Propagation of Singularities in a
Locally Integrable Structure

S. BERHANU

0. Introduction

In a recent paper [13] Trépreau proved several theorems about the propaga-
tion of singularities for CR functions defined on generic CR submanifolds
of C”. This work extends some of his results to a general first-order system
of PDEs for which the question of holomorphic extendability (more pre-
cisely, hypoanalyticity [1]) makes sense.

A few years ago, Hanges and Treves [5] proved that connected elliptic
submanifolds of a hypoanalytic manifold  propagate hypoanalyticity of
a solution. When Q is a CR manifold, elliptic submanifolds coincide with
complex submanifolds and “hypoanalyticity of a solution” means holomor-
phic extendability of a CR distribution. As a corollary of our result, we will
derive a microlocal version of the Hanges-Treves theorem; that is, we will
get a propagator of microlocal hypoanalyticity in the part of the cotangent
space T*Q lying above an elliptic submanifold. This corollary will in turn
imply the main result of [5].

Another corollary concerns the propagation of microlocal analyticity for
solutions of a formally integrable system of real analytic vector fields. It is
shown here that the propagation occurs along a Nagano leaf [8] generated
by the Hamiltonians of the real and imaginary parts of the vector fields and
contained in the characteristic set of the system. We mention that Hanges
and Sjostrand [4] proved such a propagation for solutions of a differential
operator of principal type with real analytic coefficients. In the case of sys-
tems of analytic vector fields, we believe the approach here is simpler. This
paper is also related to the work of Baouendi and Rothschild in [2; 3] and
that of Tumanov in [14] on wedge extendability in CR manifolds. We men-
tion that our Lemma 4.2 is similar to Lemma 3.1 of [7].

The paper is organized as follows. In Section 1 we will discuss the locally
integrable structures we work in and state our main results. Section 2 con-
tains some corollaries to these results. In Section 3 we recall microlocal
hypoanalyticity and prove a lemma concerning the wavefront characteriza-
tion of the FBI transform. In Section 4 we embed our hypoanalytic struc-
ture into a CR structure and show that this embedding preserves microlocal
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hypoanalyticity of a solution in certain relevant directions. We also show that
this embedding preserves orbits of families of appropriate vector fields both
in the base spaces and in the cotangent spaces. Finally, the lemmas of Sec-
tions 3 and 4 allow us to use the theorems of Trépreau to prove our theorem.

At this point I would like to thank Professors F. Treves and N. Hanges
for several stimulating discussions.

1. Definitions and Statement of Results

For the general theory of hypoanalytic structures the reader is referred to
[1]. We recall here what we will need. Let © be an open subset of R™*", We
suppose, given a C* map, that

Z=(Zysey Zp): Q- C™,

with the differentials dZ,, ..., dZ,, linearly independent. These differentials
generate an m-dimensional subbundle of the complex cotangent bundle CT*Q
which we denote by 7. T’ will be called the structure bundle.

The orthogonal of 7', denoted by L, for the duality between tangent and
cotangent vectors is an #-dimensional locally integrable Lie algebra. If H =
(Hy, ..., H,,) is a biholomorphism defined in a neighborhood of Z({?), then
{H(Z),..., H,(Z)} defines the same hypoanalytic structure on (2.

A distribution u# defined in an open subset V' of Q is called a solution in V
if, for any C® section L of L on V, Lu =0 in the distribution sense in V.

Let X be a C” submanifold of © of dimension . Denote by w5 the natural
map T*Q |y — T*X and by =¥ the analogous map of the complex cotangent
bundles. X is called maximally real if CT*X = x$(T”). Since a maximally
real manifold X is noncharacteristic for L, the trace on X of any solution
is well defined.

If L is a smooth section of L, its symbol ¢(L) vanishes on the bundle 7.
In fact, 7" is the set of all common zeros of all the functions ¢(L), with L a
smooth section of L. Therefore, CharL =T*QN7T" is the characteristic set
of L. In general, Char L is not a vector bundle.

A solution u is called Aypoanalytic at a point p in { if there is a holo-
morphic function # defined near Z(p) in C” such that u =ii-Z in a neigh-
borhood of p. The concept of hypoanalyticity was microlocalized in [1]. In
Theorem 1.1 of this section, WF,, will denote the hypoanalytic wavefront
set of a solution u.

We need to recall briefly from [11] some of the main classes of hypoana-
Iytic structures. The structure defined by 7’ on @ is said to be elliptic if
Char L =0; it is said to define a CR structure on Q if CT*Q=T'+T"; it
defines a complex structure if it is elliptic and defines a CR structure, in
other words, if

CT*Q=T'dT",

where @ denotes direct sum. Since the questions we consider are always
local, we will work near a central point, say 0 is in Q. Accordingly, after
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contracting @ about 0 and making an affine substitution of the Z;’s and a
real local change of coordinates as in [1], we can obtain

Zj=xj+\/—-1yj=zj for j=1,...,r and
Zy=x,+V—1®,(x,y) for k=r+1,...,m,

with &, real-valued, ®,(0,0) =0, and d®,(0,0) =0 for k= r+1. The integer
m—r is dim Char L at 0. We remark that 7’ is elliptic when r=m; T' is a
CR structure when r =n; and 7' is a complex structure when r =m =n.

Finally, we need to cite the concepts and results of Sussmann [10] on orbits
of families of vector fields. Let D be a set of C* vector fields on a C* mani-
fold M. If Ve D, let ,(¢) denote the flow of V. If p € M, there is a maximal
open interval J(p) such that &, (¢)p is defined from J(p) into M. When we
write @ (¢)p, it will be understood that # € J(p). Two points p; and p, are
said to be D-equivalent if there are finitely many vector fields V;,..., ¥} in
D such that

(1.1

D=y (ty) - 2y (4)py.

This defines an equivalence relation among the points of M. An equivalence
class for this relation is called a D-orbit. In [10] Sussmann proved that the
D-orbits are smooth submanifolds of M. We will apply this to D=ReL
and D = Hy,1,, Where the elements of ReL are the real parts of C sections
of L and Hg,y, is the family of Hamilton fields H, xy, X € Re L. The nota-
tion O(D, x) will denote the D-orbit containing x. If N is a submanifold of
Q, TnQ will denote the conormal of N in .

THEOREM 1.1. Suppose N is a submanifold of <} that is a D-orbit of ReL.
If u is a solution and v € TN, then

Y€ WFy,u & O(Hgey, v) EWFyu.

THEOREM 1.2. Suppose I' € Char L and I =0O(~y, Hg.1) for some vy €l If
u is a solution, then

YyeEWF,,ue ' CSWF,,u.

2. Consequences of Theorem 1.1 and Theorem 1.2

In this section we will first deduce Corollary 2.1 from Theorem 1.1. This cor-
ollary will in turn yield Corollary 2.2, which was proved in [5] by Hanges
and Treves.

Let M be a submanifold of Q, and set T}, = 7 $(7").

DEerFINITION 2.1. M is called a hypoanalytic submanifold if it is equipped
with a hypoanalytic structure whose structure bundle equals 7, and which
has the following property:

Given any hypoanalytic function f in an open set V' < {2, the restriction
of f to M NV is hypoanalytic.
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If M is a hypoanalytic submanifold of  we call it elliptic, CR, complex if
these apply to the hypoanalytic structure given to M.

COROLLARY 2.1. Suppose N is an elliptic submanifold of Q. If u is a solu-
tion in Q and v e Char L |y, then

vyeWFu,u e O(Hry,y)NCharL |y SEWF,,u.

The preceding corollary is a microlocal version of the following corollary,
which was the main result in [5].

CoRrOLLARY 2.2 (Hanges-Treves [5]). If a solution u is hypoanalytic at a
point of a connected elliptic submanifold M of , then u is hypoanalytic at
every point of M.

Proof of Corollary 2.1. As in [5], we consider three cases.

Case 1: Assume T’ is a CR structure; that is, assume r =7 in (1.1). Then
the ellipticity of N implies that it has a complex structure induced by 7”.
Assume further that dimc N=n. Then over N, L®L = CTN. Hence Theo-
rem 1.1 applies to N. Let Ly, ..., L, generate L (near 0). Let X; =ReL; and
Y;=ImL; for each j. CharL is now a manifold. If X e {X},Y},..., X}, Y}},
then X € TN and therefore H, y)e€ T(CharL|,). This fact, together with
the equation

(Hyxy, Hyvy]l = Hyix, v

tell us that the family Hg,;, foliates CharL |, =7xQ into orbits each of
which has dimension 2n, and has a basis for its tangent space given by the
restrictions of

[HO(XI)’HG(YI)’ ""Ho(Xn)s Hv(Yn)}°

By Theorem 1.1, each of these orbits propagates the singularities of a solu-
tion. If y € Char L |, we clearly have O(Hg.y, v) =O(Hrn, 7).

To deduce Corollary 2.2 in this case, we look at an integral curve for
H,(x) or Hyy, in an orbit. We use local coordinates (x’, x”) e R x R"~"
on {1 near 0, which we assume is in N, such that N is given by x” =0. In these

coordinates, if
n+m a

X= 3 aj(x)‘a_

j=1 Xj
is tangent to N, then a;(x’, 0) =0 for j > 2n. Therefore

m+n m+n  9q. p:
HG(X)=X— E ( . 2 -a'—j(x’, O)Ej)—a_— over CharL|N= T]\:';Q,
t=2n+1\ j=2n+1 0X; &

where £ = (&4, ..., &,,4,) 1s the fiber variable in the cotangent space to 2. An
integral curve C(¢) for H,x, through C(0) = (x’(0), 0; 0, £”(0)) e CharL|,,
has the form

C(t)=(x(2),0;0,£7(2)). -
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£”(t) depends linearly on £7(0) as follows:

() =exp( [ A(5)ds)£(0) = BO)£'0)

where B(t) is a matrix depending only on the base projection of the curve C.
Since B(t) is invertible, for any fixed ¢ the mapping £7(0) — B(¢) £”(0) from
the fiber Char L(x’(0), 0) to the fiber Char L(x’(¢), 0) is a bijection.

The latter implies Corollary 2.2, since a solution « is hypoanalytic at a
point p if and only if its hypoanalytic wavefront set does not intersect Char L
over p.

Case 2: Q a CR structure as in Case 1, but dim¢c N=m’'<n. Without
loss of generality, we may assume that the restrictions of Z,,..., Z,,- gen-
erate the structure bundle on N. Since N is a hypoanalytic submanifold,
for each k = m’+1, ..., m there is a holomorphic function 4, such that Z; =
h(Z,...,Z,) on N. We will use the new chart

ZiyeoisZips Zppii =y il Z1s ooy Zp?)y eees Loy —hppkZyy ooy Z,)0).
We also make a real change of coordinates in © (x, y) — (X, #), where
- {xk for k=1,...,m’
X =

Re(Zy(x, y)—I(Z1(X, ¥)s -.os Z1y(X, ¥))) for k>m’
and

5= Yj for j=1,...,m’
/ Im(Z;(x, y)—hi(Zy(x, ), .o, Zp(x, ¥))) for m'+1<j=<n.
After dropping the tildes, we have coordinates x, y and a hypoanalytic chart
Ziy..., Z,, such that
N={(x,y): Xppg1= =Xy =0, ypr4y=+-=y,=0};
Zj=xj+\/—1yj for j=1,...,n;
Zi=Xxp+N—-1¥(x,y) for k=n+1,...,m,
where ®; |, =0 and d®;(0,0) =0.
In these coordinates, a basis L, ..., L, for L can be chosen so that
0 g’; j a
Li=—+ a,— when 1<j=<n
T0% klnr C O
and L;e CTN when 1 < j <m’. In other words,

2.1) al(x’,y,0)=0 for j=1,...,m" and k=n+1,...,m,
Let @' ={(x, ) €Q: Ypry1 =+ =y, = 0}. Equip Q' with the bundle L gen-
erated by

Li=Lj|lg for l=j=m"
Then (', L) is a CR structure containing N as an elliptic submanifold and
(2.2) L|y=CTN.
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Therefore, by Case 1, CharL | ~=TnQ is a union of orbits along each of
which the singularities of solutions in the structure (2, L) propagate. From
(2.1), we get ‘

CharL|, S 7%Q' = CharL| .
If y e CharL|,, (2.2) gives
O(Hrn, v) = O(Hgei, Y)-

If u is a solution for (2, L) then u’=u|, is a solution for (', L), and hence
the singularities of u’ propagate along O(HRg.j, v)-
Through each point (x,, yo) € ', the maximally real manifold

{(x, ) eQ:y=y .

Since microlocal hypoanalyticity of a solution in Q is determined by its trace
on maximally real submanifolds, it follows that the singularities of u propa-
gate along O(HR.,v) and hence along O(H7y, v). Moreover,

CharL|y= U  O(Hgi,7)-
yeCharL|y

The latter yields both Corollary 2.1 and Corollary 2.2 in this case.

Case 3: (1 is not a CR structure (n>r) and N is elliptic, dim N=2m’+s.
We may assume that the restrictions of Zj,..., Z,,. generate the structure
bundle on N. As in Case 2, we can get coordinates x, y and a hypoanalytic
chart such that

Zi=x;+Vv—1y; forl=j=<r and

Zi=Xp+N—1®p(x,y) for r+1=sk=m;
and on N,

(2.3) X, =0, k=m'+1,...,m; =0, I=m'+1,...,r.

Moreover, & =0 fork=r+1,...,m.

Unlike Case 2, (2.3) may not be all the defining functions for N. How-
ever, by applying the implicit function theorem as in [5] we may assume that
N is given by

(2.4) X, =0, k=m’+1,...,m; =0, I=m'+1,...,n—s.
We adopt here the following notation:
X' =(X1yees X))y V' =(V1yeees V) 2 =X"+V—=1y";
X'=(Xprg1s oo Xm)s Y= (Vmrgts eoes Ynos)s
Y*=(In=st1s 205 Vn)-
We contract  about 0 and assume that
Q=AXV"XW"XW?*,

where
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AN={zeC™:|z;|<8,j=1,...,m"}

and V”, W”,W* are open balls centered at the origin in the spaces of x”, y”,
and y*, respectively. Then

N=AX{0}x{0}xW?* and
q)k(x,:y’sosoy y*)=0, dq)k(()):O vk.
In these coordinates L is spanned by a basis of the form
d

(2.5)

Liji=—+ E af(x,y)——— for l1<j<r;
0Zj  k=r+1 dxy
(2.6)
o m K )
Li=—+ Y a(x, y)—— for r+l1<j=<n.
Y;  k=r+1 Xk

Let Q' =A'XV”Xx {0} xW?*, The vector fields L,,..., L, together with
L,_s41,---,Lyareall tangent to ©’. Let L’ denote the bundle on Q' generated
by these vector fields. The restrictions of Zi,..., Z,, to Q' generate the or-
thogonal of L in 7*Q’. We now claim that N=A’X {0} X {0} X W*is an orbit
of ReL'. To see this, it suffices to show that in (2.6)

af(x,y)=0on N for I<j<m’and r+l<k=m
and
af(x,y)=0on N for n—s+1<j<nand r+1<k=m.
Fix je(l,..., m’}. The equations
Li(xp+~vV—1¢y(x,y))=0 for r+l<k=m

lead to the system
m
Q.7 =1 ¢k+a Frv=T Y a a¢" =0 for r+l<k=m.
0Z; t=r+1 Xt

By (2.5), since qbk | =0 and 9/0z; is tangent to N, the functions d¢,/0%;
vanish on N. Therefore, on N, (2.7) becomes

&9
(2.8) af+v=1 ¥ a/—=0 for r+l<k=m.

t=r+1 Xt

Since d¢,(0) =0 vk, it follows that in a neighborhood of 0, and hence
without loss of generality on all of N, we have

(2.9) af=0forr+l<k=mand l<j<m’.
Similar reasoning gives

(2.10) aj"=0 on N forr+l<sk=<=mand n—s+1=<j=<n.

From (2.9) and (2.10), we conclude that

(2.11) ReL’|y=TN and hence N=0(ReL/,0).
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The latter permits us to apply Theorem 1.1 to obtain: if e D' (Q'), L'A=0
and v € Ty Q' then

(2.12) vyeWFu,h © O(Hgeyrs,v) €S WFy,h.
We now note that the canonical map
T T*Q| o - T*Q

is an injection of CharL|, into CharL’|,, and that if Lu=0 in Q then
L'u’=0in @', where u’=u|,. Moreover, ' contains a maximally real sub-
manifold through each point of N. It follows that if v € CharL |,

(2.13) YyEWF,u e n(y)e WF,,u'.
From the latter, (2.11), and (2.12) we conclude that
YyEWFy,u & O(Hyy,y)NChar L]\, S WF,,u.

To get Corollary 2.2, suppose u is hypoanalytic at pe N. Then u’ is also
hypoanalytic there, and hence by (2.11) and (2.12) #’ is hypoanalytic at every
point of N. But then by (2.13) u is hypoanalytic at every point of N. O

CoroLLARY 2.3 (Hanges-Sjostrand {4]). Suppose that the structure (2,L)
is real analytic, and assume that

O(HRgeL,v) € CharL.
If u is a solution, then

YyeEWF,u s O(HgeL,Y) EWF,u.
Here WF,u denotes the analytic wavefront set of u as defined in [9].

Proof. This follows from Theorem 1.2. Indeed, for solutions of a real ana-
lytic structure, the notion of microlocal analyticity coincides with that of
microlocal hypoanalyticity, as demonstrated in [1] and [6]. 1

3. A Lemma on Microlocal Hypoanalyticity

Let (2, Z) be as in Section 1 with the Z; given by (1.1). We first briefly recall
Sato’s version of microlocal hypoanalyticity (see [1] for details).

We assume @ = UX W, where U is an open ball about 0 in x-space in R”
and W is one about 0 in y-space R”. Microlocal hypoanalyticity is defined
for distributions in the maximally real manifold U.

In what follows I' is a nonempty, acute and open cone in R, \{0}. For A
an open subset of U, we shall use the notation

Ns(A,T)={Z(x)+V—-1Z (x)v:x€e A, veT, |v|<b}.
In this section, Z(x) = Z(x, 0).
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DEerINITION 3.1. We denote by B;(A4,T") the space of holomorphic func-
tions f in Nj(A, I') satisfying the condition: To every compact subset K of
N;s(A,T) there exists an integer X =0 and a constant ¢ > 0 such that

| f(z)| = c(dist[z, Z(A)])~* forallzinK.

In [1] it is shown that if A is small enough and f € Bs(A, I') then for every
Yy e CZ(A),

lim SA FZ(x) +N=T Z(x)tv) ¥(x) dZ(x)

t—>+0

exists and is independent of v e I'. The notation bf will be used for this limit
distribution.

DerFINITION 3.2. Letu e D’(U) and (x, £) € U X (R,,\{0}). u is said to be hy-
poanalytic at (x, &) if there is an open neighborhood A< U of x, 6 >0, and
a finite collection of nonempty acute open cones I', in R, \{0} (k=1,...,r)
such that the following hold:

(a) for every k and every vely, £-v<0;
(b) for each k there is an f; € Bs(A, ') such that u=bf +---+bf, in A.

We remark that the preceding definition of microlocal hypoanalyticity does
not depend on the chart (U, Z).

DEFINITION 3.3. Let ue®’(U). The hypoanalytic wavefront set of the
distribution u is denoted by WF,,u and is defined by

WF,,u=1{(x, &) e UX(R,\{0}): uis not hypoanalytic at (x, £)}.

We next recall the Fourier transform criterion of hypoanalyticity. First, we
contract the neighborhood U about 0 sufficiently so that the mapping

Z=(Zy,.... Zp): U—»C™

is a diffeomorphism onto Z(U).

In (1.1) the Z; were chosen so that the Jacobian Z,(0) is the identity matrix,
We now select the Z; so that all the derivatives of the ¢; up to order 2 vanish
at zero. Indeed, it suffices to replace the Z; of (1.1) by

— %o,

k t axk 6x,

(0)Z,Z,.

(In the notation of (1.1), here ¢; = y; when 1 =< j <r.) We will use Z; to de-
note the transpose of the inverse of the matrix Z,.

In what follows, C,, and R,, will denote respectively the duals of complex
m space C” and real space R”.

For { in C” (or C™), {? will denote the sum ¥/, {?. For { in C,, with
|Im ¢| <|Re ¢, the notation {{) will be used for the holomorphic branch of
the square root of {2 that agrees with |£| when £ is in R,,,.
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Since the first and second derivatives of all the ¢; are zero at the origin,
after contracting U if necessary we can find a number K (0< K <1) such
that for all x, ye U and for all £ e R,,,

[Im Z2(x)£| < K|Re Z;(x) ]|
(3.1 and

Re(V—1Z}(x)¢-(Z(x) — Z(¥)) ~{Z(x)ENZ(x) — Z(¥))*}
=—K|¢||Z(x)—-Z()|~
Let u e &(U). The integral

Fu,2,8) = exp(v=T¢(z=Z(») <)z Z()?)u(») dZ(y)

is said to be the Fourier-Bros-Iagolnitzer (in short, FBI) transform of u
(see [9] and [1]). Here z € C™ and { € C,,, with |Im {|<|Re |

In [1] the authors showed the equivalence between exponential decay in
the FBI transform of # and microlocal hypoanalyticity as defined in this
section. They established the following theorem.

THEOREM 3.1 [1]. The following two properties are equivalent:
(i) u is hypoanalytic at (0, £°) for %+ 0.
(ii) There are open neighborhoods V of 0 in C™, a conic open neighbor-

hood Cy of &, in C,,, and constants c,r >0 such that |F(u,z,{)|<
cexp(—r|¢|) for all zin V and for all ¢ in Cy.

We emphasize here that Theorem 3.1 is a statement about the central point
0, and indeed in [1] the vanishing of the derivatives of the ¢; at 0 was used in
the proof. For the proof of Theorem 1.1 we will need the following lemma.
We assume that the neighborhood U has been contracted so that (3.1) holds.

LEMMA 3.1. There is a neighborhood U’ of 0, U'C U, such that for any
ue8&(U’), the following properties are equivalent:

(i) u is hypoanalytic at (x,, £&y) eU’ X R, for £9£0.
(ii) There is an open neighborhood V of Z(x,) in C™, a conic open neigh-
borhood Cg of Z;(x,)£° in C,,, and constants c, r > 0 such that

|F(u, z, §)| = cexp(—r|¢])
Sor all zin V and for all ¢ in C,.
Proof. Suppose (i) holds. According to the definition, it suffices to prove

the result when u is the boundary value of a holomorphic function f of tem-
pered growth defined in a set of the form

(Z(X)+V—=1Z(x)v: x+V—Tve(W+~—1T), |v| <8y},
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where W< U is an open neighborhood of xy, 6y is a positive number, and
T is an acute open cone in R,,\{0} such that for every veT, £°-v<0. Thus,
for g e C2 (W),

(u, 6= lim S AZ(x)+IN=TZ(x)v)d(x)dZ(x) for vel.

t—+0

After contracting I'" if necessary, we may assume that there is a number
o> 0 such that £°-v < —¢,|v||£°] whenever v is in . We shall need the fol-
lowing lemma.

LeMMma 3.1'.  Suppose u € &'(U) vanishes in an open neighborhood of x, € U.
Then there is an open neighborhood V of Z(x,) in C™, a conic neighborhood
Cof {Z}(xp)é: £ € R, )\{0}} in C,,, and constants c, r such that |F(u,z, )| <
ce™"8l for all z in V and for all ¢ in C.

Proof. ForzeC"™, {€C,, and |Im¢|<|Re{|, we consider the FBI

F(u,2,8) = | exp(V=T¢ (2= Z(1) — ()= Z(0)) u(») dZ().
Let

0z, 7) =Re {x/———l I—;-(z—zo»)) —%(z—Z(y»Z}.

We first freeze z to Z(x,) and { to Z}(x)-£° for some £°eR,,, |£%=1:
O(Z(x0), Z5(x0)£% »)

Zi(x0)E (ZE(x0)E%) }
=R \/:T-———-— A -7 _XXAR0IS 7o —7 5 .
o[V e 20~ 20D = ) (200 =24

Condition (3.1) tells us that
OQ(Z(x0), Z}(x0)£°, ¥y = —K| Z(x0) — Z(»)*.

Suppose d is a positive number such that |y —xy|=d whenever y € supp u.
Then, in the support of u, Q(Z(x,), ZX(x,)£°, y) < —Kd? By continuity,
there are open neighborhoods V of Z(x,) in C™ and € of Z}(x,)¢° in C,,
such that

2
o(z, LJ’)S—ES— forallzin ¥V, ¢in G.

By compactness of the unit sphere in R,,, we may assume that the open
set € contains the set {Z}(x()¢: £ € R,,, |£| = 1}. Moreover, the homogeneity
of Q implies that there is a conic neighborhood € of {Z}(x,)¢: £ € R,\{0}}
in C,, such that
5 Kd?
Re{(V—1{-(2—Z(») <Az —Z(»)*} = ——z—li’l

whenever z is in ¥ and { is in @. This gives us the required decay of F(u, z, ).
d
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Proof of Lemma 3.1. Let ge CZ(W) with g= 1 near x;. Since (1 —g)u van-
ishes near x,, by Lemma 3.1’ we know that F((1—g)u, z, {) decays exponen-
tially in the sets of interest. Therefore it suffices to show a similar decay for
F(gu,z,¢). Let xe CZ(W) with x =1 near x;, and suppx S {x: g(x) =1}.
Fix veT with |v|=1. When s is a suitably small positive number, we can
deform the contour of integration in F(gu, z, ¢) under the mapping

Z(y) > Z(y)=Z(y) +V=1sZ,(») x(»)v.
Thus

F(gu,z,{)
= guexp(m (2= Z() =Xz~ Z(N)?) SZ()) - 8(3) dZ(p).

We focus on the quantity

9

Q(Z’ §',y,S)=Re{\/j—§—(z—Z(y))——|—§_—l—

Iy

and write it as Q= Q,;+ Q,, where

Z(y))zi

Ql(z,s“,y)=Re[\/—l§| (z— Z(y))—<|—§:|Z (z— Z(y))}

and

sZ,(»)x(y)v)

L4
G

QZ(Zag',ysS) Re{'g.l

= [2V=1s5(z=Z(¥) - (x(») Z,(»)v)

+s2|x(y)zy(y)v|2]}.

We first consider these quantities when z = Z(x,), {=2Z}(x,)-£° and y
varies in the support of g. From (3.1) we have

Oi(Z(x0), Z}(x0)£% ¥, ) = —K| Z(x0) — Z(»)|~

To estimate Q,(Z(x,), ZX(x0) €%, v, s), we note that for s sufficiently small,
say 0 <s =<y,

o \£0 _ S(E%0) | (Zi(x)E”)
02(Z(x0), Z*(x0) £ ,xo,S)—Re{l Z 0B T2 G ]

= —SCO/4.

52| Z(xo )v|2}

Therefore, by continuity we can find a number d > 0 satisfying
|y —xo|=d = Qx(Z(x0), Z¥(x0)£°, », 5) < —sco /4.

We may assume that x(y) =1 whenever |y —xy| < d. On the other hand,
for each y,

O2(Z(x0), ZH(x0)E% ¥, 5) < 4sx(P)(| Z(xp) — Z(¥)|+5).
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Hence, when |y — x| <d,
O(Z(x0), Z{(%0)£°, ¥, 5) < —K| Z(x0) = Z(¥)|* — 5¢0/2,
while if |y —xo| = d then |Z(y) —Z(x,)|=d, so that
O(Z(x0), Zx(x0)£%, ¥, 8) = —Kd| Z(x0) — Z(¥)|+ 4sx(P)(| Z(x0) — Z(p)| +5).

Therefore, by choosing s small in comparison with d, we get a positive
number 6 such that

O(Z(x0), Z}(x0)E% y,5)<—6 when yesuppg.

By continuity, there are open neighborhoods ¥ of Z(x,) in C™ and € of
ZX(x0)£% in C,, such that O(z, ¢, y,s)<—6/2 for all zeV, { €@ and for all
yesuppg. Now Q is positive homogeneous of degree 0 in {. Therefore,
there is an open conic neighborhood @ of Z}(x,)£° in C,, such that

Re(V=T{ (e~ Z0) —(O) e~ 20N <= 2[¢]

whenever z is in ¥ and ¢ in C. From this we get the required decay of
F(u,z,¢).

That (ii) implies (i) can be seen by a slight modification of the arguments
used in [1] and [9] to prove Theorem 3.1. We will therefore only give a short
outline. The main idea is to use the inversion of the FBI transform. For M a
compact neighborhood of 0 in U, define the set T, by

Ty=z,8):2=2Z(x), { =Z}(x)& for some (x, £) e M X R,\{0}}.

A(z, ¢) will denote the Jacobian det(d6/9¢), where 6 = ¢+~—1{{)z. For
6>0and A e&(U), define the holomorphic function
H(@)=(r) 72| [ exp(V=T(z—w) = () z-w)= &)

M

(3.2) “F(hy w, (O™ A(z—w, ) dwdt

We will need the following lemma from [12].

LemMmA 3.1”. Let M be as above. There exist two open sets Uy and U; con-
taining 0, with UyC U, C U, such that if he &' (U,) then hiyeZ — h+ f-Z in
D'(U,), where f is holomorphic in an open set in C" containing Z(U,).

Fix M, U,, U; as in the lemma, and let U’'=MNU,. Let x; be in U’ and sup-
pose that (ii) holds for xo and u € &(U"’). Define I'y = (V' X Co) N T}, where V
and €, are the neighborhoods of Z(x,) and Z,}“(xo)EO (respectively) satis-
fying (ii).
Let I'y, ..., 'y be conically compact sets such that
(1) Ty= Ufzo Pj;
(ii) measure(I';NI;) =0 when i # j; and
(iii) foreach j=1,..., k there is a convex open subset I'/ = Uy X R” whose
base contains xy and which satisfies the following property:
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(3.3) v-£9<0, v-£=d|v||E] (d>0)
if (x,v) eI} and (Z(x), Z{(x)§) €T for some x.

Letu J_a denote the integral (3.2) in which the integration is carried out over
I';. For ud(z) we use (3.1) and (ii) to estimate the integrand as follows: If
z=Z(x¢) and (w, {) =(Z(x), Z{(x)£) €Ty, then

lexp(V=T(z—w)- £ —<EXz—w)?) F(u, w, {XEY™2A(z—w, §)|
< const|{|™? exp(—K ||| Z(xo) — Z(x)[>—r|ZE(x)E|).

Recall also that Z7(x) is very close to the identity matrix. Hence when § — 0,

ud converges uniformly to a holomorphic function in a neighborhood of

z=Z(xyp). Fix j = 1. We will show that uj‘s(z) converges uniformly on the set
{z:2=Z(x)+V—1Z(x)v,(x, v) eI/} when v is small.

Let (x,v)el}. If z=Z(x)+V—-1Z,(x)v and (w, {)=(Z(x"), Z}(x)E) e
I';, then using (3.1) and (3.3) one gets the estimate (see [12])

lexp(V=T1(z—w)- ¢ =Xz —w)2) F(u, w, EXEY™2A(z—w, §)
< const(1+|¢ )N "1 exp(—&(|v|+|z—w|?)|¢)).
Here N is the order of the distribution u.

This estimate implies that as  — 0, the function | v]N uj‘S(Z(x) +vV—1Z,(x)v)

converges uniformly. This proves that the limit of uj‘S(Z(x)) exists in a neigh-

borhood of x, and is the boundary value of a tempered holomorphic func-
tion in a set of the form

(Z(xX)+V—=1Z,(x)v: (x,v) €T, |v|<é}.
It follows that (xg, £°) ¢ WF,u. O

4. Proof of Theorems 1.1 and 1.2

In this section (£, Z) is as in Section 1 with Z = (Z, ..., Z,,) satisfying (1.1). To
exploit the theorems of Trépreau, we will begin by first associating a CR struc-
ture to Q' =Q X T, where T is a neighborhood of 0 in R”~’. We will use the
variable ¢ =(¢,,,..., ;) for points in 7. The structure bundle in Q' is gen-
erated by

Z;j=x;+V—-1y; for 1=j=<r;
Zy=x+N—1¢p(x,y) for r+l1=<k=<m;
Wi=t, x+vV—1y,_; for 1=sk=n-r.
We will use the notation
Z(x, 3, 1) =(Z(x, ), W(t, y)).
We recall that the bundle L had as a basis:
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Li=—+ 2 b'k———, ISJSF,
/ azj k=r+1 ! axk
v—-1 9 i 0 .
=——-—+ Y bj—, r+l=j=n.
T2 Ay ki T oxg

The structure associated to @’ has a bundle V with basis:
Vi=L;, 1=j=r;

Vk=l i+\/:1_—a—>+ § b,’(-—a—, r+lsks=n.
2\ 9t W) jZre Y 0x;

We use (x’, x”, y; £, £, 5) for points in T*Q, where x'=(x;, ..., X;), X"=
Xig1seeesXm)s E=(&1, .-, &), and E"=(&;415 .-+, &) Lemma 4.2 will show
that if &V is an orbit of Re L through 0, coordinates (x’, x”, y) can be found
for © in which N is defined by x”=0.

Points in T*(Q2x T) will be denoted by (x’, x”, »,¢; &, £”,9,7), where
x',x" &, & are as above and 7=(7,,1,..., 7,) i1s dual to . With this nota-
tion, we can write

TNQ2={(x",0,y;0,£,0): (x',0,y)eN} and
Txr(@XT)={(x",0,,10,£",0,0): (x,0,y,t) e NXT}.
In the following lemma,
o=(x2,...,x2,0,»%0,¢.,....,£%,0) and

5=(x10,'“’x109 09y030;05 E?-H,---,ES“0,0)-
LEMMA 4.1. Let u be a solution in (2, L) and let @i(x, y, t)=u(x,y). Then
G WFii in (QXT,V)e o¢ WF,,u in (2, L).

Proof. Lemma 3.1 enables us to use the FBI transform. This may require
the contraction of {2 about the origin. However, we note that we need only
prove the propagation of Theorem 1.1 in some neighborhood independent
of the solution u.

Since i is a solution for (2 X 7, V), we may use the maximally real mani-
fold X = {(x, ¥, #)} which contains the base projection of 5. For # we may
use X = {(x, y%)}. Let (z, w) e C"x C" " and (¢, 7) € C,, X C,_, denote vari-
able points.

The FBI transform of i#(x, y°, t) = u(x, y°) in X can be factored as

F(II,Z, w, g': T)-_—II(Z, g-, T)'Iz(W, g‘: 7),
where

Il(za g_’ 7)
= [ exp(V=T¢+(x = Z(x, 7o) = <€, (2 — Z(x, o)) u(x, o) Z(x, yo)
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and
IZ(W: g.’ T)
= ST exp(vV—17-(w— W(ff)’o)) —(& YW =W (L, o)) dtryy ... dt,.

If o¢WF,,u, Lemma 3.1 tells us that there exists a neighborhood V
of Z(x?,...,x2,0,y% in C™ and a conic open neighborhood @ of {’=
ZXxP, .., x2,0,¥9(0, €0, 1, ..., £%) in C,,, together with positive constants
c¢; and c,, such that |I;(z, §,0)| < c; exp(—c,|¢]) for zeV and {e€C. The
factor I, satisfies an estimate of the form |I,(w, {, 7)| < d;e®!”l when w=
W0, yo) and ({, 7) satisfies |Re(¢, 7)| > |Im(¢, 7)|. Indeed, for such (¢, 7),
Re(¢, ) =0.

Therefore, for each e > 0, there is a neighborhood ¥V, of W(0, y,) such that
|, (w, ¢, 7)| < dy eI+ <8l whenever w e V,, |Re(¢, 7)| > |Im(¢, 7).

We now recall that

Z(xP, .., x2, 090,00 =(Z(x0, ..., xP,0,¥%), w(0, y°))
and
ZE(xy ., xP,0,¥0,0)(0, £ 1, ., £9,0)
=(ZE(XDs ooy %050, °)(0, £y 1, ..., D), 0).

The proof of Lemma 3.1 shows that I; satisfies an estimate |/;(z, {, 7)|<
c; exp(—c,|¢|) for z in V' a neighborhood of 0 in C™ and (¢, 7) in a conic
neighborhood of Z}(x?,..., xf,0,¥°(0, &% 4, ..., %) in C,,x C,,_,, Where
|7] < 8[| for some 6 > 0.

These estimates on ; and I, imply that there are constants r;, r, > 0 such
that

(4'1) ]F(ﬁ,z, w, g—s T)ISI"I exp(_rZI(g” T)I)

for (z, w) near Z(x?,..., x?,0,y%0) and ({, 7) in a conic neighborhood of
(¢%,0) in C,, X C,_,. It follows that G ¢ WF),ii.
Suppose now that 6 ¢ WFj,,i. Then Lemma 3.1 tells us that

F(a,z,w,{,1)=1L(z,{, 1) [,(w, {, 7)

decays exponentially as in (4.1). In particular, F(i, z, W(0, y,), {, 0) decays
exponentially for z near Z(x?, ..., x?,0, %) and ¢ in a conic neighborhood
of ¢, Since the ¢ component of & is 0, we may contract 7 around 0 as much
as we wish in the integral 7,. It follows that I,(z, ¢, 0) decays exponentially
for z near Z(x?, ..., x,o, 0, y°) and ¢ in a conic neighborhood of ¢°. Hence
o¢ WFhau. O

LeEmMMA 4.2. If Nis an orbit through O for ReL in 2, then NX T is an orbit
Jor ReVin QxT.

Proof. We begin by first finding coordinates in {2 that flatten N and leave the
“form” of L unchanged. Since L | , € CTN and the fiber dimension of L = n,
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dimN=n+/ for some 0</<m. Let N be defined by A;=---=h,,_;=0.
From L;h;=0on N we get

—ah—k(0)=0 vk=1,...,m—1I and j=1,...,r;

axj

ohy

—(0)=0 Vvk=1,...,m—I and j=1,...,n.

Since also the differentials of Ay, ..., h,,_, are independent near 0, we have

oh;
rank(—“’(O)) =m-—I.
0xy l<sj<m—I

r+l<k=m

Therefore, after a possible permutation of the variables x, .4, ..., X,, and
using the implicit function theorem, we get functions g, ..., g,—; of xy, ...,
X715 Y15 -++» Yy Such that

hi(x, ) =0 X1 j=gi(X15 ce0s X1, Y15 o5 Vn)s 1= j=m—1,
Change coordinates in Q by the mapping (x, y)~ (X, ¥), so that
- X, ISJSI,
Xj= .
Xi—8&i—i(%,y), I+l=j=m;
)~’k=)’k Vk=1,...,n.

After dropping the tildes, we have found coordinates (x, y) € R” X R” which
flatten

N={(x,y)eQ:x;=0, j=1+1,..., m},
and the vector fields L; take the form

L=214 3 P+ S byl forisj
= a.,—+ by ——— or l=j=<r;
T8z ke Toxe ke T ax /

V=1 9 d ) « 7 0 :
Li=————+ Y ady—+ Y by— for r+l<j=<n,
J 2 0y kZr41 7 9 k=1+1 7 axy

with bjk(xl, ceny XYy 0, y) = Ejk(xl, evey X7y O, y) =0.
In these coordinates, V is still spanned by

Vi=L; forl=j=<r and

szé—?;z—k-i-Lk forr+1<k=<n,
where the L; and L, are as above.

Recall from Sussmann [10] that given mg € N there exist S= (S, ...,S;) €
R7forsomeq, £=(X",..., X7 (each X/eReL), m e N, and 6> 0 such that
pt, m(Bs(T)) = A is a neighborhood of m, in the orbit N. Here, for s € RY,
pt,m(S) = XL ... Xgm, pg (St ...sSg) = X§ ... X5 m=my, and Bs(S) =
{s eR?:|s—S|<é}. Hence, if m’e A, 3s’=(s{, ..., s;) such that
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m'=XJ ... X;;m=XS‘;,’ XXl XZs my.
Let
A={RelL,,...,ReL,,ImL,,...,ImL,}

={ReV;,...,ReV,, ImV,,...,ImV,}
and
B={ReV,,.q,...,ReV,]}.

Recall that ReV, ., =3(8/0¢,,;)+ReL,,; for j=1,...,n—r.
Suppose (x’,0,y)eN and feT. If X e A then

Xs(x',0,y,t)=(Xs(x, 0, ), ).
On the other hand, if Y € B, say Y=ReV, . for definiteness, then

S
Y;‘(x,, ana t) = ((ReLr+l)s(-x,; 09}"), tr+1+rT+l, tr+2’ sy tn)~

Moreover, since Re L, 1(0) =0, we have

s
Y,(0,0,¢)= (0, 0, t,+1+—’2L‘, brsns ey t,,).
We apply the preceding conclusions to n2, = 0 and contract N about 0 so that
N=A.Given (x’,0,y)eNand t =({,,1,...,,) €T, let
X; ... X}0,0)=(x",0,).

Then X ... X;(0,0,0) = (x,0,;7,41,...,74), Where X|7;| <6/2. Here,
when X =ReL;, X=ReV]. It follows that

X XEReVi1)a, —2r,, - (ReVy)2; —2,(0,0,0)=(x",0,,1).

r+l1

Hence A X T'is an orbit for ReV. O
Finally, we state the two results of Trépreau in [13] that we will use.

THEOREM 4.1 [13, Thm. 10]. Suppose M is a generic CR manifold in C"
and N is a CR submanifold of M, with CR dimension of N = CR dimension
of M. If u is a CR function on M and x* € Tj; M\{0}, then

x*eWFy,ue O(Hy,x*) S WF;,u,
where H y is the family of Hamilton fields of the real parts of the CR vecior
fields tangential to M.

THEOREM 4.2 [13, Thm. 7]. Suppose M is a generic CR manifold in C"
and £ S Ty C"\{0} is a minimal CR manifold in T*C". If u is a CR func-
tion on M, we have

LEWF,,ue CNWEF,u+0.
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In Theorem 4.2, T;C” is defined as follows: Let 7*C" denote the bundle
of (1,0) forms 6 =¥7_ {;dz;. Then

T C"={(z,0)eT*C": ze M, Imé| 7 ,, = 0}.

Proof of Theorem 1.1. Let N=0(ReL, 0). We continue to use (g, w) =
(ZiseeesZms Wiy ---» Wy—,) for a variable point in C” X C"~’. Let M’ denote
the image of

Z=Z(x,,1): QXT—->C"xC" "

in complex space C"" X C"~", M’ is a generic CR manifold with a CR vector
bundle=Z,V. N'=Z(NxT) is a submanifold of M’ and by Lemma 4.2,
since Z,V is tangential to N’, we know that N’ is a CR manifold with
CRdimM’'=CRdim N’. Suppose Lu=0 in Q. If u# is defined on M’ by
ii(Z(x,y,t))=u(x,y), then il is a CR distribution on M". Since the Hamil-
ton fields Hy. are related to Hg.y in the same way as ReV is related to
ReL, the arguments of Lemma 4.2 lead to the following conclusion:

O(Hgew, 6)={(x",0,5,£0,£",0,0): (x',0,y;0,£", 0) € O(Hgc, 9)},

where 0 € TyQ and 6 € TRy (2 X T') as in Lemma 4.1. Theorem 1.1 now fol-
lows from Lemma 4.1 and Theorem 4.1 by transferring the problem to M,
N’ and . ]

Proof of Theorem 1.2. As in the proof of Theorem 1.1, we transfer the
problem to M’ and use the lemmas of this paper. Let I"’ be the subset of
T*(QxT) defined by

I"=1{x,y,0;§,1,0): (x,y,&, ) el'}.

Since F C Char L, we have I'"C CharV. Let I'”=the transfer to M’ by the
map Z. The condition I''S CharV implies that I'” <€ T3; C"\{0}. Theorem
1.2 now follows from Lemma 4.1 and Theorem 4.2. U
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