Two Metric Invariants for
Riemannian Manifolds
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1. Examples and Main Theorems

In this short note we shall define two metric invariants for a closed metric
manifold (i.e., a topological manifold with a metric). Each of them has its
own topological significance. The purpose of this note is to associate each
invariant with some familiar geometric invariants of Riemannian manifolds,
for example, curvatures, diameter and volume. Our first metric invariant
concerns the orbits of finite groups acting on metric manifolds. In [N], New-
man proved that at least one orbit is not too small if the action of a finite
group on a closed connected metric manifold is nice. More precisely, New-
man proved the following theorem.

THEOREM (Newman). If M is a closed topological manifold with a metric
d, then there exists a positive number n=n(M, d) depending only on M and
d such that every finite group G acting effectively on M has at least one orbit
of diameter at least .

For instance, it can be shown that the unit #-sphere S” with its canonical
metric d has n(S”, d) =1, and that the flat torus (77, d) = (R", can)/Z" has
W(T" d)=+.

Cernavskii [C] generalized Newman’s theorem to the setting of finite-to-
one open mappings on metric manifolds. We shall say that an open finite-
to-one proper surjective map f (which is not a homeomorphism) from a
metric manifold M to a metric space Y is a pseudo-submersion, and that
S7(f(x)) is an orbit of f at x and is denoted by O (x). In [MR], McAuley
and Robinson expanded upon Cernavskii’s result and obtained the following
theorem.

THEOREM. If M is a closed topological manifold with a metric d, then
there is a positive number n=n(M, d) such that if Y is a metric space and
[+ M —Y is a pseudo-submersion then there is at least one point y € Y with
diam f~1(y) = .
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These results motivate the following definition of the Newman constant
n(M, d) of a closed metric manifold (M, d). Assume that there exists at
least one pseudo-submersion f from M to a metric space. Then we define
the Newman constant n(M, d) of M to be the supremum of » with the prop-
erty that, for every pseudo-submersion f: M — Y, there exists an x € M with
diam Of(x) = . Otherwise, we define (M, d) to be infinity.

For a closed connected Riemannian manifold (M, g) with induced metric
d, it is believed that the Newman constant n(M, d) should depend only on
some geometric invariants of (M, g). In fact, H. T. Ku, M. C. Ku, and Mann
[KKM] obtained an estimate of 4(M, d) in terms of the injectivity radius
i(M) and the sectional curvature K(M) of M. Using our Newman constant,
their result can be stated in the following manner.

THEOREM (Ku-Ku-Mann).

(1) If K(M) =<0, then n(M,d)=i(M)/2.
(2) If K(M) < k?, then (M, d) = (2/7) min{=n/2k, i(M)/2}.

Note that the number ro=min{x/2k,i(M)/2} is related to the convexity
radius of M. Namely, for each x e M and r < ry, the geodesic ball B(x, r) is
strongly convex (cf. [CE]); that is, for each pair of points p and q in B(p,r),
there is a unique minimal geodesic from p to ¢ inside the ball B(x, r).

Our first result will show that the Newman constant depends only on
some “weaker” geometric invariants. Let M(k, D, v, n) denote the class of
closed connected Riemannian n-manifolds (M, g) with sectional curvature
K(M) =k, diameter d(M) <D and volume vol(M)=v > 0. It is worth no-
ticing that without an upper bound on the sectional curvature there is no
estimate for the convexity radius, the injectivity radius, or even the con-
tractibility radius of M. Our first main result is contained in Theorem 1.

THEOREM 1. There is a positive number n*> 0 depending only on the con-
stants k, D, v, and n such that if M e M(k, D, v, n) then y(M,d)=n".

The following three examples show that Theorem 1 is optimal.

ExampiiE 1. Let S(r) denote the circle in R? with radius 7. Consider for n=>1
the 2-tori 7,,= S(1/n) X S(1) with the product metric d. We have K(7,,) =0,
d(T,) <4w, and vol(T,) = 4w%/n— 0 as n — oo, Let the group Z, = {e, g} act

effectively on 7, by
g(leie’ eiq&) _ (lei(0+7r)’ ei¢>
n n

for all 0, ¢ €[0,27]. Thus for every point x € 7,,, the orbit Z,x of x has
diameter = w/n. This implies that #(7,,d) <w/n— 0 as n— o. This shows
that the lower volume bound is needed.

ExaMpLE 2. To see that one needs the diameter assumption, consider for
n =1 the 2-tori 7, = S(1/n) X S(n) with the product metric d. We have
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K(T,)=0, vol(T,) =4x2, and d(T,,) = nw — o as n— o. Again consider the
group Z, acting effectively on 7, by

g<_l_ei0’ neiqs) _ (_l_eiw”)’ nei¢>
n n

for all 8, ¢ €[0,2%]. Then d(x, gx)==/n for all xe T,. This implies that
W7, d)<w/n—>0asn— oo,

ExampLE 3. Consider a smooth function f,:[—1,1]-R with f,(¢)=
V1—1¢2 when V3/2 <|t| < 1, fa(t) €[4,1] when |f|=V3/2, and the curve
(¢, () |t e(=v3/2,v3/21 1IN R? has length in [#, 2n]. Such a function does exist
and is easy to construct. Let X, be the surface of revolution of the curve
(t, (1/n) f,(2)), te[—1,1], in R3 around the x-axis; that is,

r,= {(z‘, ;f,,(t) sin g, ;fn(t)cos 0), (t¢,0)e[—1,1]1 %[0, 21r]} .

We have n/2 <vol(X,) <, while minK(X,) > —o and d(X,)=n— o as
n — oo, To obtain surfaces with uniform diameter upper bound, we modify
the surfaces X, as follows.

Consider a smooth function f,(#,0): [—1,1]1 X[0,27] — R with the prop-
erties: f,(¢,0)=f,(t) when (¢,0)e[—V3/2,V3/2]1x[n/2,27] or V3/2<
lt|=1; f(¢,0)=~1—1¢2 when (¢,0) €[—V3/2,V3/2] x [7/8,n/4], and
Ja(t,0)e [%, 2], otherwise. It is also easy to check that such a function does
exist and can be constructed via the Urysohn lemma. Let £, be the surface
with induced metric in R? given by

£ = {(t %f,,(t, 6)sin o, %fn(z‘, 0)cos0>, (t,0) e[—1,1] X [0, 2«]}-

Now one has vol(£,) = § vol(Z,) = 3x/8, d(£,) < 4w, and min K(E,) » —co
as n — oo, Let the group Z, act effectively on ¥, by

g(t, lf,ﬂ,(t, #)sind, lf,,(t, 0) cos 0)
n n

= (t, %fn(t, 0+ ) sin(0+ ), %fn(t, 0+ ) cos(0+ 7r)>

for all (¢,0) € [-1,1] X [0, 27]. Thus, for all x in £,, d(x, gx) < «/n. This
implies that (¥, d) < n/n— 0 as n — . Hence, the lower curvature bound
is necessary.

In contrast to the Newman constant, our second metric invariant comes
from a consideration of continuous maps all of whose orbits (or preimages)
are small. Let (Y, d) be a metric space. A continuous map f: Y — X is called
a 8-map if diam f~!(x) < 6 for each x € X. We define the homotopy constant
0(M, d) of a closed metric manifold (M, d) to be the supremum of §=0
with the property that for every 6-map f: M — N where N is a closed »-
manifold, f is a homotopy equivalence.
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In the next section we shall see that the homotopy constant 6(M, d) is
always a positive number. It will not be surprising that the homotopy con-
stant of a closed Riemannian manifold (M, g) can also be estimated by the
convexity radius of M. In fact, we shall show that it depends only on some
weaker geometric invariants.

THEOREM 2. There is a 6* > 0 depending only on the constants k, D, v, and
n such that if M e M(k, D, v, n) then 6(M,d) = 6"

Following Examples 1-3, we construct three examples to show that Theorem
2 is also optimal.

ExampLE 4. Let the 2-tori 7,,= S(1/n) X S(1) be as in Example 1. We have
K(T,)=0, d(T,) < 4=, and vol(T,) =47%/n—0 as n— . Define a proper
map f,: T, — S(1) X S(1) by

fn<%e"3, eiqs) = (™, ¢i®)

for all 6, ¢ € [0, 27]. Hence f, is a (w/n)-map. Since f,(T,) = {e'™} X S(1), the
homology groups of 7, and S(1) show that f,, can not be a homotopy equiv-
alence. This means that the lower volume bound in Theorem 2 is necessary.

ExaMpLE 5. Let the 2-tori 7,=S(1/n) X S(1) be as in Example 2. We have
K(T,) =0, vol(T,)) = 472, and d(T,) = nw— o as n— . Define a proper
map f,: 7,,— S(1) x S(1) by

fn<%e“’, ne""’) = (e’ ")

for all 0, ¢ €[0,27]. Again, f,(T,)={e™}xS(1) and thus f, cannot be a
homotopy equivalence. On the other hand, f, is also a (w/n)-map. This im-
plies that one needs the diameter assumption in Theorem 2.

EXAMPLE~6. Let £, be the surfeice R3 as in Example 3. We have d(£,) <
47, yol(E,,)231r/8, and min K(X,) - —o as n— oo, Define a proper map
h,:X2,—S(1)xS(1) by

hn(t, %‘fn(t, 6)sin0, %f,,(t, 6) cos B) = (e'", e'!)

for all (¢,0) e[—1,1] X[0,2x]. Hence, A, is a (w/n)-map. Since f?n and
S(1) X S(1) have different homotopy types, 4, cannot be a homotopy equiv-
alence. Thus, the lower curvature bound in Theorem 2 is also needed.

2. The Newman Constant and the Homotopy Constant

In this section we shall prove Theorems 1 and 2. Our method is based on
a combination of a recent result of Grove, Petersen, and the author and a
theorem of Chapman and Ferry. Let us first recall these two results.
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THEOREM 3 [GPW]. Given a sequence of closed Riemannian n-manifolds
M; in M=M(k, D, v, n), n=2, there exists a subsequence M; with the fol-
lowing properties:

(1) M; converges to a compact metric space X in the Gromov-Hausdorff
topology;

(2) the product space X X N is a topological manifold for any closed to-
pological manifold N with dimension =2; and

(3) there exist e;-homotopy equivalences: f;: M; — X and g;: X — M; with

|d(fj(x), fi(¥))—d(x,y)|<e; and |d(g;(p),g;(q))—d(p,q)|<¢
Jorallx,yeM;and p,qe X, withe;— 0 as j — .

THEOREM 4 [CF; F]l. Let M be a topological manifold of dimension n=5
with a metric d. Given any ¢ > 0, there is a positive number & depending on
(M, d) and e such that if N is another closed n-manifold and f: M — N is a
0-map, then fis homotopic through e-maps to a homeomorphism.

Now we start to prove Theorem 1. In view of Theorem 3(2) and Theorem 4,
we need a property of the Newman constant for product spaces in order to
lift the manifolds in M(k, D, v, n) to higher dimensions.

ProrosiTiON 1. Let (M,, d,) and (M, d,) be two closed metric manifolds.
Then

(M, X M,, dy X d,) < min{y(M,, dy), n(M,, d,)}.

Proof. If there is no pseudo-submersion from M, to a metric space, then
(M, dy) =00 =9(M; X M,,d, Xd,). Otherwise, for any pseudo-submersion
J:M;— N, we can define F: M; XM, —> NxXM, by F(x,y)=(f(x),y) for
all xe M; and y e M,. It is easy to see that F is also a pseudo-submersion.
By the definition of the Newman constant, there is a point (x, y) e M; X M,
with diam F~YF(x, y)) =5 =9(M; X M,,d,xd,). Since F~YF(x,y)) =
F(f(x), Y= (f"(f(x)),»), we have diam f~'(f(x))=7. Hence 4 =<
(M, d;). Similarly, n <y(M,, d,) and the proposition holds. O

Proof of Theorem 1. Suppose that Theorem 1 is not true. Then one could
find a sequence of Riemannian n-manifolds M; in M(k, D, v, n) with 5; =
n(M;, d;) - 0 as i —» oo. According to Theorem 3, there is a subsequence M;
with the properties (1)-(3) of Theorem 3. Let S be the unit 5-sphere in R®
with its canonical metric, and consider the product manifold M; X 8> with
the product metric. Hence, M; X S 3 converges to the metric manifold X x S
in the Gromov-Hausdorff topology.

Define the map G;: X X S> - M; X S> by G;(p,q) =(g;(p),q) for all
(p,q) e XXS?, where gjis asin Theorem 3(3). Note that G; is also an ¢;-map
‘with €;— 0 as j — oo. Thus the Chapman-Ferry theorem implies that there
are homeomorphisms G;: X x 8> - M; x S° such that, for all x, y e X x S°,

(+) |d(G;(x), G;(»))—d(x,y)| <€ +no/4
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for large j, where 5o =7(X X S°, d). Since X x S* is homeomorphic to M;xS§ 5
for large j, there are pseudo-submersions from X X S> to metric spaces.
Hence, the theorem of McAuley and Robinson implies that 7, is a finite
positive number.

By Proposition 1, one has n; =(M; X S°,d) <n(M;,d) > 0 as j - oo.
Hence, we can choose a j, such that if j = j, then 5;<7,/4 and ¢; <y4/4.
Suppose that F': M; X S 3> - Y is a pseudo-submersion; then Fo Gj: Xx8-Y
is also a pseudo-submersion. Hence, there is at least a point y €Y with
diam(Fo Gj)—l (¥) =,.

Pick two points p, g in (F=G;)~!(p) with d(p, q) = no. Then (+) gives

d(Gi(p), Gi (@) = d(p, q)— (e +n0/4) = 19— 10/2=19/2

for all j = jy. Thus ; =9¢/2 for all j = j,. This contradicts the fact that
n; <no/4 for all j = j,, and the proof of Theorem 1 is completed. ]

For the homotopy constant, we also have a similar property about the prod-
uct spaces.

ProrosiTiON 2. Let (M, d,) and (M, d,) be two closed metric manifolds.
Then we have '

6(M XM, d, xd,) =min{é(M,, d), 5(M,, d,)}.

Proof. The proof is quite similar to that of Proposition 2. Let
60 = 5(M1 XMz, dl X dz).

Suppose that N is a closed manifold with the same dimension as M, and
that f: M;— N is a (6¢)-map. The map F: M; XM, — N XM, is defined by
F(x,y)=(f(x),y) for all xe M; and y e M,. Then F is also a §,-map. By
the definition of the homotopy constant é,, F is a homotopy equivalence;
that is, there exists a map G: NXM,— M;X M, and two homotopies H,
and H, such that

F°GgIIdeM2 and G°F§ZIdMIxM2.

Fix a point y, e M,. Then the map p~- G(p,y,) can be expressed by
G(p,yo)=(g1(p), &2(p)), where g,: N— M, and g,: N — M, are continuous
maps determined by G and y,. Let m;: My X M, — M;, i =1, 2, be the projec-
tions, and let H;(p, t) = w;H;(p, o, t), i =1,2. Then we have

feg=Tdy and gpof Zldy, .

That is, f is a homotopy equivalence. Thus 6(M,, d,) = §,. >Similérly,
6(M,, d,) =6, and the proposition follows. [l

Taking (M,, d,) =(S>, can) in Proposition 2 and ¢ =1 in Theorem 4, Prop-
osition 2 along with Theorem 4 then yields the following proposition.

ProrositioN 3.  For each closed topological n-manifold M with a metric d,
the homotopy constant 6(M, d) is positive.
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Proof of Theorem 2. We will prove Theorem 2 by contradiction. Suppose
that Theorem 2 is not true. Then one could find a sequence of manifolds M;
in M(k, D, v, n) such that the homotopy constant of M; goes to zero as i
approaches infinity. According to Theorem 3 and the argument in the proof
of Theorem 1, we have a subsequence M; that converges to a compact metric
space X and has the following properties:

(1) X xS?is a metric (n+ 5)-manifold;
(2) there are homeomorphisms G;: X X S° — M; X S° with

|d(G;(x), G;(¥) —d(x,»)|<¢

for all x, y e XX S°, where ¢; — 0 as j — o0; and
(3) by Proposition 2, §;=§;(M; x S>,d) <8(M;,d)— 0 as j — oo.

Proposition 3 implies that §,=8(X xS, d)>0. Hence one can choose
a jo such that if j = j, then ¢; <84/4. Suppose that N is a closed (n+5)-
manifold and that F': M X §° - N is a (6¢/2)-map. Then FoGj:Xx S>> N
is a (6¢)-map for all j = j,. By the definition of the homotopy constant §,,
we know that Fo Gj must be a homotopy equivalence for all j = j,. Hence,
F=(F-G;)°G;"! is also a homotopy equivalence for all j = j,. Thus, one
has 6; = 69/2. This contradicts property (3), and the proof of Theorem 2 is
completed. O

REMARK. Our present proofs do not yield estimates on the constants
n(M,d) and 6(M, d). It will be interesting to obtain explicit estimates of
these two constants in terms of the numbers &, D, v, and n. Our proofs
of Theorems 1 and 2 also show that the Newman constant and the homo-
topy constant have uniform positive lower bound for a certain class M of
closed Riemannian z#-manifolds, provided that M is C°-precompact in the
Gromov-Hausdorff topology; see also [W]. However, these two constants
n(M,d) and 6(M, d), viewed as functions of (M, d), are not continuous
with respect to the Gromov-Hausdorff topology.
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