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Presentations of Smooth Plane Cubics

BoORIS REICHSTEIN & ZINOVY REICHSTEIN

1. Introduction

Let V be an n-dimensional vector space over an algebraically closed field &
of characteristic 0, and let ¢ be a homogeneous polynomial (form) of degree
d on V. A Waring presentation is a presentation of ¢ as a sum of m dth
powers of linear forms on V. In this paper we shall study the variety of all
such presentations in the case d = 3, n =3, and m = 4. To introduce the ques-
tions we will be discussing, we first consider the case of quadratic forms
where the answers are easy and well known.

A nonsingular quadratic form Q on V can be written as a sum of n squares
of linear forms /; e V'*:

Q=1+ +I2

The variety parameterizing all such #n-tuples (/;, ..., /,) for a given quadratic
form Q is isomorphic to the orthogonal group O, (k). Thus this variety has
two isomorphic irreducible components, corresponding to orthogonal ma-
trices of determinant +1 and —1 respectively. It follows from the classical
Cayley formulas that these components are rational. Indeed, let so,(k) be
the set of all skew-symmetric complex 7 X n matrices and let I be the n X r
identity matrix. Then the following mutually inverse rational maps

50,(k) = SO, (k)
A - (I+A)(I—-A)!
(B—I)(I+B)™ !« B

establish a birational isomorphism between SO, (k) and the affine space
50,(k).

Suppose we start with a cubic form ¢ on a 3-dimensional vector space V
which cuts out a smooth curve C in P(V'). Assume that the j-invariant of C
is nonzero, that is, ¢ cannot be written as a sum of three cubes of linear
forms. Then ¢ can be written as a sum of four cubes:

1) p=1 4 +13;
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see Theorem 4.8(c). In this paper we shall study the set X, of all presen-
tations (1). We show that X, is an irreducible affine algebraic surface of
general type. Moreover, we prove that its minimal compactification qu has
positive index. For an account of special properties of surfaces of positive
index and the place they occupy in the “surface geography” see [8].

The rest of the paper is structured as follows. Section 2 contains some
preliminary facts about plane cubics. In Section 3 we prove an irreducibility
criterion for abelian coverings of smooth irreducible varieties. In Section 4
we give an explicit description of the surface X, by relating it to the Hessian
curve H of ¢. The surface X is then realized as an abelian cover of an open
subset of H X H. In Section 5 we use this construction and the criterion of
Section 3 to prove the irreducibility of X,. We also prove that the generic
fiber of the map X, — H is irreducible.

Next we turn to numerical invariants. In Sections 6 and 7 we present an
explicit construction of the minimal compactification X, of X, and show
that the genus of the generic fiber of X, — H is 325; see Theorem 7.4. In
Section 8 we show that the Chern numbers of X¢ are given by cf =7,452
(Theorem 8.1) and ¢, = 2,916 (Theorem 8.2)-and thus )_(¢ has positive index.

While there is a great deal of classical literature on the Waring problem in
number theory, we are aware of only a small number of classical resulis
dealing with Waring presentations of forms. For results on binary forms
(n=2) we refer the reader to Gundelfinger ([3], [4]; see also [6]). The case
of cubic forms in 4 variables was studied by Sylvester [14]. He showed that a
form cutting out a smooth cubic surface in P3 can be written as a sum of
five cubes of linear forms. These linear forms are unique up to reordering
and multiplication by a cube root of 1.

This work resulted from an attempt to find a geometric interpretation of
the algebraic description of X, presented in [10]. This description is based
on an algorithm proposed in [9] which generates Waring presentations of a
given cubic form for low values of m—n when n> 3.

This paper does not treat the case where ¢ (or, more precisely, the cubic
curve that ¢ cuts out in P?) is singular. If ¢ is nodal then one can describe
X, explicitly and show that it is irreducible in essentially the same way as
we do for a smooth ¢. The calculation of numerical invariants, however,
appears to be more complicated. When ¢ is cuspidal, the Hessian curve is
no longer irreducible, and the methods of this paper do not apply. In this
case X, is a disjoint union of 12 isomorphic irreducible components; each
component is a ruled surface (see [11]).

We also remark that the arithmetic properties of X, appear to be very
interesting. Suppose the cubic form ¢ defined over the rationals cuts out a
smooth curve in P2. It is not known whether or not equation (1) always has
a finite number of solutions over a number field. This question is in fact a
special case of a conjecture of Voita and Lang about rational points on vari-
eties of general type; see [7, Conjecture 5.8].
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The following notations will be used throughout the paper.

an algebraically closed base field of characteristic 0.
a 3-dimensional vector space over k.
a smooth cubic curve in P(¥) = P? with a non-zero j-invariant.
a cubic form in ¥ which cuts out C.
the symmetric trilinear form obtained from ¢ by polarization.
the Hessian curve of C.
an inflection point of H.
the addition operation on H with identity element O.
the involution of H given by w(A, i(A), ) =0.
point of order 2 in H such that i(A)=A®P for any A€ H.
the variety of all presentations of ¢ as a sum of four cubes of
linear forms.

Jij the map X, — H given by [i(f;;(p)) =[;(fij(p)) =0 where p=

(l1, ..., 1y).

a;, b;, c; the three integers between 1 and 4 other than i; here i =1,...,4.
«;, B;,7; the three 2-element subsets of {1, 2, 3, 4}\{/}.

We would like to thank Igor Dolgachev for many helpful suggestions and
for sending us his unpublished work. We are also grateful to Ching-Li Chai,
Robert Friedman, and Mark Spivakovsky for stimulating conversations.

The second author would like to express his gratitude to the Mathematical
Sciences Research Institute in Berkeley for its hospitality and to the NSF for
its financial support through a Postdoctoral Fellowship.
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2. Some Preliminary Considerations

In this section we discuss some basic facts about cubic forms in the projec-
tive plane which are used in the sequel. For the convenience of the reader
we present complete proofs as well as some references to classical literature.

Let w be the trilinear symmetric form in V' obtained from ¢ by polariza-
tion. Recall that w(v, v, v) = ¢(v) for every v € V and that w is uniquely char-
acterized by this property. In particular, if the linear forms /, ..., /; satisfy
(1) then

(2) (X, ¥,2) = L(xX) 1 (P) () + - - - + 14(x) [4(¥) 14(2).
Recall also that the first polar quadric w, of ¢ at r e V' is given by
(3) w (X)) =w(r, X, X).

Let H be the set of all R e P(V) such that the quadratic form w, is degen-

erate for any affine representative  of R. The following two lemmas are due
to Hesse (see [2], [12]).

2.1. LEMMA. H is precisely the zero locus of the Hessian determinant of ¢
inP(V).
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Proof. Let {x;, x,, X3} be a basis of V'*. Let v;=x;(v). Then

13 9
w(v, x, xX)= 5 El v; 5—;‘%
The (s, r)th entry of the matrix of this quadratic form is thus given by
3 3 2
ad d
hX ?___ 9% ),

i=1 vi 0x;0x,0x,  0x,0x,

Hence, w, is singular if and only if the Hessian matrix of ¢ is singular at v.
|

Note that the above lemma holds for any cubic form in any number of
variables.

2.2. LEMMA. The Hessian curve H is a smooth cubic in P(V).

Proof. For an appropriate choice of coordinates in V, the form ¢ can be
written as x3+ y3 + z3 4+ 3axyz. The curve C is smooth if and only if @3 # —1;
its j-invariant is given by
3 (8—a%)’ .

(a3+1)3°

see [2, §7.3]. A direct computation shows that H is given by

4) J(C)=a

(5) a?(xX3+ 3+ 2 — (@ +Hxyz=0;

see [12, Art. 218]. Since j(C) # 0, we must have a+ 0. Hence, (2.4) is the
same as x>+ y3 + 234 3bxyz = 0 where b = —(a>+ 4)/3a>. Therefore, we
only need to check that #3# —1. Since
(@’ +1)(@*-8)?

27ab ’

the lemma now follows from the assumption that j(C) # 0. 0

b3+1=

Lemma 2.2 says that H is an elliptic curve. We fix an inflection point O € H.
The group operation on A with the identity element O will be denoted by @.

2.3. LEMMA. Let w, be the first polar quadratic form defined in (3). Then
Jor any veV rank(w,) = 2.

Proof. Assume the contrary. Then there exists a 2-dimensional subspace W
of V such that w(v, w, -) =0 for any we W. The plane W determines a pro-
jective line in P (V') which lies entirely in the Hessian curve H, contradicting
Lemma 2.2. U

By Lemma 2.3, for every point 4 on the Hessian curve A there exists a
unique B € P(V) such that w(A4, B, -) =0. The point B also lies on the Hes-
sian curve H. Following nineteenth-century literature we shall say that B is
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the point corresponding to A; see [12, Art. 175]. The map which sends a
point of H to its corresponding point is an algebraic involution of H. De-
note this map by i: for the points A and B above, i(A) =B and i(B) =A. We
shall now see that 7 is simply a translation by a point of order 2.

2.4. LEMMA. (s a fixed point free involution of H.

Proof. Suppose i(A) =A. Since ¢(A) =w(A, A, A)=0, A lies on the curve
C cut out by ¢ in P(V'). Moreover,

w(A4,A4,x)=

3 aq()
121 Xig (A)

1
2; ax;

vanishes for every x = (x, x5, x3) € V. Hence, A is a singular point of C, a
contradiction. O

2.5. LEMMA (see [12, Art. 178]). Let A€ H. Then the linear form w(A, A, *)
cuts out the tangent line to H at i(A).

Proof. For any A, B € H the line cut out by w(A, B, -) passes through i(A)
and i(B). il

2.6. LEMMA. Let Ae H. Then the tangent lines to H at A and i(A) inter-
sect on H.

Proof. Let B=i(A)and let @ and b €V be affine representatives for A and B
respectively. Let C be the intersection point of the tangent lines at 4 and
B. Then, by Lemma 2.5,

w(a,a,C)=w(b,b,C)=0.
Since we also have w(a, b, -) =0,
w(aa+pb,xa+8b,C)=0

for every «, 3 € k. In other words, the zero locus of the polar quadratic wc
contains the line joining A and B. Hence, Ce H. L]

2.7. PROPOSITION. There exists a point P € H of order 2 such that for any
AeH we have i(A)=A®P.

Proof. Lemma 2.6 can be restated as follows:
2A02i(A)=0.

Thus i(A) > A©i(A) is a regular map from H to the set of points of order 2
in H. Since there are only four points of order 2, this map is constant. [

REMARKS. Every fixed point free involution of an elliptic curve is a trans-
lation by an element of order 2.
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Every smooth cubic in P? is realized as the Hessian H of a smooth cubic
form ¢ in three different ways; see [12]. The three involutions i induced this
way are translations by the three points of order 2. The map

{plane cubics} — {plane cubics}

which sends a curve C to its Hessian curve H induces a 3:1 covering map of
the j-line to itself given by

—ji3(C)+7684(C)—196608/(C) +16777216
27j2(C) '

We now define the following divisors in X H and H X HX H.

In HXH D,: {(A,B): A=B® P},
{(4,B):2A@®B=0};

In HXHxH E;: {(4,B,C): A=B®P),
{
{

J(H)=

(6) .
(4,B,C): A=COPI,

(A,B,C): B=C®P},
Es: ((A,B,C): A®B®C=0).

Let pr;;: H/ - P? be the projection to the ith factor.

2.8. LEMMA.

(a) divw(A4,B,C)=E|+E,+E;+E,.

(b) divw(A4,A,B)=2D;+D,.
Here w(A, B, C) and w(A, A, B) are viewed as global sections of pri;30p2(1)®
pr330p2(1) ®pri; Op2(1) and pri;0p2(2) ®pria Op2(1) respectively.

Proof. (a) w(A, B, C) vanishes if and only if A=i(B) or A+ i(B) but C
lies on the line joining i(A) and i(B). The second possibility translates into
C=i(A), c=i(B), or i(A)+i(B)+ C=0. In view of Proposition 2.7 this
implies that divw(A4, B, C) is, indeed, a positive integral combination of
E,,...,E4; we just have to make sure each E; occurs with multiplicity [.
Assume divw(A4,B,C)=%,-;,. 41 E;. Let L be a line in P2 which inter-
sects H in three distinct pairwise noncorresponding points Q, R, and S.
Let b, ceV be affine representatives for B=i(Q)=Q0®P and C=i(R)=
R®P.Let E={(A,B,C): B=0Q®P, C=R®P]}. Then E intersects each E;
transversely and

Q®P; C=ROP}={A=0)]
Q®P; C=ROP}={A=R]}
Q@P; C=ROP}=0

Q®P; C=R@OP}={A=S5]

Il

E,N{B
E,N{B
E.N{B
E4N{B

Hence, if we view w(A4, b, ¢) as a global section of pr{;Op2(1) then

diVCO(A, b, C) = n1Q+n2R+n4S.
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On the other hand, since L intersects H transversely, we have
divw(A4,b,c)=0+R+S.

Hence, n; = n, = n,=1. The same argument with A and C interchanged
yields ny=1.

(b) By Lemma 2.5, w(A, A, B) vanishes if and only if B lies on the tangent
line to i(A), that is, B=A®P or B+2A=0. Hence,

diV((.O(A,A, B)) = n,Dl +n2D2

for some positive integers n; and n,. Fix Q € H such that i(Q) is not an
inflection point of H. Let r €V be an affine representative of R=i(Q) and
let S=y¢(Q, Q). Letting B vary over H and reasoning as in the proof of
part (a), we obtain

n1Q+nzs= div(w(a, a, B)) :2Q+S

Hence, nj=2 and n,=1. O

3. A Ciriterion for Irreducibility

In this section we prove an irreducibility criterion for finite abelian covers
of smooth irreducible varieties.

3.1. THEOREM. Suppose Y is a smooth irreducible projective variety, gy, ...,
g. are rational functions on 'Y, and m, n are positive integers. We define the
variety X as the set of all (p,S1,...,Sy) €Y XKk™ such that fori=1,...,m
the function g; does not have a pole at p and s{" = g;(p). Then X is reducible
if and only if the divisors of g1, ..., &, are (Z/nZ)-linearly dependent in
PDiv(Y)/nPDiv(Y). Here PDiv(Y) is the group of principal divisors on Y.

Proof. Let Y, be the complement in Y of the union of the pole sets ofgy, ...,
gn. Let m: X - Y, be the natural projection. Denote the irreducible com-
ponents of X by Xj, ..., X,. The group G=(Z/nZ)" acts on X by

(7) (El,---sgm)(pasl"“’Sm)"*(p, Elsla---:gmsm)- O

3.2. LEMMA. The action (7) induces a transitive permutation action of G
on the irreducible components X, ..., X,.

Proof. Since = is a finite map, 7(X,), ..., m(X,) are closed in Y,,. Since they
cover Yy, we may assume without loss of generality that 7(X;) =Y. Then

X= U gX..
geCG
Hence, each X; equals gX; for some g e G. Cl

Suppose X is reducible, that is, r = 2. Let G, be the stabilizer of X, under
this permutation action. By our assumption r = 2, hence Gy # G. This means



102 Boris REICHSTEIN & ZINOVY REICHSTEIN

that there are integers ay, ..., a,,, not all divisible by #n, such that &1 --- £fn=
1 for any (¢4, ..., £,) € Gy.

3.3. LEMMA. Gy acts transitively on the generic fiber of the restricted pro-
jection map w: X;—>Y.

Proof. Observe that dim X; N .X; <dimY for any i # j. Hence, for a generic
point y € Yy, every point of « l( ») lies in exactly one X;. Fix one such y and
suppose that w(x) = w(X¥) =y for some x, X € X;. Then there exists a ge G
such that ¥=gx. We want to show that g € G,. Indeed, assume the con-
trary, say gX;=X,. Then ¥ € X; N X,, contradicting our choice of y. L1

Lemma 3.3 says that the morphism X;/Gy,— Y induced by = is birational.
Since the regular function

(8) h:slai ...S";’m

on X, is Gy-invariant, it is regular on X;/G, and hence rational on Y. Rais-
ing (8) to the nth power, we get

9) h" =gt .- ggm

or ndiv(h) =a; div(g;)+ --- +a,, div(g,,), as desired.

Conversely, if the divisors of the functions g; are linearly dependent mod-
ulo #n then there exists a rational function # on Y such that (9) holds for
some integers ay, ..., a,,, not all divisible by n. Let

S=Slal ...Sf‘fllm'

Then (s—h)(s—&h)---(s—£"~1h) vanishes on X; here ¢ is a primitive nth
root of unity. This gives a decomposition of X as a union of z closed sub-
sets. Since s is not constant on the fibers of w, each of these subsets is prop-
erly contained in X. Hence, X is reducible. H

REMARK. The difficult direction of the theorem (i.e., linear independence
of divisors implies irreducibility) holds for any quasi-projective Y. Indeed,
by the Hironaka resolution theorem, Y can be embedded as an open subset
in a smooth irreducible projective variety Y;. Now apply Theorem 3.1 to ¥;.
For the other direction, however, it is essential that Y should be complete.

4. Configurations

In this section we give an explicit description of X as an unramified cover
of an open subset of H X H. All double subscripts in this section will be
symmetric; for example, f;; will always be equal to f;; and A4;; will always be
equal to A;;.

Recall that for i €{l1, 2, 3, 4} the three elements of {1, 2, 3,4}\{i} are de-
noted by a;, b;, and c¢;. The three 2-element subsets of {1, 2, 3, 4}\{i} are de-
noted by o; = {q;, b}, Bi=1{a;, ¢}, vi=1tbi, ci}.
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4.1. LEMMA. Let (l,...,1;) € Xy. Then no three of the forms I; are linearly
dependent.

Proof. Assume the contrary, say /;, /5, and /5 are linearly dependent. Then
there exists a v €V such that /;(v) =1,(v) =/3(v) = 0. By (2), the first polar
w, is a multiple of /2, contradicting Lemma 2.3. O

Let f;; be the morphism from X, to P(V') given by /;( fi;(p)) = [;(fi;(p)) =0,
where p=(/y,...,l;) € Xy and 1 <i < j<4. Since /; and /; are linearly inde-
pendent, f;; is well-defined.

4.2. LeMMA. fii(p) lies on H.

Proof. We may assume without loss of generality that i=1, j=2. Let v be
an affine representative of the projective point f;,(p). By (2), the first polar
quadratic form w, is a linear combination of /# and /?, and hence is singular
on V. Hence, fi2(p) e H. ]

4.3. DerFINITION. Let A=(A;;) be a 6-tuple of points of H; here 1=i<
Jj =<4. We say that A is a ¢-configuration if

(i) there exist four lines L, ..., L, in P? such that fori =1, ..., 4 the three
intersection points of L; with H are A;q, Ajp, and A;.
(i) App=1i(As4), A3=1i(Az4), Ar3=1(Ay).
The points 4;; and the lines L; will be called vertices and sides of A respec-
tively. We say that A is nondegenerate if the six points 4;; are distinct or,
equivalently the four lines L, ..., L4 are in general position. A nondegen-
erate ¢-configuration is thus simply a quadrangle inscribed in H.

4.4. LEMMA. Let p=(ly,...,14) e Xy, and let A;;= fi;(p) for 1=i<j=4.
Then A =(Aj;;) is a nondegenerate ¢-configuration.

Proof. For i=1,...,4 let L; be the line cut out by /;. Then the six points
Ayj=L;NL; lie on H, by Lemma 4.2. Condition (ii) of the definition is
easily verified using (2). Finally, A is nondegenerate by Lemma 4.1. L]

Thus every Waring presentation p € Xy determines a ¢-configuration. The
next proposition shows that every ¢-configuration arises in this way.

4.5. PROPOSITION. Let A=(A;;) be a nondegenerate ¢-configuration with
sides Ly, ..., L. Let Il; be a linear form vanishing on L;. Then (I, ..., 1) lies
in Xy if and only if

(10) ]i(Aa,-) lf(AB;) li(A’Y,) =°’(Aa,’AB,-’A'y,-),

Sfori=1,...,4. In particular, any nondegenerate ¢-configuration is induced
by a 4-tuple of linear forms (I, ..., 1;) € X,.

Proof. If (I,...,14) e X, then (10) follows directly from (2). Conversely,
suppose (10) holds. Let & be the trilinear form defined by
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4
B(x,¥,2) = 21 li() L1 (9) ().

=

We want to show that @ = w, or, equivalently,
(11) &(X,Y,Z)=w(X,Y, Z),

where X, Y, and Z range over the six points A;;, 1 <i < j=<4. By symmetry
(i.e., after relabeling the lines if necessary) we may assume X = A;,. Since
Ayz, Ay, and Aj4 span P(V'), we need only check (11) for Y ranging over
those three points. If Y= A3, then both sides of (11) vanish, since Ay =
i(Ay;). Hence, we only need to check (11) for Y= A,; or A,4. Once again,
after possibly relabeling the lines L; and L,, we may assume Y = A4,3. Since
the points A;3, A4, and A3, span P(V'), we need only check (11) for Z rang-
ing over those three points. However, if Z= A, or A4 then both sides of
(11) vanish. Finally, if X=A,,, Y= A,3, and Z= A,,, then (11) reduces to
(10) with i =2.

The last claim of the proposition is now easily verified: one can start with
any /; vanishing on L; and normalize it using (10). Ll

The forms /; in Proposition 4.5 are determined by the ¢-configuration up to
a multiple of a cube root of 1. Their cubes are thus uniquely determined by
the ¢-configuration.

4.6. COROLLARY. A 4-tuple of linear forms 1, ..., 1, lies in X, if and only
if it induces a nondegenerate ¢-configuration (A;;) such that

w3(Aa,’ A[)’js ')

12 13() =
@ M= AL Ay, Ay (A, Ag, Ag)

Sfori=1,...,4.

Proof. Suppose (/y,...,14) € X,. Then the induced configuration is nonde-
generate by Lemma 4.4. Since both /; and w(A4,,, Ag,*) vanish at A; and
Ajc,, we must have

li(') = tiw(Aal’ A,Gts ')
for some ¢, ..., {4 € k. Substituting this into (10), we obtain
Bo(Ag, Agy Ag)w(Agy, Ag, Ag) =1,

as desired.

Conversely, suppose (/;,...,/,) induces a nondegenerate ¢-configuration
(A;;) and (12) holds. Since w(A,;, Ag,, -) vanishes at A;;, and A;, it vanishes
on L;. Hence, so does /;. Conditions (10) of Proposition 4.5 can now be veri-
fied directly. ]

We now give an explicit description of the variety of all q&-conﬁgurétions.
We begin by rewriting Definition 4.3 in terms of the group operation on H.
The following lemma is an immediate consequence of Proposition 2.7.
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4.7. LEMMA. Let A=(A;;) be a 6-tuple of points of H where 1 =i < j=4.
Then A is a ¢-configuration if and only if

Ap=0A4,04;3,

Ap=Ap®P,

Apu=Ap®@P,

A3y =POA;,OA;.
Moreover, A is nondegenerate if and only if the above conditions hold and

(Ay,, Ay3) does not lie in the union D of the following six curves Dy, ...,
D5 C HZ:

(13)

Dy: {(A,B): AQB=P),
D,: {(A,B):2A®B =0},
Ds: {(A,B): A®2B=0),
D,: {(4,B): AOB= 0},
Ds: {(A,B):2A®B=P),
Dg: {(A,B): A©2B="P).

(14)

The group (Z/3Z)* acts on X, by
(15) (o ED Uy s L) = 81y, -5 Ealy).
The quotient variety for this action is
Yo={(I3, s 13): 1y ey Is) € X} C(Sym3(V *))~.
4.8. THEOREM.
(@) Y, is isomorphic to H 2\ D.

(b) The quotient map Xy — Y, is an 81:1 unramified covering.
(c) X, is a smooth affine surface. In particular, X, + 0.

Proof. (a) For (A, B) e H>\ D, let

Ap=A,

A3 =B,

Au=6A0CB,
(16) 14=0A06C

A23=A@P,

Ay =B®P,

A3y =CAOB®P

Then (12) gives an isomorphism H*\ D - Y.
(b) The map is unramified, by Lemma 4.1. Part (c) follows from (b). U

S. Irreducibility of X,

In this section we prove that X is an irreducible surface and that the generic
fiber of the map fi,: Xy — H, is an irreducible curve.
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Let Ce Hy and let ¢ € V be an affine representative of C. For A, Be H,let
A12=A, A13 =B, and A14, A23, A24, and A34 be as in (4.4). Fori= 1, seey 4
we define

w3(Aa,’ AB[’ C)
w(Aai’ Aai’ A,G,) w(Aal3 AB‘-’ Aﬁ,) .

Recall that «; and 8; are distinct 2-element subsets of {1, 2, 3,4}\{i}. By
Corollary 4.6, the rational function g; is independent of the way they are
chosen. For Ce H,, let X,(C) be the set of all (/,...,1;) € X, such that
I(C)+0fori=1,...,4. The sets X,(C) form an open covering of X as C
ranges over H,. Let

a7) gi(A,B) =

E(C): {(A,B): A=C®P},
E,(C): {(A,B): B=C®P]},
(18) E;(C): {(A,B): A=C},
E4(C): {(A,B): B=C},
Es(C): {(A,B): ADB®C=0},
E¢(C): {(A,B): A®B®C=P].

5.1. LemMA. LetD,,...,Dgbeasin (14), D=D,U---UDyg, andlet Y(C)C
Hyx Hyx k* be given by
Y(C)={A, B;515..,54): (A, By ¢ DUE{(C)U---UE((C)

19
(15 and s =g;(A,B) for i=1,...,4.}.

Then Y(C) and X4(C) are isomorphg'c as coverings of Hf; that is, there
exists an isomorphism between them which makes the diagram

X$(C) = Y(C)
(N12:/13) v pr
. -
commutative. Here pr is the projection (A, B, s;} — (A, B).
Proof. The isomorphism is given by the following mutually inverse maps:
x=(l, ..., 14) > (S12(x), f13(x); Li(C), ..., 14(C));

/ Siw(Aa.s Aﬁ, ')) (A B )
() = ! i «— s Dy S1yeeesS4).
(l( w(AaisAB‘sC) i=1,...,4 ! !

The condition (A4, B) & E|(C), ..., E¢(C) ensures that the map Y — X, is well-
defined. O

5.2. THEOREM. X, is irreducible.

Proof. Since the sets X(C) form an open cover of X, and any two X(C)
intersect nontrivially, it is enough to show that X(C) is irreducible for every



Surfaces Parameterizing Waring Presentations 107

Ce H. Inview of Lemma 5.1, it will suffice to prove that Y(C) is irreducible
for every C e H.

5.3. LEMMA. Letgy,...,84 beasin (17). Then
divgl=3E3(C)+3E4(C)+3E5(C)"D1—D5"D6,
div g, = 3E,(C) +3E;5(C) +3E4(C) ~ Dy — Dy — D,
leg3=3E1(C)+3E4(C)+3E6(C)"‘D3""D4""D5,
divg4=3E1(C)+3E2(C)+3E5(C)—-Dl —DZ—D3.

(20)

Proof. Recall that
w(A@P,BOP,c)

&4 B) = P A®P. BOP)w(ADP, BOP, BOP)’
w(ADP, B, )
g2(A,B)= W(ADP, A®P, B)w(A®P, B, B)’
w*(4,B®P, ¢
&AL 8= A,B@(P)w(iB@)P’B@P) ’
w3(A, B, ¢)
844 B)= (4 4, Bya(A, B. B)’
Formulas (20) now follow from Lemma 2.8. =

We can now easily verify that the divisors of gy, ..., g4 are (Z/3Z)-linearly
independent in div(H?)/3div(H?) and hence in PDiv(H?2)/3 PDiv(H?).
Therefore, X is irreducible by Theorem 3.1. O

A similar argument yields the following stronger statement.

5.4. THEOREM. Assume that neither Ay nor i(Ay) is an inflection point
of H. Then the fiber fi5'(A,) of the map fi5: X o — H is an irreducible curve.

We shall need the following facts about the relative position of the six
curves D;.

5.5. LeMMA. There are exactly 36 points Qy, ..., Qs¢ in H? which lie on
more than one D;. Each of them belongs to one of the following disjoint
sets of 9 points:

D,ND,NDs={(A,B): B=A®P;3A=P),
D,ND;NDs={(A,B): B=A®P;3A= 0},
D,ND3;ND,={(A,B): B=A;3A= 0},
DysNDsNDg={(A, B): B=A;3A=P}.

Proof. The lemma is an immediate consequence of the definition (14) of the
divisors Dy, ..., Dg. U
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5.6. LEMMA. The curves Dy, ..., Dgintersect {Ag}x Hin1,1,4,1,1, and 4
points respectively. All of these intersections are transversal. If 3Ay,+ O or
P then these 12 intersection points are distinct. If 3A,= O or P then exactly
8 of them are distinct.

Proof. We have

N{Ao} X H={(Agp, Ag® P)},

N{Ao} X H={(Ap, ©2A)},

N{Ao} X H={(Ag, B): 2B=0A},

N{Ag} X H={(Ag, Ap)},

N{Ae} X H={(Ag, PO2A,}),
Dsn{Ao}XH—{(Ao,B) 2B=P0OA,}.

Transversality is checked directly. Ll

Proof of Theorem 5.4. It is enough to show that f;3(4) N X(C) is irreduc-
ible for every Ce H \{Ay, Ag@®P}. Fori=1,...,4 let g;(B) be the function
g; defined in (17), viewed as a function of B € H with A= A,. Then the iso-
morphism of Lemma 5.1 identifies f;3'(A4,) N X(C) with the curve Yy ,(C)C
Hx k* given by

Y4 (C)={(B; 51, ..., 54): (Ag, B) § DUE|(C)U --- UE((C)

1) . .
and s7 =g;(Ay,B) fori=1,...,4.}.

The irreducibility of Y, (C) will thus follow from Theorem 3.1 if we can
prove that the divisors of the four rational functions gy, ..., g4 on {Ag} X H
are linearly independent modulo 3. Since C # Ay, Ay@ P, the divisors E,(C)
and E5(C) do not intersect { Ay} X H. On the other hand, each of the divisors
E,(C), E4«(C), E5(C), and E4(C) intersects { Ay} X H transversely in a single
point. We shall denote these points by Q,, Q4, Os, and Q¢ respectively. By
Lemma 5.6, each of the divisors D,, D,, D,, and Ds also intersects { Ay} X H
transversely in a single point. These points will be denoted by R;, R,, R,,
and Rs respectively. Each of the divisors Ds, Dg intersects {Ay} X H trans-
versely in four points. They will be denoted by R{ and R, respectively, where
J and A range from 1 to 4. By Lemma 5.3 we have

div g1(B)=3(Q4+Qs)—R;—Rs—3}_1 RE,
div g,(B) =3(Q2+ Q) —Ry— Ry — T4y R,
div g3(B) =3(Q4+ Q) — Sf=1 RI—Ry—Rs,
div g4(B) =3(Q;+Qs)—R—R,— X4 Rj.

By Lemma 5.6, the twelve points R;, R,, R{ » R4, Rs, Ré’ are distinct. Hence,
the four divisors in (22) are linearly independent modulo 3. D

(22)

REMARK. If 34,= 0 or P then f;3'(Ay) is reducible. Suppose 34, =P
Then, by Lemma 5.5, Rj=R,, R,=R;5, and the first two divisors in (22)
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become identical. By Theorem 3.1, f~!(4,)NX(C) is reducible; hence, so
is f71(Ap). Similarly, if 34, = O then R, = Rs, R, = R, the last two divisors
in (22) become identical, and we can again apply Theorem 3.1.

6. A Compactification of X,

Recall that by Lemma 4.8 the map
X;—> H\D
D= (ll’ ceey 14) - (.le(p)a .fl3(p))

is an unramified 81:1 covering.
In this section we shall construct a normal projective surface Xy and a
map m;: X — H? such that the diagram

(23)

X, < X}
! 47
H\D < H?

is commutative. We shall also give a description of the singularities of X’J,‘
which will be used to construct and study a smooth projective model for X
in the next two sections.

For (A, B) € H?, the points A4; ; will always be given by (16). We now define

X, CH*xP(V*xk)*
as the set of all (4, B) X (/;:d;) X -+ X (I4:d,) satisfying
(24) W(Aq» Ag,s Ag) 0(Ay , Ag, Ag)I7(-) = djw (A, Ags *)

for every choice of distinct 2-element subsets «; and 3; € {1, 2, 3, 4}\{i}. We
denote the projection X, — H? by 7.

6.1. LEMMA. Forany (A, B)x(l;:d)) X - X (l4:ds) e Xy and anyi=1,...,
4, we have [; # 0.

Proof. By Lemma 2.4, the three points 4, , A, . and A4, . cannot be pair-
wise corresponding. Hence, w3(Aai, AB,’ -} # 0 for some choice of 2-element
subsets «; and B; of {a;, b;, c;}. O

Thus we can cover X’¢ by open subsets )?d,(C) given by l,-(C)q&O~f0r i=
1,...,4. Here Ce H. If ceV is an affine representative of C, then X;(C) is
isomorphic to the subset of H?2x A* given by
3 Ww(A®P, ADP,BOP)w(ADP,BOP, BOP)

b= W ADP,BOP,c) ’
W(ADP, ADP,B)w(ADP, B, B)

w3(A@P, B, ¢) ’

3o 9, 4, BOP)w(A, BOP, BOP)

3T w3(A, B®P, c) ’

%]

3_
3=
(25)
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w(A, A, B)w(A, B, B)
w3(A4, B, ¢) '

si=

Here the isomorphism is given by s;=d,;/l;(c) fori=1,..., 4.

6.2. PROPOSITION.

(a) )§¢ is the closure of the graph of (24) in H*>xP(V*x k)*.
(b) X is irreducible.

Proof. (a) By Corollary 4.6, X,\ wy }(D) is precisely the graph of the map
(24).~ Denote the closure of this set by cl(X,). Note that the action of (Z/ 37)*
on X, given by

(26) (El’ sy 54) X(A9 B, (li: dl)) - (As B: (Eili:di))

preserves cl(X,). Thus in order to prove part (a), it is enough to show that
the (Z/3Z)*-orbit of every x € X, intersects cl(X,). Since mo(cl(X,)) = H?,
this is a consequence of the following lemma.

6.3. LEMMA. The action (26) is transitive on the fibers of «.

Proof. Let xe X4(C) and mo(x) = (A, B). Then, in the coordinates of (25),
the action of (Z/3Z)* on 7§ (7 x) is given by (A4, B, s;)— (A, B, &;s;). O

Part (b) of the Proposition follows from part (a) and Theorem 5.2. [l

The variety X¢ we have constructed is thus irreducible, projective, and con-
tains X; as an open subset. However, it is not smooth and not even normal.
Let 7; be the composition of the normalization map

with 0.

6.4. LEMMA. If Q# H? lies on D; for some i=1,...,6 but not on D; for
Jj#i, then the fiber m7}(Q) of Q in )?,;’ consists of 27 points. Each of these
points is smooth in )?q;’. If R is one of these points then we can choose
z, weOp(X}) and x,y € Op(H?) such that

(@) Og(H?)=kl[x, 1] and Op(X}) = kl[z, w]l;

(b) x is the local equation of D;;

(c) m is given by (z, w) = (x=2z3, y=w).

Proof. We shall prove the lemma for i =1; the same argument will work for
other i. Choose C e H so that Q € X4(C). By (25), X,(C) is given by s’ =
g7 (A, B), where g; are as in (17). Let x € O, (H?) be the local equation of
D,. By Lemma 5.3 this means that over a neighborhood of Q in H 2, )Z'd, is
given by

3_ 3_ 3_ 3 _
ST =€1X, 8§2=€3, S§3=8€3, S3=€4X,
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where e; is an invertible element of OQ(X¢) for i=1,...,4. The normaliza-
tion of X, over this open neighborhood is given by

3 __ 3 _ 3 _ 3 _ -1
Si=eé1Xx, §3=6€, S§3=e;, t4—e4e1 ’

where 7, =s,4/s1 and ese;" is again an invertible element of Oy(H?). This
shows that there are 27 points in = ~'(Q). The completion of the local ring
of R e w~!(Q) is then given by

kllx,y,s111/(si = e x) =kl[y,z11/(z% = x)

where z is a unit multiple of s;. O

Next we investigate the normalization )~(¢’,” near w1 '(Q) where Q lies on more
than one curve D;.

6.5. LEMMma. Let Q be one of~ the 36 points lying on more than one D,;.
Then the fiber ©(Q) of Q in X4 consists of 3 points. If R is one of these
points then we can choose u,, u,, u3 € Og(Xy') and x, y €0p(H 2y such that

(a) @)Q(H 2y=k[[x, y1] and x, y, and x+y are the local equations of the
z‘Ahree~ curves D; passing through Q.

(b) Op(Xy) = klluy, uy, us])/(ui +u3 +u3).

(c) the map w, is given by (uy, uy, u3) = (X =u3, y=u3).

Proof. (a) Q is one of the 36 points in Lemma 5.5. We shall assume that
Q=(0, 0) e D,N D3N D,; the same argument will work for any other choice
of Q. Choose Ce H so that Qe X4(C). By (25), X,(C) is given by s? =
g7 (A, B), where g; are as in (17). Let f5, f3, and f4 € Oo(H?2) be local equa-
tions for Ds, D,, and D, respectively. (Transposing D, and D; at this point
simplifies our notation in the rest of the argument.)

By Lemma 5.3 this means that, over a neighborhood of Q in H?, X’¢ is
given by

3 3 3_ 3 _
si=e, s;=eyf3fy, si=esfofs, Si=eyfrfs,

where each ¢; is an invertible element of OQ()?¢). Let U be an open neigh-
borhood of Q such that each e, is invertible in k[U]. For i=2,3,4 let t;=
s; fi/s;sy. Here (i, j, h) is a permutation of 2, 3, 4. Then

(27) B=8f, B=8&f;, 3=/,
where &; = ¢;/e; e, is again an invertible element of k[U]. Note that
klmi \(U)=k[U]1s1, 52,53, 54] CkIU sy, ta, £3, 4]

because e;f; 1, =s;.

We claim that k[U][sy, 5, t3, t4] is the coordinate ring of w7 (U). There
are exactly three closed points of Spec k[U 1[sy, t,, t3, t4] which lie over Q;
they correspond to the three cube roots of ¢;(Q). The completion of the
local ring of any of these points is isomorphic to @)Q(H HIit,, 13, 141]. Hence,
it is enough to show that this ring is normal. Since the curves D,, D5, and
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D, meet at Q transversely, we can find units 6,, 6; and 6,4 in @Q(H 2y such
that f,6,+ 363+ f4=0. Denote 6, f, by x and 83 f3 by y. Then, for some
unit multiples u, u,, u; of t,, t3, t4, we have

Og(H)I[ 1y, 13, t411= kIl x, , uy, tp, u3]1/(ui = X3 u3 = y; u3 =x+y)
= kl[uy, up, usl)/(ui +u3 +u3).

The latter ring is normal. This proves parts (b) and (c) of the lemma. [l

7. A Smooth Compactification of X,

In this section we shall construct and study a smooth compactification X, of
Xy. We also use this compactification to calculate the genus of the generic
fiber of the map f;,: X, — H.

We construct X by resolving the ~singularities of X;’. Lemmas 6.4 and 6.5
say that the only singularities of X are the 108 points Py, ..., Pjys which
project to the points Qy, ..., Qs in H2 Let bl: X, —» X be the blow-up at
Py, ..., Pjgs. We thus have a tower of surfaces

X,
Lol

~

n o\

¢
(28) ln
qu - ™1
1
H?2,

Denote the composite map X, — H? by .

7.1. PROPOSITION.

(@) X, is a smooth surface.

(b) The exceptional divisor of bl is the union of 108 curves C; such that
bl(C;) = {P;}. Each C; is an elliptic curve with j(C;) =0 and (C;, C;)=
—3.

(c) The image of any map f:P'— X, is a point. In particular, X is mini-
mal; that is, it has no exceptional curves of the first kind.

Proof. Parts (a) and (b) follow from our description of the singularity at
P;in Lemma 6.5. Indeed, let S be the cone uf 4+ u3 +u3 =0 in A at the ori-
ginand let f: T— S be the blow-up of S at the origin. The exceptional curve
E = f~1(0) is isomorphic to the cubic curve u; + ug” + ug‘ =0 in P2 We want
to show that (E, E)=—3.

If H in a hyperplane section in S then (H, H) = 3. Choose distinct hyper-
plane sections H; and H, so that they pass through the origin, say u; =0 and
u,=0. For i=1,2 let H be the strict transform of H; in 7. Then f*(H;)=
H{+E. Hence,
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3=(H{+E,H+E)=(H{,H3)+(H{,E)+(H3 E)+(E,E)
' =0+6+(E,E),

as desired.

(c) Composing f with = we obtain a map P! - H?2. Since H is an elliptic
curve, the image of this map is a point Q € H2 In other words, f(P!)C
7~ YQ). By part (b), #~1(Q) is finite or a disjoint union of three elliptic
curves. In either case, f(P!) is a point. O

Let D/ be the strict transform of D;, that is, the closure of

ﬁﬁl(Di\{Ql’ ceey Q36})
in Xd"

7.2. LEMMA.

(a) D/ is a smooth curve. _
(b) W*(Di) = 3D1’+ 3 ET(Q)EDi CJ in diV(Xdl,).
(c) If P;eC; then (Dj, C;) =3; otherwise (D{, C;)=0.

Proof. Let R be a point of D away from the exceptional curves. Then, by
Lemma 6.4, there are formal coordinates z, w near R such that =*(local
equation for D;) = z3. Here we are identifying X, » With X 4 since bl is an iso-
morphism away from the exceptional locus. This shows that D; is smooth
at R and that D/ enters in 7*(D;) with coefficient 3.

Now let R be one of the points Py, ..., Pjgs. Let x be the local equation of
D; near C; and let u;, u,, u3 be as in Lemma 6.5. Then locally )_(¢ is given by

(ui)*+(u3)* +1=0,

where uj=u,/us, u3=u,/u;, and u3=u;. The local equation of C; in this
coordinate system is given by u3=0. The local equation of 7*(D;) is x=0
or, equivalently, u3 =0 or u3(u5)>=0. This, in turn, can be rewritten as
(u5)> (1+ (1{)*)3 = 0. The local equation of D/ is thus u}=0; D} intersects
C; at the three points (u;, 0, 0), where u, u,, p3 are the three cube roots of
—1. Moreover, in this coordinate system, D/ is given as the union of the
three lines {u#5=0; u3=p;} for i =1, 2, 3. Hence D/ is smooth at each of its
three intersection points with C;, and the intersection is transversal at these
points. L]

7.3. LEMMA. The canonical divisor K of )—(¢ is given by

6 108
23(D)+5 3 C;.
=1 Jj=1

1=

Proof. Let Q be a nonvanishing regular differential form on H?2 Then K =
div 7*(Q). Since ¢ is an unramified covering over H2\ D, div 7*(Q) is sup-
ported on

D{U---UD{UC, U+ UCygs.
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To compute the coefficient of D/ in div(7*(Q2)), we use the coordinate sys-
tem of Lemma 6.4 near a point R € D; away from the exceptional divisors.
We have

w*(dx ady)=d(z3) ndw=3z2dz ndw.

Recall that z is a local equation of D;. Hence, D/ enters in 7*(Q) with coeffi-
cient 2.

On the other hand, let R be a point of C; for some j=1,...,108 away
from all D;}. Let u;, u,, and u3 be as in Lemma 6.5. We may assume that a
formal neighborhood of R is given by

((uf, u, us): (ui)* + () +1=0}.

Here u{=u,/u5, u3=1u,/u;, and u3=uj3 as in the proof of Lemma 7.2. In
particular, u#5 and u3 are formal coordinates near R. Then, by Lemma 6.5,

¥ (dx ndy) =du3) Ad(u3) = dWius) aduh) = 9(u3)’ (u}) dus Adu;.

Recall that in this coordinate system u3 is a local equation for C;. Since
R ¢ D{, we have u3(R) # 0. Hence, C; enters in 7*({2) with coefficient 5. [J

REMARK. One can use the adjunction formula to obtain the coefficient 5
in Lemma 7.3. Suppose
6 108
K=23 D/+ X N;C;.
i=1 j=1
The adjunction formula says that 1=g(C,)=1+(C, C,+K)/2. By Lem-
ma 7.1(b), (C,, C) = —3. Thus we must have (C,, K) = 3; that is,
6 108
2 2(C1, D))+ X Ni(Ciy, C)) =3
i=1 j=1
By Lemma 7.2(c), three terms in the first sum are equal to 3, and the other
three are equal to zero. In the second sum, the Ath term is —3N,, and the
other 107 terms are equal to zero. We thus obtain

2-94+(—3)N,=3;

that is, N, =35.

The adjunction formula can also be used to calculate the genus of the
generic fiber of the map f,: Xy — H defined in the beginning of Section 4.
Recall that by Theorem 5.4 f;5'(A,) is irreducible, provided that neither A,
nor i(Ag) is an inflection point of H. By our construction fiz'(A4p) is an
open subset in F; =~ ({A¢} X H).

7.4. THEOREM. Assume that neither Aye H nori(Ay) is an inflection point
of H. Then Fy_ is a smooth irreducible projective curve of genus 325.

Proof. By our assumption on Ay, the curve Fjy does not intersect the excep-
tional curves Cy, ..., Ci0s.- Hence, bl maps Fy, isomorphically to

i ({Agx H}) C XJ.



Surfaces Parameterizing Waring Presentations 115

Thus we only need to prove smoothness and irreducibility for this curve.
Denote it by F.

Irreducibility: We argue as in the proof of Proposition 6.2. Since
F*=F\x{(D)

is isomorphic to fi3'(A4y), it is irreducible by Theorem 5.4. Denote the clo-
sure of F'*in F by cl(F*). It is sufficient to show that cl(F*) = F. The action
(26) of the group (Z/3Z)* on X, induces an action on X which preserves
F and F*. Since m;(clF*)={A¢} X H=m(F), we only need to show that
(Z/3Z)* acts transitively on every fiber of m. By Lemma 6.3, (Z/ 3Z)* acts
transitively on the fibers of my. This means that it acts transitively on almost
every fiber of 7. In other words, ; induces a finite map X}/(Z/3Z)* - H*
which is one-to-one almost everywhere. Such a map must be one-to-one
everywhere. Thus (Z/3Z)* acts transitively on every fiber of 7, as desired.

Smoothness: Since F* is an unramified 81:1 cover of {Ay} X H\ D, it is
smooth. Let R be a point of F lying over a point Q € D;. By our choice of A,
no other D; passes through Q. By Lemma 6.4, we can find formal coordinates
x,y near Q and z, w near R such that =, is given by (z, w) = (x =27, y=w).
Since D; intersects { Ay} X H transversely at R, we may also assume that y is
a defining equation for {Ay} X H in this coordinate system. Then C is cut
out by w near R, and hence is smooth at R.

We now proceed to calculate the genus of F . By the adjunction formula
the genus is given by

g(FAo) = 1+(FA0,FA0+K)/2.
Let A, be another point of H; then

(Fa, Fa))=(Fa,, F4)=0.
On the other hand,

6
(Fy, K)=2 EI(FAO,D,-')+5 > (Fy,, C)).
i= j=1

Each term in the second sum is zero, since Fy, does not intersect any excep-
tional curve C;. Hence,

6
g(Fy) =1+ 3 (Fy,, D).
i=1
Recall that {A,} X H intersects each curve D; transversely. The number of
points of intersection of {4y} X H with Dy, ..., Dgis 1,1, 4,1, 1, and 4 respec-
tively. By Lemma 6.4, each of these points gives rise to 27 points of inter-

section of F,, with the appropriate D;/; each intersection will be transversal.
This yields g(F, ) =1+ (27-12) = 325. |

8. Numerical Invariants
In this section we calculate the Chern numbers ¢ and ¢, of the surface X-

8.1. THEOREM. c{(X,)=(K,K)=17,452.
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Proof. By Lemma 7.2(b), we have
6

27r*D,-=3§<D,-’+ > Cj>=3(_§6)D,-'+§ > C;).

i=1 i=1 w(C;) € D; i=1 i=1n(C;)eD,
Since there are three D; passing through each Qy, (see Lemma 5.5), each C;
appears three times in the double sum above. Thus

6 6
W*Di= 3 E
=1 [~

i= i=1

108
Di+9 Y C;.
ji=1

By Lemma 7.3 we have

6 108
3K=2 E T*D,'—3 E Cj.

i=1 j=1
Let Y=n*3{_, D; and Z= 3%, C;. Note that
Dy=D,, D,=D;, D;=Dsg.
Thus (Y, Y) = 81-4(D, +D,+Dj;)% Since (D;, D;) =0 and
(Dy, D) = (D1, D3) =(D3,D3) =9,

we have (Y,Y)=281-4-54=17,496.
On the other hand, by Lemma 7.1(b),

108 108
(Z, Z)=< >C, S C,,>=108-(—3)=—324.
j=1 h=1

Foranyi=1,...,6 and j=1,...,108 we have
(x*D;, C;)=(w*D;, C;) =0.

Here D; is D, translated by an element of H 2 so that Qy, ..., Q3¢ ¢ D;. Hence,
(Y,Z)=0and (K,K)= %(4(Y, Y)—-6(Y,Z)+9(Z, Z))=1,452. O

Recall that by Proposition 7.1, X¢ is a minimal surface. Since (K, K) is posi-
tive, it is a surface of general type; see [1, Part 3, Thm. 5.4].
In the sequel, x will denote the Euler characteristic.

8.2. THEOREM. (X,)=x(X,)=2,916.

Proof. (a) Our calculation is similar to that in [5, 2.2]. We use the principle
that the Euler characteristic behaves as cardinality of sets. Recall that the
map 7: X, > H? is an 81:1 cover over H*\(D;U---UDs) and a 27:1 cover
over D\{Qy, ..., O3¢}. The fiber over each of the Q; is the union of three
elliptic curves and hence has Euler characteristic 0. Thus

x(Xg) =8Ux(H?)—x(D)) +27(x(D) —x({ Q15 ---» Q36}))
+O'X({le"'r Q36})-
Since x(H?) =0, we obtain
(29) x()_(¢) = —54x(D)—27-36.
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It remains to calculate x(D). Consider the projection pry: H? — H restricted
to D. By Lemma 5.6, the fibers of A, € H consist of 8 pointsif 34,=0 or P
and 12 points otherwise. Denote by 7 the set of all Ay € H suchthat 34,=0
or P. Note that T is a finite subset consisting of 18 points: 9 inflection points
of H and their corresponding 9 points. We have

x(D)=12(x(H)—x(T))+8x(T)=12(0—18)+ 8-18 = —72.
Substituting this into (29), we obtain
xX(X4) =—54-(—72)—27-36=2,916. O

We summarise our results in the following theorem.

8.3. THEOREM.

(a) X, » Is a minimal surface of general type which contains X4 as a Zariski-
open subset.
(b) The Chern numbers of X, are given by ct=1,452, c;=2,916.

Note that the invariant c?/c, of the surface X, is equal to 23. The index of
the intersection form is given by i = %(cl2 —2c,) =540.

References

[1] E. Bombieri and D. Husemuller, Classification and embeddings of surfaces, Al-
gebraic geometry (Arcata, 1974), pp. 329-420, Proc. Sympos. Pure Math., 29,
Amer. Math. Soc., Providence, RI, 1975.

[2] E. Brieskorn and H. Knorrer, Plane algebraic curves, Birkhduser, Basel, 1986.

{31 S. Gundelfinger, Zur Theorie der binaren Formen, Géttinger Nachr. 12 (1883),
115-121.

, Zur Theorie der binaren Formen, J. Reine Angew. Math. 100 (1886),
413-424.

[5] F. Hirzebruch, Arrangements of lines and algebraic surfaces, Arithmetic and
geometry, Papers dedicated to I. R. Shafarevich on the occasion of his 60th
birthday, vol. 2, pp. 113-140, Progr. Math., 36, Birkhduser, Boston, 1983.

[6] J. P. S. Kung, Gundelfinger’s theorem on binary forms, Stud. Appl. Math. 75
(1986), 163-170.

[7] S. Lang, Hyperbolic and Diophantine analysis, Bull. Amer. Math. Soc. (N.S.)
14 (1986), 159-205.

[8] U. Persson, An introduction to the geography of surfaces of general type, Al-
gebraic geometry (Bowdoin, 1985), part 1, pp. 195-218, Proc. Sympos. Pure
Math., 46, Amer. Math. Soc., Providence, RI, 1985.

[9] B. Reichstein, An algorithm to express a cubic form as a sum of cubes of linear
Jforms, Current trends in matrix theory, Proceedings of the third Auburn matrix
theory conference, pp. 273-284, North-Holland, Amsterdam, 1987.

, Waring’s problem for smooth cubic curves, Directions in matrix theory

(Auburn, 1990), Linear Algebra Appl. 162/164 (1992), 775-782.
[11] Z. Reichstein, On Waring presentations of cuspidal cubics, Comm. Algebra 20
(1992), 3347-3351.

[4]

(10)



118 BoRris REICHSTEIN & ZINOVY REICHSTEIN

[12] G. Salmon, A treatise on the higher plane curves, 3rd ed., Hodges, Foster, and
Figgis, Dublin, 1879.

[13] H. Schréter, Die Theorie der ebenen Kurven, dritten ordnung, Teubner, Leip-
zig, 1888.

[14] J. J. Sylvester, Sketch of a memoir on elimination, transformation, and canon-
ical forms, The collected mathematical papers, vol. 1, paper 32, pp. 184-198,
Cambridge Univ. Press, Cambridge, 1904.

Boris Reichstein Zinovy Reichstein
Department of Mathematics Department of Mathematics
The Catholic University of America UC Berkeley

Washington, DC 20064 * Berkeley, CA 94720



