [8] obtain a formula
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for the analytic but scalar-valued Feynman integral of various functionals
of the form (1.3). It is clear (simply let #(#) =1 on [0, T']) that functionals of
the form (1.3) are contained in the class of functionals of the form

T
H(x)= exp“ 0(t, Z(x, 1)) dtz and G&x)=HXW(Z(x,T)). 1.4)
0

In this paper we use the theory of the conditional Feynman integral intro-
duced in [11; 12] to obtain formulas for the analytic operator-valued Feyn-
man integral of various classes of functionals, including those of the form
(1.4). Then as special cases we obtain formulas for the analytic but scalar-
valued Feynman integral of various functionals.

REMARK. It is not hard to verify that the results of this paper can be ex-
tended to »-dimensional Wiener space C§[{0,T] for »=2, 3, ... . We decidad
to work with » =1 for notational simplicity. Papers [5-9; 11; 12; 15; 18; 19;
24] involve general », while papers [1-4; 10; 14; 16; 17; 25] involve v =1.

2. Definitions and Preliminaries

Let C[0,T] denote the space of R-valued continuous functions on [0, 7],
and let C,[0, T'] denote Wiener space—that is, the space of all functions x(#)
in C[0, T'] with x(0) =0. We denote the Wiener integral of a Wiener meas-
urable function F by

E[F]= X F(x)m (dx)
Cyl[0,T]

whenever the integral exists.
Let 4 be an element of L,[0, T'] with | 4[| >0, let Z(x, ¢) be given by (1.2),
and let

a(t)= S; h?(s)ds. 2.1

Then Z is a Gaussian process with mean zero and covariance
E[Z(x,s)Z(x,t)] =a(min{s, t}).

In addition, by [23, Thm. 21.1], Z(-, ¢) is stochastically continuous in ¢ on
[0,T].

Next we state the definitions of the conditional Wiener integral [22; 25]
and the conditional Feynman integral [11; 12].

DerINITION 1. Let X be an R-valued Wiener measurable function on
C,[0, T] whose probability distribution function Py is absolutely continu-
ous with respect to Lebesgue measure on R. Let F be a C-valued Wiener
integrable function on Cy[0, T]. Then the conditional Wiener integral of F
given X, denoted by E(F|X)(5), is a Lebesgue measurable function of 7,
unique up to null sets in R, satisfying the equation



Generalized Feynman Integrals via Conditional Feynman Integrals 379

| Peom@n=| EEFIX)@) P
X-4B) B

for all Borel sets B in R.

DerNITION 2. Let C, C, and C, denote respectively the complex num-
bers, the complex numbers with positive real part, and the nonzero complex
numbers with nonnegative real part. Let F: C[0,7]— C be such that for
eachA>0,

S |F(X12Z(x, )+ £)|m (dx) <o

Col0,T]

fora.e. £eR. Let X: C[0,T] — R be such that for eachA>0and a.e. £eR,
X(AV2x+£) is a Wiener measurable function of x on C,[0, T]; that is, for
a.e. £eR, Y(x)=X(A\""2x+£) is scale-invariant measurable on Cyl0,T1.
For A>0and £ eR, let

HEN=EFNY2Z(x, )+ )| XA 2+ £)) (n)
denote the conditional Wiener integral of
FOY2Z(x,)+&) given XA 2x+%).

If for a.e. n € R there exists a function J (£, 5), analytic in A on C such that
JX (&, ) =Jy(&,m) for all A> 0, then Jy(£,-) is defined to be the conditional
analytic Wiener integral of F given X with parameter A and we write

E*F | X)(&, 1) =X, n).
If for fixed real g # O the limit

lim E*™(F|X)(,)
Ao —ig
exists for a.e. n e R, where A » —ig through C__, we will denote the value of
this limit by Ea“fq(FlX )(¢,-) and call it the conditional analytic Feynman
integral of F given X with parameter gq.
Next let M(R) denote the space of all C-valued countably additive Borel
measures on R, and let

K(R)={¥;+¥,: ¥, € L;(R) and ¥, € M(R)}, (2.3)

where M(R) is the space of Fourier transforms of measures from M (R).

Using (1.1) as our starting point, we now state the definition of the
(generalized) analytic operator-valued Feynman integral as an element of
L(K(R), L,(R)).

DerFINITION 3. Let 2 be an element of L,[0,7T] with ||#]|>0, and let
Z(x, t) be given by (1.2). For each A>0, ¢y e K(R), and £ e R, assume that
FA™Y2Z(x,-)+ £)Y (A2 Z(x, T) + £) is Wiener integrable with respect to x
on Cy[0,T1], and let
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(L(F)E) = XC O Z(0) By Z T Dmd. Q.4
oLY,

If I,(F)y is in L (R) as a function of £ and if the correspondence y — I,(F)y
gives an element of £(K(R), L (R)), we say that the operator-valued func-
tion space integral 1,(F) exists. Next suppose there exists an £-valued func-
tion which is analytic in A on C, and agrees with I,(F) on (0, +o0); then this
£L-valued function is denoted by I7"(F) and is called the analytic operator-
valued Wiener integral of F associated with A. For A= —iq € C, suppose
there exists an operator J"(F) in £(K(R), L,(R)) such that for every y
in K(R),

I JE(FYY — IE(F )Y [l > 0 2.5)

as A— —iq through C,; then J;"(F) is called the (generalized) analytic
operator-valued Feynman integral of F with parameter q.

REMARK. Note that if A(¢)=1 on [0,T] then this definition agrees with
previous definitions of the analytic operator-valued Feynman integral [1-4;
14; 15].

The following well-known integration formula,
® b ) 2 ] 27 1/2 s 2
S_oo exp{ > + l'l’)f} dn= (—b—) exp{— EBI, Reb >0, (2.6)

and a formula for expressing conditional Wiener integrals in terms of ordi-
nary Wiener integrals [22],

E(F(Z(x,)+8)|Z(x, T)+£=n)

=E[F(Z(x,-)+s—;“—(%Z(x,ﬂ+-:—(%(n—s))], @7)

are used several times in this paper.

3. Formulas for J;"(F) for F in §

The Banach algebra S of functionals on Cy[0, T'], each of which is a type of
stochastic Fourier transform of a bounded C-valued Borel measure, was in-
troduced in [5] by Cameron and Storvick. Further work on S shows that it
contains many classes of functionals of interest in Feynman integration the-
ory {6; 9; 17-20]. In this section we show that J2(F) is in £(K(R), L.(R))
for each Fin S.

The Banach algebra S consists of functions on Cy[0, 7] expressible in

the form
T

F(x)= S exp{ig v(s) dx(s)} do(v) 3.1)
L,[0,T] 0

for s a.e. xe Cy[0,T7] (i.e., except on a scale-invariant null set), where o €
M(L,[0,T1]), the space of C-valued, countably additive Borel measures on
LZ[O: T]-
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The following lemma, which follows quite easily from the definition of
the PWZ stochastic integral, plays a key role in the proof of Theorem 1.

LemMA 1. For each ve L,[0,T] and each he L,[0,T],

T T s T
S v(s)dZ(x,s)ES v(s)d“ h(u)dx(u)]:S v(s)h(s)dx(s) (3.2)
0 0 0 0
Jorsa.e. xe Cy[0,T].

LEMMA 2. Let Fe S be given by (3.1) and let h be in L,[0,T] with ||h||> 0.
Then G: Cy[0,T]— C given by

G(x)=F(Z(x,-))
belongs to the Banach algebra S.

Proof. Let ®: L,[0,T]— L,[0,T] be given by ®(v)(s) = v(s)h(s). P is easily
seen to be continuous and so is Borel measurable. Hence p=0-® ! is in
M(L,[0,T1]). In addition, for each p > 0, using the change-of-variables theo-
rem [13, p. 163] and Lemma 1, we see that the following are equal for a.e. x
in Cy[0,T1:

T
S exp{ip S u(s) dx(s)} du(u)
L,[0,T) 0

T
exp{ip S u(s) dx(s)] d(o-® (u))

exp[tp d(v)(s) dx(s)} do(v)

0
T

I,
T

exp{zp S v(s)h(s) dx(s)} do(v)
|

exp{zp u(s) d“ e dx(T):n do(v)
0

L,[0,T]
T

=S exp[ips v(s)d[Z(x, S)]} do(v)
L,[0,T] Y

=F(pZ(x,")) = G(px). O

0

In Theorem 1, we condition by the function X: C[0,T] — R given by
X(»)= S;rh(s) By +y0. (3.3)
Thus, for all (A, £) € (0, ) X R, we have that
X\ 2x48)=2712 S:h(s) dx(s)+£

=A"12Z(x, T)+¢& (3.4)
for a.e. xe Cy[0,T].
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THEOREM 1. Let Fe S be given by (3.1), let he L [0,T], and let X be given
by (3.3). Then, for all (¢,7) e RXR, we have

EF| X))

—SLZ[O,T]exp{ a(T) - 2)

(v, hH7?
2(T) ] ds}do(v)

T
S hz(s)[v(s) -
0 (3.5)

JorallAeC,, and
E*™W(F| X)(&,1)

im—8&(w,n» i (7T, [ (v,h2)}2 }
N - - d
sz’ﬂ exp{ a(T) 2q Soh OOy | dzs(l;))

for all real q #0, where (v, h*) = [§ v(s)h*(s) ds.

Proof. In view of Lemma 1 and the definition of S, we have that

T

FO™2Z(x,")+£) = SL o exp{ig v(s)d[N2Z(x,5)+ s]] da(v)

0

for s a.e. x € Cy[0,T]. Next—using the Fubini theorem, (2.5), and (3.2)—
we obtain, for all (A, &, 7) € (0, @) X R X R, the formula

E(F(X'2Z(x,)+ £ XA x4+ £) ()

T
= E(S exp{i S v(s)d[N2Z(x,s)+ g]} do (V)| X7V2Z(x, T)=n— E)
L,[0,T] 0

T
= S E[exp{is v(s)d[)\‘”z(Z(x,S) —ﬂz(x, T))
L,{0,7] 0 a(T)

a(s)
+ 2(7) (n—E)B] do(v)
T
=S E[exp{i)\"”zg vhdx
L,{0,T] 0
ixv2 T 2, im—§) 2
- Xohdx(v,h )+ )Hda(v)
_ i(n—£)(v, %) (7], (v kDA ,
_SLZIO'T]exp{ o) }E[exp[l/\ So [vh o(T) ]dx}]da(z)
_ =),k 1 (T, _w,hH7]?
‘SLz[o,n exp{ o N (S)[”(S) a(T) ] ds}d"(")'

But the last expression above is an analytic function of A throughout C,,
and is a continuous function of A on C7 since o is a finite Borel measure.
Thus equations (3.5) and (3.6) are established. O

In our next theorem we obtain a formula for J2"(F)y, for Fe€S and ¢, in
L,(R). Note that by choosing ¥, =0 we can also think of ¥, =y, 4y, as an
element of K(R).
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THEOREM 2. Let F, h, and X be as in Theorem 1. Then, for all real g+ 0
and all ¥, € Li(R), J}"(F)Y, is in L(R) and for all £ €R is given by

1/2 Y
q ) exp[“m’ £)

an —_ > anf, -1
uEE©=| E (FlX)(z,n)(zm(T) 2a(T)

Juman
(3.7)
with E®™s(F| X)(£, 1) given by (3.6).

Proof. For each (A, £) € (0, ©) X R we have that

(L(F)Y1)(E)
=E[FOV2Z(x,) + )Y (A2 Z(x, T) + )]

=" BFO2 + p9 0022061+ HIXO x4 D))
- 172
. A ey
(zrams) ol grary o=
= BFOT 2000+ 00072206 T) + BIN2Z06T) + =)

172 /\ 5
) exp{— 2ra(T) (n—§) ]dn

'(21ra(T)
N S E(FX2Z(x, )+ 9 |X2Z(x, T +£=n)

A V2 Am—tY
'W”)(ha(T)) exp{"_?.?(?)_}d”'

But, by Theorem 1 and Morera’s theorem, we see that the above expres-
sion is analytic in A throughout C, . It is also continuous in A on C since
E*(F|X)(n) is bounded and v, is in L;(R). Thus J}(F)y, is in Lo(R)
and is given by (3.7). O

In Theorem 3 we need a summation procedure since ¥, need not be in L;(R).

DErFINITION 4. Let

_ 2
. R
[, 7 dn= lim_ SR F) exp{ X A}dn (3.8)

whenever the expression on the right-hand side exists.

THEOREM 3. Let F, h, and X be as in Theorem 1. Let \, € M(R) be given by

¥a(n) =§ expliun}do(p) (3.9)

with ¢ € M(R). Then, for all real g+ 0, J7"(F)y, is in L,(R) and for £ eR
is given by

(J7" (F)¥2)(€)

- 172 Y
= SREa"fq(FIX)(s,n)< g ) exp{i‘ﬁ’-’—i
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with E™%(F|X) (£, n) given by (3.6). In addition, we have the alternative
expression

(JF™(F)Y2)(§)
_ ity _(v’hz)]z }
_SLz[o,:r] exp{ ZqS h (s)[v(s) 2D ds
Sf exp{iuf— o) [(v, h?) + ua(T)] }dq&(u)da(v) (3.11)

Proof. We will first obtain the alternative expression (3.11). Proceeding as
in the proof of Theorem 2, and then using (3.5) and (3.9), we obtain that for
all (A, £) €(0,©) XR,

(L(F)W)(E) = S E(FOY2Z(x, )+ £) | X2 Z(x, T) + £ =1)

A 1/2 /\(n_g)Z
V0 raczs) =y |
=S°° S exp{i(n—s)(v,hz)
—00 9 L,[0,T] a(T)

1 2 ( ,hz) 2
BTN S (s)[v( s)— D) ] ds} do(v)

o Aa=9Y)(
'<2wa(T)) exp{——?ﬂ(T)_} | cxptiun) g .

We next use the Fubini theorem and then carry out the integration with re-
spect to 7, using (2.6), to obtain

,h2 2
BEWIO=] exf-o . #ofue - LT

g exp{iu&-— 2/\al(T) (v, K?)+ ua(T)]z} dé(u) do(v).

But clearly the right-hand side of the above expression is analyticin A on C
and continuous for A in C7, which establishes (3.11).

Equation (3.10) follows from the calculations below and equation (3.11).
Note that in the third equality we first use the Fubini theorem and then carry
out the integration with respect to y using (2.6):

- anf, q 172 iQ("?_E)Z
SRE (FlX)(s,n)(—-——zm(T)) exp[-———mﬂ }%(n)dn

2 2
=gt dy

. oo anf q 1/2
= Jim j JETE lX)(S’n)(quia(T)) exp{ 2a(T) 24

A= 400V —

L ® i(v, K (—£)
B Al—l’rfoo S — S L,[0,T] exp{ a(T)
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. aT 2\ 12
- S hz(s)[v(s)— (v, & )] ds} do(v)
0

2q a(T)

g \?  (igq—§* #*) (™ .
'(znia(T)) exp{ 2a(T) —ZA} S_mexp{’”"}d¢(”)d”

. aT 2y 72
—_ . . l 2 _ (v! h )
—Al_l.n:oo SLZ[O’T] exp{ _Zq Soh (s)[v(s) o) ] ds}

' q 1/2 ZWAG(T) )1/2
(21ria(T)) (a(T)—Aiq

£ Aa) [ (v, 1),
24 2[a(T)—igA] |“ ™ " a(T)

_ LA P _{v hz)] }
—SLzlo,T] exp{ 24 Soh (s)[v(s) a(T) ds
-S_ exp{iué— 2 [(v, 2)+ua(T)]}a'<rb(u) do(v)

= (J7" (F)¥2)(8). =

The following theorem is an immediate consequence of Theorems 2 and 3.

. S ” exp{iuf— E’] 3 dé (1) do(v)

THEOREM 4. Let F, h, and X be as in Theorem 1. Then, for all real q + 0,
J{"(F) exists as an element of £(K(R), L.(R)) and, for each y =y,+y, in
K(R),

(IS EFYE) = (JF(F)) (8) + (J(F))(8) (3.12)

Jor all £eR, where J}"(F)y, is given by (3.7) and (J}"(F)y, is given by
either (3.10) or (3.11).

The following corollary follows easily from either equation (3.10) or equa-
tion (3.11).

CoRrOLLARY 1. Let F and h be as in Theorem 1 and let y =+, with
Vi=0and y,=1. Then for all real q+ 0 and all £ eR,

(MNP = X exp{—i—}— ||hv||2] dao(v).

L,[0,T]

THEOREM 5. Lef 0(-,-):[0,T}1XR— C be given by

0(t, u) =S expliun) do,(n), (3.13)

where {0,:0=<t<T} is a family from M(R) with | o,||e L,[0,T] and, for
each B € B(R), o,(B) is a Borel measurable function of t. Then

T T
Gl(x)=§0 0(t, Z(x, 1)) dt and Gz(x)=expﬁo 0(t, Z(x, t))dt}

are members of S.
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Proof. In [17; 19] it was shown that [ 6(¢, x(¢)) d¢ and exp{[? 6(¢, x(¢))dt)
were members of the Banach algebra S. Hence, by Lemma 2, both G, and
G, are members of S. O]

REMARK. Throughout the rest of this section we only need require that 2
be in L,[0, T'] with ||2]| > 0, rather than requiring that # € L[0, T].

THEOREM 6. Let 0 be given by (3.13) and let
T
F(x)=expﬁ 8(s, x(s)) ds}. (3.14)
0

Let he L,[0,T] and let X be given by (3.3). Then, for all (¢,37,A) e RXR X
C., we have that

E*F|X)(&,7)
=1+§ S S exp{l£2v+t(n E)i vja(sj)}
19a,7) ! (T)

n 2
exp{———( > [a(sg) —a(sy— 1)][ gk Um— 2 Mf’"—)]

2\ m=1 a(T)
[a(T)—a(s,)] (
a*(T)

2
E U @(Sm) )} dosl(vl) " 'das,,(vn) ds,

m=1 (3.15)
where A, (T)={§=(S1;..-,5,):0=5<5,<---<s5,<T}.
Furthermore, for all real q# 0,
E*(F| X)(£,7)
_ < c vja(sl)z
=1+ g SA (T)S exp{t& > viti(n—§) 2 )
n U,a(S,) 1P
exp{—z( 2 la(sy) —a(sy— 1)][ > Um—mEI—;(—Y‘r)*]
[“(T’z(;)‘s””< s vma(sm)) )} o (1) ++doy (0,) &,
m=1 (3.16)

Proof. Using the Fubini theorem, (2.7), a well-known Wiener integration
formula, and (3.13), we see that for all (¢£,7,A) e RXR X (0, o) we have

M =EFNY2Z(x, )+ £) | XA 2 x+£))(n)

— - 1 T —-1/2 g
_ E( > —,(S B(s, A Z(x,s)+£)ds>
! 0 '

X12Z(x, T)+&= n)
n=0nN

=1+ S E[ 11 9(Sj,)\—l/22(x, sp)+é&
14A(T)

n= ji=1

_a(sy) a(s;)
aT) A" Z(x, T)Y+ &)+ a(T) )]ds
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> n J s hdx
=1+ 3 S E[H o(s,-,s+)r“2 ) ask”zg .
n=19A,7) Lj=1 k=1 s, ask
_a(s; WNV2asl esc hdx
25 5 a kl/zs ull
a(T) i= s, ask
a(s,)
——(n— E))]
a(T)
=1+ES S Qm)y~ D2 exp{—L(ud+ - +u2 )
n=1JA,(T) JR"*!

. f[l 0(Sj, E4 X712 }jj ask2u, + —aﬁ)—(n —$§)
iz

k=1 a(T)
B a(s;)A"12 ntl

oT) k§—;1 askl/zuk) du,---du, ., ds

> —(n z.a(s;)
=1+ S H(T)(Zvr) ( +”’2SR exp[f& > vi+i(n—§) E (7{)}

n=1vA

X expl—L 3 4?2
R+t p 2j=1 4
n f a
+iX12y vj[ S ask! 2y ——2L (5)) 'S E ask'?u B
j=1 "Lk=1 a(T) x=;
duy---du, . dag (vy)---dag (v,) dS,
where for notational convenience “ask” denotes a(si) —a(si_1).

Next, we carry out the integrations with respect to u;, ..., ¥, using (2.6)
and obtain

J/\(E,n)—l’*'zg (T)S exp{:sxvﬁz(n 2> ""(’;‘f;)}

1 n n
-exp|—— ask v, — _—
p{ 2)\(/«2—:1 |:m§=;k "oz a(T)

[a(T)—a(sp)] [
T (E (’")> )}

dag (vy)---dog (v,) d5.

But the right-hand side above is an analytic function of A throughout C,,
and is a continuous function of A on C3 since each o, is a finite Borel measure
with | as;|| € L;[0, T]. Thus equations (3.15) and (3.16) are established. ]

Theorem 7 follows from Theorem 6 in much the same way as Theorems 2
and 3 followed from Theorem 1, so we omit the proof.

THEOREM 7. Let F, h, and X be as in Theorem 6. Then, for all real q+0,
Ji"(F) exists as an element of £(K(R),Ly(R)) and for all Y =y,+y, in
K(R) is given by
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(JFEW(E) = (JF(F))(E) + (I3 (F)¥2)(§) (3.17)
for all £ eR, where

JEF W) (E) = S

— 00

Yi(n)dy

iCI(n—E)Z}
(3.18)

. q 172
E "(FlX)(f,ﬂ)(sz(T)) exp{ 2a(T)

and

— 172
GPENIO =] BTG n)(zri—j(—}—)) exp{ Vo),

(3.19)

with E®%(F|X)(&,n) given by (3.16). In addition, we have an alternative
expression for J;"(F)y,; namely,

(J7"(F)¥2)(8)

=S°° exp{iug— “2(:) 2} dé(u)

iq(n—é)z}
2a(T)

+3 g K exp{lf 2 Y ——-.—( 2 La(si) —a(se-1)]
WT) TR k=1

n=19YA
2
4 vma(sm)]

m=1 a(T)
[a(T)—a(Sn)] n :
T (El”’"““’")»
., ia(T) 7 via(s;)\
sy (“+,-§1 o(T) )1

da(u) do (vy)---do, (v,) d5.  (3.20)

4. Analytic Feynman Integrals

In this section we use the results obtained in Section 3 to obtain formulas
for the analytic but scalar-valued Feynman integral of various functionals,
including those of the form (1.4).

DEerINITION 5. For each A> 0 assume that G(A™Y/2Z(x,-)) is Wiener inte-
grable with respect to x on Cy[0, T'], and let

T = S GOV2Z(x,-)ym (dx).
Col0,T]

If there exists a function J*(A) analytic on C_ such that J*(A) = J(A) for all

A>0, then J*()A) is defined to be the (generalized) analytic Wiener integral

of G over Cy[0,T] with parameter A, and for A in C, we write

S - G(Z(x,-))m(dx)=J*().
Col0,T]
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Let A= —ig € C be given, and let G be a functional whose analytic Wiener
integral exists for all Ae C_.. If the following limit exists, we call it the (gen-
eralized) analytic Feynman integral of G over C,[0, T'] with parameter g,
and we write

anf, anw,
S G(Z(x,"))ym(dx)= lim S G(Z(x,-))m (dx).
AeC,

The following theorem follows immediately by letting £ =0 in Theorem 2
and 3.

THEOREM 8. Let Fe S be given by (3.1), he L,[0,T], X be given by (3.3),
and Y =y, +y¢, be in K(R). Let

G(x) =F(x)y(x(T)).
Then, for all real q+0, the analytic Feynman integral of G exists and is

given by

anf,
SC 0.7] G(Z(X,))m(dX) = (ann(F)‘l/)(O) = (ann(F)Klll)(O)+(ann(F)l[/2)(0),

where Ji"(F)y, is given by (3.7) and J{"(F)y, is given by either (3.10) or
(3.11).

THEOREM 9. Let F, h, and X be as in Theorem 6 and let Y =+, be in
K(R). Let

T
G(x) = F(x)y(x(T)) = exp{go 8(s, x(s) ds} V(T

Then, for all real q+0, the analytic Feynman integral of G exists and is
given by

anf,
SC 0.1 G(Z(x,"))ym(dx)= (ann(F)\[/])(O)+(ann(F)1,b2)(O),
where J7"(F)y, is given by (3.18) and J;"(F)y, is given by (3.19) or (3.20).

Our next four corollaries include the main results of [8] by Cameron and
Storvick. The notation used in [8] is slightly different than ours. They work
with general » and we use » =1. Where they use [a, b] we use [0, T]; their £
corresponds to our %; and the roles of F and G are interchanged.

COROLLARY 2. Theorem 1in [8, p. 301].
Proof. In our Theorem 8 simply choose Y, =0and h=1. Ol
COROLLARY 3. Theorem 2 in [8, p. 304].

Proof. In our Theorem 8 simply choose Y, =0and h=1. 0
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COROLLARY 4. Theorem 3 in [8, p. 305].
Proof. Simply choose 2=1 in Theorem 8. Ol
COROLLARY 5. Theorem 4 in [8, p. 306].
Proof. In our Theorem 9, choose h=1. 1

REMARK. Let @ be given by (3.13). Then, by choosing y;=0and ¢, =1, we
can evaluate the analytic Feynman integral

anf, T
S expﬁ 0(t, Z(x, 1)) dt}m (dx)
Col0,T] 0

for he L,[0,T]. In fact,

anf, T
S epr o(t, Z(x, 1)) dt}m (dx)
Col0,T] 0

“ vma(sm)]

=1_I--n§=: SA,,(T)S exp{—_é_( E aSkl:mE-——:kvm m§=-;l a(T)

a(T)—a(s,) [ & 2
T (mE “(S’”’)>
_ia(T)( n o va(s))
2qg \j=1 a(T)

)} 05,(v1) -~ - dog (v,) a5.
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