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0. Introduction

In this paper we study the problem of determining which compact subsets of
4-manifolds have close neighborhoods that collapse to I-dimensional spines.
As is explained in [10], the study of this problem is motivated by the desire
to understand engulfing of 2-dimensional polyhedra in piecewise linear 4-
manifolds. The technology of 4-manifold topology does not seem to be well
enough developed for us to characterize such compacta completely. We re-
strict our attention, therefore, to the case in which the neighborhood col-
lapses to a copy of the circle, S!. In that case the fundamental groups which
arise are infinite cyclic, so that we can apply the Z-theory of Freedman and
Quinn [2; 3]. Our main theorem characterizes those compact subsets of 4-
manifolds that have arbitrarily close neighborhoods with spines homeomor-
phic to S!.

THEOREM 1. Suppose X is a compact subset of the orientable 4-manifold
M?*. Then X has arbitrarily close neighborhoods homeomorphic to S'x B>
if and only if

(1) X has the shape of some S'-like continuum, and

(2) X satisfies the inessential loops condition.

Let Y be an S'-like continuum. Then Y is the inverse limit of an inverse
sequence in which each space is S!. Thus there is a standard embedding of
Y in S* as the intersection of a nested sequence of thin tubes, each tube
homeomorphic with S! x B3. We will identify Y with this embedded copy of
Y. The following complement theorem is then a corollary to Theorem 1. We
use Fd(X) to denote the fundamental dimension of X.

COROLLARY. Suppose X is a compact subset of S*, Fd(X) =1, X satisfies
the inessential loops condition, and Y is an S'-like continuum standardly
embedded in S*. Then S*—X = S*—Y if and only if Sh(X)=Sh(Y).
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A less general theorem than Theorem 1 is proved in [10]. The theorem proved
in [10] gives sufficient conditions for the existence of arbitrarily close neigh-
borhoods homeomorphic to S'x B3, but the conditions are not necessary.
There are some crucial differences between the proof given here and that in
[10]. But the main construction of the present proof is based on that in [10],
so we will have occasion to refer to {10] in the course of proving Theorem 1.
The reader will need to consult [10] to find some of the details of the proofs
in this paper.

1. Definitions and Notation

Suppose X is a compact subset of the interior of the n-manifold M. We
say that X satisfies the inessential loops condition (ILC) if for every neigh-
borhood U of X in M there exists a neighborhood V of X in U such that
each loop in V'—X which is homotopically inessential in V is also inessen-
tial in U—X. We use “=” to denote “is homotopic to” and “=” to denote
either “is homeomorphic to” or “is isomorphic to”, depending on the con-
text. When we say that X has arbitrarily close neighborhoods homeomor-
phic to S' x B3, we mean that for every neighborhood U of X there exists a
neighborhood N of X such that NC U and N=S!x B3.

The statement Sh(X') = Sh(Y) means that X and Y have the same shape.
The fundamental dimension of X is defined by Fd(X) = min{dim Y: Sh(X)=
Sh(Y)}. Let P be a polyhedron. A space X is said to be P-like if X can be
written as the inverse limit of an inverse sequence in which each space is
homeomorphic to P. This is equivalent to the assertion that for every e >0,
there exists an onto map f: X — P such that the diameter of f ~!(y) is smaller
than e for every y € P. An S'-like continuum is also called a solenoid.

Consult [4] for other definitions related to shape theory. It is not neces-
sary to be familiar with very much shape theory in order to read this paper.
In fact, the main use of shape theory is in the following characterization of
compacta which have the shape of S!-like continua. The proposition follows
easily from the definitions in shape theory (cf. [4]).

ProposiTioN 1.1.  Let X be a compact subset of the n-manifold M. Then X
has the shape of some S'-like continuum if and only if, for every neighbor-
hood U of X, there exists a smaller neighborhood V of X in U and maps
a:V—SYand B: S' - U such that 8-« = inclusion.

If P is a polyhedron endowed with a triangulation and i is an integer, then
PY denotes the i-skeleton of P in that triangulation. We use the notation
P L to mean that P collapses to L.

2. Beginning of the Proof of Theorem 1

This section contains the proof of one direction of Theorem 1 and the proof
of the corollary. The remainder of the paper is devoted to a proof of the
converse direction of Theorem 1.
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Suppose that X has arbitrarily close neighborhoods in M that are homeo-
morphic to S! x B3. Let a neighborhood U of X be given and let

f:(B%8B%) - (U, U-X)

be a map. There exists a neighborhood N of X such that NC U— f(dB?)
and N=S!x B3. The neighborhood N has a PL structure induced by the
homeomorphism N=S!x B3. Approximate f| f~!(int N) by a map which
is in general position with respect to that PL structure. This gives a new con-
tinuous function f’: B2 - U which agrees with f on dB? but which also has
the property that f’(B?) misses the core, S! x {0}, of N. Use the radial struc-
ture of B> —{0} to push the image of f” out of int N and hence off X. This
shows that X satisfies ILC. Since X =(\;~; N;, where each N; = S'x B3 and
N;,1 Cint N;, we see that X is homeomorphic to the inverse limit of an in-
verse sequence in which each space has the homotopy type of S'. It follows
that X has the shape of an S!-like continuum. This proves that the condi-
tions (1) and (2) listed in Theorem 1 are necessary.

Having completed the proof of one direction of Theorem 1, we now turn
to the proof of the corollary. Suppose X and Y are as in the statement of the
corollary and that S — X = S*—Y. Then Sh(X) = Sh(Y) by [11]. Conversely,
if Sh(X)=Sh(Y), then $*— X =S*—Y by [10, Thm. 4.3].

3. Constructing Neighborhoods

Let X be a compact subset of the interior of an orientable 4-manifold M,
and assume that X satisfies conditions (1) and (2) of Theorem 1. Since we
work within int M, we may assume dM = . We may also assume that M is
a piecewise linear manifold because every connected 4-manifold has a PL
structure in the complement of a point [6, Cor. 2.2.3]. Let U be a neighbor-
hood of X in M. Our goal is to find a neighborhood N of X in U which is
homeomorphic to S!x B3. In this section we describe the construction of a
special sequence of neighborhoods of X which will be used to prove the
existence of V.

Let Uy be a compact connected PL manifold neighborhood of X in U.
Because X has the shape of an S'-like continuum, there is a neighborhood U,
of X and a polyhedron K| in U, K; = S!, such that the inclusion map of U,
in Uy is homotopic in U, to a map 8,: U; = K. (See Proposition 1.1.) By [10,
Lemma 1.1], we can push K| off X. So by replacing U, by a smaller neighbor-
hood, we can arrange that U, N K; = 0. We may also assume that U, is a com-
pact, connected PL manifold. By {9, Thm. 3.1], X does not separate U;.
Thus we can find a finite collection of PL arcs in U; — X which connect all
the components of dU;. We remove a small regular neighborhood of the
union of these arcs from Uj; the result is a new U; with the additional prop-
erty that U, —Uj is connected. This construction is continued inductively to
define a sequence of neighborhoods Uy, Uj, ... and a sequence of 1-dimen-
sional polyhedra K, K,, ... which satisfy the following properties.



6 FrREDRIC D. ANCEL, Vo THANH LiEM, & GERARD A. VENEMA

(1) U, is a compact connected PL manifold neighborhood of X in the
interior of U;_;.

(2) U; does not separate U;_;.

(3) K;is a compact polyhedron in U;_;—U;, such that K; = Sl

(4) There is a homotopy f;: U; X[0,1] = U;_, such that f;(x,0)=x and
fi(x,1) e K; for every x e U,.

(Below we will modify f;, when i is odd in a way that weakens this state-
ment, to the assertion that the image of f; lies in U;_,.)

Let f,-:K,-H—»K,- be the map defined by ﬁ(x)=ﬁ(x,1). Since we have
assumed that X has the shape of a nontrivial S!-like continuum, we may
add that

(5) fi: K; | — K; is essential for every /.

So far we have used only the fact that X has the shape of an S'-like con-
tinuum. The ILC hypothesis allows us to gain some control over 7 as well.
By [8], m;(U;,U;— X)=0=m,(U;, U; — X). So we can push f;(K;;;X[0,1])
off X. We do so and then inductively choose U;,; small enough so that
U; 1N iK1 X[0,1]) =8.

Put each of the maps f;|K;,;%X[0,1] in general position, keeping
Ji| Ki4+1% 10,1} fixed. Then

Ji(Kix1 %[0, D)) N fi11(Kiy2 X [0, 1])

will consist of a finite number of points. If i =2 is even then take a small
neighborhood in f;, (K;;,X%[0,1]) of each such intersection point and
push the neighborhood along f;(K;,; X [0,1]) until it is pushed off the
Jfi(K; 41 % {0})-end of f;(K;,1X%[0,1]). This removes the points of intersec-
tion between f;(K;,1%[0,1)) and f;,(K;,,X[0,1]). The price we must pay
is that there are new self-intersections introduced in f; . (K;,, X% [0, 1]), and
JSi+1(Ki+2X[0,1]) is stretched out so that it no longer stays in U;, but now
maps into U;_;. We can therefore add the following four additional condi-
tions to the list of properties satisfied by the sequences constructed thus far.

(6) fi(Kip1X[0,11)N fi41(Kip2 X[0,1]) =K if i =2 is even.

(7) fi(Kip1X[0,11)N fi(K; 41 %[0,1]) =0 for |i—j| > 1.

(8) fi(K; 1 X[0,1)CU;_—U;;,if i is even.

9) fi(K; 1 Xx[0,1])CU;_,—U;,,if i is odd.
We combine f»;_;| K5; X[0,1] and f,; | K3;+1 X [0, 1] into a single homotcpy
g; by first running f5; | K»; 1 %[0, 1] at double speed and then running

S2i—1°o((f2i,11 Kaig1) Xid o 1)
at double speed. Set 7T; = g;(K3;+1X[0,1)) for i=1. Then
(10) g;: K3; 11 X[0,1] = (intUy;_3) = Uy 4y is a homotopy such that
gio=id on Ky; 1y, gi(Kyi 1 X {1}) =K1, and T;NT; =0 for i # .
(In order that this and later statements make sense when i =1, weset U_, =
Up.)
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LemMma 3.1. If X satisfies the inessential loops condition, then the neigh-
borhoods U,,U,,Us, ... can be chosen so that the inclusion-induced homo-
morphism w,(U;, U;—U;) = w(U;_y, U;_1 = Uj,y) Is the trivial homomor-
phism whenever 1 <i<j.

Proof. The proof is the same as that of [10, Lemma 2.1]. ([l

We now construct a new sequence Vy, V}, V5, ... of neighborhoods of X.
These new neighborhoods will improve on the U,’s in the following sense: V;
will contain a copy K/ of S! such that for each i =2, there is a homotopy
of V;in V;_, to K} which keeps K/ fixed. Thus V; will homotopically mimic
a regular neighborhood of K.

Begin by letting V,=U,, K{= K, N; be a regular neighborhood of KXj in
Vy, and h; =id,,. Approximate g, with a general position map of K3 X [0, 1].
Now g,(K3Xx{1}) is no longer a subset of K;, but is still contained in N
and is homotopic to the original there. Since g, is in general position, the
only singularities will be a finite number of double points. Let g{ be the em-
bedding of K;Xx[0,1] obtained by piping each of these double points off
the (K5 X {1})-end of g,;(K; X [0,1]). We define L; to be g{(K3 X [0, 1]). Now
choose two relative regular neighborhoods P, and Pj of L; modulo K5 in such
a way that Pj is much thinner than P; is. We want these two neighborhoods
to fit together correctly near K. The simplest way to accomplish this is to
be specific about their construction: Start with a triangulation of U, which
includes L; as a subcomplex and then define P, to be the union of all sim-
plices in the second barycentric subdivision which meet L, — K3, and define
P{ to be the union of all simplices in the fourth barycentric subdivision
which lie in P; and meet L,. We then define U] to be cl(U; — P,) and define V;
to be UjU Pj. The construction of V] is illustrated schematically in Figure 1. It
is important to notice that condition (6) implies that g,(K5 X% [0,1])UU; C V.

The construction of V, is similar to that of V;. Begin by setting K; =
gi(K;3x{1}) and by choosing a regular neighborhood N, of K; in N;N P;.
Now L, is homeomorphic to K3 X [0, 1], and shrinking out its fibers defines
a map L;— g{(K; X {1}) which can be approximated by a homeomorphism
h, of M such that A, is the identity off a close neighborhood of L;. Put
g,: K5x[0,1] > Uj in general position and pipe the singularities over the
(K5x{1})-end to get an embedding g5 of K5Xx[0,1] with the property that
g5(Ksx {1}) C hy'(N,). We let L) = g4(Ksx[0,1]) and define L, to be
h,(L5). Notice that L, is just L5 stretched out so that it stretches all the way
from K into N,. We define K3 to be the end of L, which is in N,; that is,
K35 =h,(g5(Ksx{1})). Let P, and P; be a pair of relative regular neighbor-
hoods of L, modulo K5 (defined in a way which is analogous to the defini-
tion of P, and P{ above), and define U3 =cl(U; — P,) and V, = U3;U P;.

We continue this construction inductively, generating sequences {K/},
(N3, thi, {gf), (L, (P, P}, tUz—y), and {1} satisfying the following
conditions for i = 2.
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Figure 1

(11) gi(K3;4+1X[0,1]) C(int(V;_ NUz;_3)) — (Ui 41U Ti4y).
(12) K| is the polyhedral 1-sphere A; _jog/_(K5;_; X {1}).
(13) N;is a regular neighborhood of K; in the interior of N;_{NV;_;.
(14) h; is a piecewise linear homeomorphism of M such that
h;(L;_;) Cint N; and h; =id on K/ and outside V;_; —U,; _;.

(L;_, is a polyhedral annulus in ((int V;_;) —U,;_;) with boundary compo-
nents K,;_; and K;, and K;/Cint N;. h; squeezes L;_; up its fibers into N..
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Hence, g,-(Kz,-Hx{1})=K2,-_1CL,-_1Ch,-‘1(intN,-). Also, h;=id on Kj;
because K,; 1 CU,;_;.)

(15) &/: K3i+1X[0,1] = [(int(V; .1 NU3;-3)) — (U2 41 U T} 41)]
is a PL embedding which is homotopic to g; in
(int(V;_1NUy;i_3)) — (U3 41U T; 1) such that g/ (K541 X{0}) =Ky 4,
and g/(K,;41 X {1}) Ch7(int N;). g/ | K»;4+1 X {1} is homotopic to
gi| Ky 1 % {1} in h7'(int N;).

(g} is obtained from g; by putting g; in general position and then piping its
double points off the (K,; ;X {1})-end.)

(16) L;=h;°g{(K,;+1%[0,1]) is a polyhedral annulus in
(intV;_) —(U,; 1Y T;,,) with boundary components K,;,; and
Kiy1=hiog{(Kyi 11 X{1}) Cint N;.

(17) P; and P/ are relative regular neighborhoods of L; modulo K5; . in
(intV;_{) —(U,; ;1 YUT;,) such that P/C P; and P/{NaP; is a regular
neighborhood of K5; ., in (dP;) N(intU,;_).

(18) Uj;i_y=cl(U,;_;—P;) is a PL 4-manifold such that Uj; _{NL;=
Kiv1, Uziy1 CintUs;_y, and g;41(K3i43%X[0,1]) C
(intU3; 1) UKyiy1-

(19) V;=Uj;_;UP/ is a PL 4-manifold such that V;\Uj3; _UL;,
Uyi1YEgi 1K 43X[0,11) Cint ¥V, and V; Cint V;_;.

4. Homotopy Properties of Neighborhoods

The most important properties of the neighborhoods which were constructed
in the previous section are spelled out in the lemmas of this section.

LemMMA 4.1. Whenever i =2, the inclusion map of V; in V;_, is homotopic
inV;_, to amap p:V;— N; via a homotopy which keeps N; fixed.

Proof. Because of property (19), it suffices to define a homotopy of Uj; _;UL;
in V;_, which squeezes Uj;;_;UL; into N; and which is stationary on
L;NN;,,. Define the homotopy « of Uj;_; by a=h;efr;_;|U5_1X%[0,1].
a(Uzi -1 X[0,1]) CV;_, because f5;_((Uz;i_ X[0,1]) CUy;_3CV;_, and #;
is supported on V;_{CV;_,. ag=h;|U3;_;=id|Uj;_;, and a(U5;_,) C
h;(K,;_1) CN;. There is a homotopy 3: L; X[0,1] = V; which squeezes the
annulus L; into A;, and which is stationary on L; N\ N;, and satisfies the
condition that 8| K,;, | X [0, 1] = h;°g{. We would like to define a homotopy
of Uj3;_{UL; by taking the union of « and . This doesn’t work because o
and (8 disagree on the overlap Uj; _1NL; = K,;,,. However, as we shall now
argue, o | K»; 41X [0,1] and 8| K5;41 X [0, 1] are homotopic. This allows us to
deform 8 to a homotopy which agrees with o on K,;,; X [0, 1].

We define a homotopy ®: (K,;,1X[0,1]) X[0, 1] = (Uy;_3—Uj; ;) from
JS2i-11 K41 %X1[0,1] to g; by

d((x,s),1)

_ ] Jailx, 2s) for ((x,5),?) € (K341 X[0,2/2]) X [0, 1],
Jria(fri(x, 8), 2s—1t)/(2—1t)) for ((x,s5),?)e(Kyi Xx[8/2,1]) X[0,1].



10 FreDRIC D. ANcEL, Vo THANH LIEM, & GERARD A. VENEMA

Then @ is stationary on K,;,; X {0} and keeps the image of K,;,;x {1} in
hiZ;(N;). So by (15) there is homotopy from f5;_, | K5;+1%[0,1] to g/ in
U,;_3—U,;,; which is stationary on K,;, ;X {0} and keeps the image of
K11 % {1} in A7Z4(N;). By composing this homotopy with h;, we obtain a
homotopy from «|K5; 1 X[0,1] to 8| K5;; X[0,1] in ¥;_, which is station-
ary on Kj; .1 X {0} and keeps the image of K,;,; X {1} in N,.

Now, using the fact that K,; ;X [0, 1] is collared in L; X [0, 1] (or the fact
that M is an ANR), we can deform § to a homotopy v: L; X[0,1] =V, _,
which squeezes the annulus Z; into N;, which is stationary on L; N\ N,
and which agrees with a on K,;,{X[0,1]. Now oU~y is a homotopy of
Uji_1UL; in V;_, which squeezes Uj;_;UL; into N; and which is stationary
on Li N Ni+l . ]

LEMMA 4.2. The inclusion-induced homomorphism
T (Vi, Vi—=V;) > ma(Vi, Vi—V2)

is trivial whenever 1<i<]j.

Proof. Let
g:(B%,dB*) > (V,,V;—V))

represent an element of w,(V;, V;—V;). Observe that 2(3B?) NU,j4+1=10 be-
cause U,;,; CVj. Let 7 be a triangulation of B? so fine that the g-image of
any simplex of 7 which intersects U, lies in U, ;. We now use the facts that
(i) Up; — Uy, is connected, (ii) m(Uy;, Uy; —U,;4+1) =0by [10, Lemma 1.1],
and (iii) U,; CU,; +, CV;, to homotope grel 9B? in V; so that g maps the 1-
skeleton of 7 into V; —U,; 1, while retaining the condition that the g-image
of any simplex of 7 which intersects U, ;. lies in U, ;. Lemma 3.1 tells us that
7T2(U2j, Uzj - U2j+1) - T2(U2j—1 ’ U2j—l — U2j+2) is the zero homomorphism.
Also Uy j_1 CU,; 4+ CV;. Using these observations and moving g only on the
interior of those 2-simplices of 7 whose g-image intersects U, ,;, we homo-
tope grel 9B in V; so that g(B*)NU,;,,=0. Hence, g(B*)NU5;,;=0. We
then pipe the intersections of g(B?) and L;,, off the K/, 3-end of L;,. So
g(B?) N(U3;3UL;,,)=0. Finally, using the collapse V; ,~Uj3;3UL;,,,
we push g(B?) off Vj,,. Thus, we have homotoped greldB? in ¥; so that
g(BY) CV; =V, O

The following lemma is a simple version of the eventual Hurewicz lemma
of [5].

LemMma 4.3. Let k=2. For —2=<r=<k, let B.C A, be polyhedra such that
A, is path-connected, and let ¢,: (A,_,, B,_1)— (A,, B,) be a map. Suppose
(@) (p_1)e: Hy(A_p, B_3)— H(A_,, B_,) is zero,
(b) (¢,)p:m (A, _{,B,_1) > (A, B,) is zero for 0<r=<k—1, and
©) (er)y: m(By_1) = m(By) is zero.
Then (pgeo---cpoop_1)y* m(A_z, B_3) = mi(Ay, By) is zero.
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Proof. We follow the notation of [7]: #/(X,Y) denotes the quotient of
7,(X, Y) by the normal subgroup generated by elements of the form

(%) ‘ (h[w][a])[a]—ls

where [a] e 7, (X,Y), w is a loop in Y, and A, [«] denotes [«] acted on
by [w] under the usual action of the fundamental group on =,.(X, Y). The
Hurewicz isomorphism theorem [7, Thm. 7.5.4] says that if X and Y are
path-connected and (X, Y) is (r —1)-connected, then the Hurewicz homo-
morphism 7/(X,Y) - H,(X,Y) is an isomorphism.

Triangulate (4_;, B_,) and let A%V denote the (k —1)-skeleton of 4_,.
Consider the following commutative rectangle:

Th(A g, B_y) 2= mi(A_y, A%TVUB_))
7] I
Hi(A_,,B_,) WHk(A—l’ AYTYUB_)).

In this rectangle, (¢_;)« =0 because it factors through the zero homomor-
phism of hypothesis (a). » and »’ are Hurewicz homomorphisms. Since A4 _,
and A%~DUB_, are path-connected and (4_;, A%"PUB_,) is (k—1)-con-
nected, n’ is an isomorphism. Hence (¢_;)s = 0.

Hypothesis (b) implies that ¢y _jo - eo: (A_1, B_;) = (Aj_y, Br_1) 1s ho-
motopic rel B_; to amap ¥: (A_;, ATVUB_,) - (Ax_,, By_;). Hence, the
following triangle is homotopy commutative:

(A_y, B_;) Z=1700 (A, By_y)
N VaR'
(A, A4PUB_y).

Hence the following diagram commutes:

Ay, B_y) 2200 mi( Ay, B_y) =108, o4y By )
0\ 1 Cu ez
TilA_, AYTPUBY).
Thus, (pgx_1°- - e@oo@_1)s: mi(A_2, B_3) > wi(Ag_1, Br_1) is the zero ho-
momorphism.

Hypothesis (c) implies that (¢;)s sends each element of the form (*) in
(A _1, Br_1) to zero in 7w (Ag, By). So (¢ ) maps the kernel of the quo-
tient map qi_: wp(Ap_1, Br_1) = mi(Ap_1, By —1) to zero in w(Ag, By).
Consequently, there is a homomorphism x: wi(Ag_{, Br—1) = 7 (A, By)
which makes the following triangle commute:

(g}
Tr(Ag—1s Bi—1) X a0, (Ag, By)

ak-1] 7 x
WII((Ak—laBk——l)-



12 FrReprIiCc D. ANCEL, Vo THANH LIEM, & GERARD A. VENEMA

Hence, we have the following commutative diagram:

( P
Ti(A_p, B_p) L=t 20, Te(Ag_1, Be_p) 220 Ty (Ag, By)
q-2] dk-1 7 x
(A3, B_)) > T (Ag—1, Bx-1)-

0

We conclude that (¢ - opgop_1)y: mp(A_2, B_3) = mi(Ag, By) iszero. [

LeEmMA 4.4. For each k=0, there exists an | =0 such that the inclusion-
induced homomorphism

T (Vi—=Njp 1, Vi=V)) » mp (Vi — Nivi+1,Vi=Vis))

is trivial whenever 1 <i < j.

Proof. wo(V;—Nji1,V;i—V;) =0 because neither N;,, nor V; separates V.
Hence, in the case k=0, / =0 works.

Observe that 7 (V; — Nj ., V;—V;41) = 0. Indeed, V; | collapses onto U3 , 4,
Uj3j+1CUzj41, Uzjyy deforms onto a 1-sphere in U,;, and U,; CU,;_,C
Vi_1CVi. So m(V;, Vi —V;4+1) =0by [10, Lemma 1]. Since the core of N; .., is
codimension 3, m;(V;—N;i,, Vi—V;41) =0. It follows trivially that

T (Vi=Njp1, Vi=V)) > m(Vi—Nj 2, Vi—Viy1)
is the zero homomorphism. So in the case k=1, /=1 works.

We prove the case k=2 by induction. Let 0<i<j. Let p: 17,-—»V,- de-
note the universal cover, and let Z denote p~'(Z) whenever Z is a subset
of ¥;. Set (A_,, B_,)=(V;~— JH,V- V) We will argue the existence of
nonnegatlve 1ntegers (-1D)=</(0)=<-- <l(k) so that if we set (A,,B,)=
V;— Niiitm+15 vV, — —V;vury) and let ¢,: (A,_y, B,_1) = (A,, B,) denote inclu-
sion for —1=<r =<k, then the hypotheses of Lemma 4.3 will be satisfied.

To begin, let /(—1) = 2 and consider the following commutative rectangle:

H(A_y,B_y) ¥ H(A_,,B_))
) )

H} WV, Nip ) —— B2 5V 2, Njy3).

The vertical arrows are the isomorphisms provided by Alexander duality
[7, Thm. 6.9.10]. The bottom horizontal arrow is zero because the homo-
topy of Lemma 4.1 lifts to a proper homotopy in V Hence (¢_;)«=0.

Next, if 0<r=<k—1 and /(r—1) is already determlned then the induc-
tive hypothesis implies there is an integer /(r)=/(r—1) such that (¢,)s:
7 (A, _1, B,_1) = 7. (A,, B,) is zero.

Finally, suppose /(k—1) is already determined. Let /(k) =I(k—1)+2, and
consider the following commutative rectangle:

w2(V;, By_) — w2 (Vi, By)
l l
T1(Bk-1) wor w1 (By).
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The vertical arrows are boundary homomorphisms which are onto because
V; is simply connected. (This is the only point at which we need V; instead
of V;.) Lemma 4.2 implies that the top horizontal arrow is zero. Hence
(er)s=0.

Now Lemma 4.3 implies (¢ o@ge@_1)y: mp(A_z, B_y) = wi(ay, By) is
zero. If we set [ =/(k), then we obtain the conclusion of Lemma 4.4. 0

LeEMMA 4.5. If 1=<i <, then the inclusion-induced homomorphism m(N;) —
m(V;) is injective, and the inclusion-induced homomorphism m(V; ) = m (V)
has image isomorphic to Z.

Proof. In this proof all unlabelled arrows are inclusion-induced homomoi-
phisms. (5) implies g;| Ky; 1 X {1}: K5; 41 X {1} = K5;_; is not homotopically
trivial. So, by (15), m(g/(Ky;i+1X{1}))— m(h7N(N;)) is injective. Hence
T1(Ni41) = m(N;) is injective, so m(N;) - m(2V;) is injective for j >i. Ac-
cording to Lemma 4.1, p: V;— N, restricts to the identity on N;,;. So for
i<j, m(N;)— m(N;) equals the composition of m;(N;) — m(V;) and py:
71(V;) = m(N;). Thus, 7 (N;) — m(V;) must be injective for j > i.

Lemma 4.1 implies that the inclusion V; ., — V; is homotopic to the com-
position of p: V;,; — N;, and the inclusion N;,;—V;. Since m(N; ) =Z,
the image of m;(V}4,) — m(V}) is either 0 or isomorphic to Z. According to
the preceding paragraph, m(N;,)— m(V;4+1) — m(V;) is injective. Hence
(V1) = m(V;) is not zero. O

LEMMA 4.6. For each k=0 there exists an | =0 such that the inclusion-
induced homomorphism

T (Vi=Njy1s Nig1 = Njp ) 2 m(Vie = Nj g 15 Nic 11— Njy 1)

is trivial whenever |+1<i<j.

Proof. wo(V;—N;+1, Niy1—Nji1) =0 because N;; doesn’t separate either V;
or N;, - Hence, in the case k=0, /=0 works.

Consider the following commutative rectangle, in which the arrows are
all inclusion induced homomorphisms:

T (Vi=Nji1, Nig1—Njp)) = mi(Vica—Njy 1, Ni21—Njyy)

! i)
m1(Vis Nig1) - T1(Vic2, Ni—2).

Lemma 4.1 implies that the lower horizontal arrow is the zero homomor-
phism. The vertical arrows are isomorphisms because N;; has a codimen-
sion-3 spine. So the upper horizontal arrow is the zero homomorphism.
Hence, in the case k=1, / =2 works.

We prove the case k=2 by induction. Let i < j, where i is large relative
to the /’s determined in previous steps of the proof. Suppose 0=/(—2) <
I(—1)=<-.-<(k) are integers. For -2 <r =<k, let p,: 17',-_,(,) —Vi_y) be the
universal cover, and set

A, =pr_l(Vi—I(r) —N;;1) and B, =Pr~1(Ni—1(r)+1 —Nji1).
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Then for —1=<r =<k, the inclusion V;_;,_;,— V _i(ry lifts to a map V._ =1
V._ —iry Which restricts to a map ¢,: (A,_;, B,_;) — (4,, B,). We will argue
that the integers /(—1), /(0), ..., /(k) can be chosen so that the hypotheses of
Lemma 4.3 are satisfied.

To begin, let /(—1) =2 and consider the following commutative rectangle:

H(A_,,B_y) ¥ mH(A_,B_)
) )
H(V;, p23(N; 41)) —— Hy (Vi _s, PZ1(N; ).

In this diagram, the vertical arrows are excision isomorphisms. The bottom
horizontal arrow is induced by the lift of the inclusion V; - V;_,. Since the
homotopy of Lemma 4.1 lifts to a homotopy in V;_,, the bottom horizontal
arrow must be zero. Hence (¢_;).=0.

Next, if 0<r=<k—1 and /(r—1) is already determined, then the induc-
tive hypothesis implies there is an integer /(r)=/(r—1) such that (¢,)s:
7. (A,_1, B,_1)— 7m(A,, B,) is zero.

Finally, suppose /(k —1) is already determined. Let s =i —/(r —1). Lemma
4.5 implies that m; (N ) — m (V) is injective. Since N, . has a codimension-3
spine, m(Ng11—Nj+1) = m(V5) is injective. Hence, the lift 7y (By_;) = m (V)
is injective. Since V; is simply connected, we have n;(B;_;) = 0. (This is the
only point at which we need V; instead of V;.) So, if we set I(k)=1I(k—1),
then (‘pk)#: 7I'1(Bk_1) - 7T1(Bk) is zero.

Now Lemma 4.3 lmphes (¢k° ce °(,00°(p_1)#: 7I'k(A_2, B_z) — Wk(Ak, Bk) is
zero. If we set / =I(k) then we obtain the conclusion of Lemma 4.6. J

5. Controlled Embedding and /#-Cobordism Theorems

Our proof of the converse direction of Theorem 1 is based on a variant of
Theorem 7.2C (technical controlled /-cobordism) of [3]. Unfortunately, this
result is not technical enough for our purposes. Fortunately, we can vary
this result to meet our needs, and the proof of the variant can be obtained
from the proof in {3] merely by modifying the logical outline. No new topo-
logical ideas are needed.

Theorem 7.2C of [3] depends on the controlled embedding theorem in
Section 5.4 of [3]. Both these results involve a control map p: E— Z on
which the hypothesis of “good” local fundamental groups has been imposed.
This means that every neighborhood U of a point z € Z must contain a neigh-
borhood V of z such that the image of = (p ~!(V)) = m(p ~}(U)) belongs to
the class of “good” groups. Here, “good” stands for either “poly-(finite or
cyclic)” or “torsion free poly-(finite or cyclic)”. This hypothesis is too strong
for our situation. We weaken it in two different ways. First, and more sig-
nificantly, we don’t allow the U’s to range over arbitrarily small neighbor-
hoods; instead, we impose a lower bound on their diameters. Second, we
don’t allow the z’s to range over all of Z; they are restricted to lie in a sub-
set Y of Z because we don’t intend to assert control over Z —Y.
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The following definition makes our hypothesis on p: E — Z precise. Let
p: E— Z be a map between compact metric spaces, let G be a class of groups,
leta>0and 8>0, and let YC Z. We say that p: E — Z has «, 3 fundamen-
tal groups in G over Y if every subset A of Z of diameter < o which inter-
sects Y is contained in a subset B of Z of diameter < 8 such that the image
of m(p~1(A)) - = (p ~}(B)) belongs to G.

To state controlled embedding and A-cobordism theorems that suit our
needs, we introduce some new terminology. Some of these definitions are
simply relativizations of definitions appearing in [3]. Others are new terms
introduced to simplify the statements of our theorems.

Let Z be a metric space, let YC Z, and let p: E— Z be a map. (Z is the
control space and p is the control map.) Let f: W — E be a map. The Z-
diameter of a subset S of W means the diameter of pof(S) in Z. A subset
of W is over Y if it is contained in £~ }(p~'(Y)). Let §>0. f: W—E is 6-1-
connected over Y if, given a relative 2-complex (K, L) and maps ¢: L > W
and ¢: K- p~(Y) such that feo=y|L, there is a map ®: K — W which
extends ¢ such that pe fo® is within 6 of pey in Z. In this situation, we call
an approximate lift of  with Z-error <. A homotopy h: AX[0,1]>Wisa
o-homotopy over Z if h({a} X [0, 1]) has Z-diameter < 6 for each ae A. Two
maps into W are 6-homotopic over Z if they are joined by a §-homotopy
over Z. Suppose (W, My, M;) is a cobordism. f: W— E is a 6-h-cobordism
over Y if, for i=0,1, id;-1(,-1(y), is 6-homotopic over Z to a map from
S YW p~IY)) into M;. f: W — E has a 6-product structure over Y if there is
an embedding e: My Xx[0,1] - W such that, for every x e M, e(x,0)=x,
e({x} x[0,1]) has Z-diameter < 6, e(dM{y % [0,1]) C oW, and f{p N(Y)) C
e(Myx[0,1]). Let Y® to denote the §-neighborhood of Y in Z: Y©® =
{z € Z: the distance from z to some point of Y is < 6}.

Again let Z be a metric space, and let p: E— Z be a map. Let M be a 4-
manifold, and let f: M — E be a map. Suppose A is the union of finitely
many disjoint disks, and a: A — M is amap. Let 6 > 0. « is a well-equipped
0-embedding if o is an embedding such that, for each component D of A,
(D) has Z-diameter <6 and a(A) has an immersed transverse sphere of
Z-diameter <§ which intersects a(D). o is a well-equipped 6-immersion
if « is an immersion in which the image of each component of A4 has Z-
diameter < 6, o has 6-algebraically transverse spheres, and the images of
distinct components of A have 6-algebraically trivial intersections. (Defi-
nitions of “6-algebraically transverse spheres” and “§-algebraically trivial
intersections” appear on page 90 of [3]. Be aware that in these definitions
“diameter” always means “Z-diameter”.)

We now state variants of the controlled embedding and 4-cobordism the-
orems of [3] which are tailored to our needs.

THEOREM 5.1 (Controlled embedding). Let G be the class of all poly-(finite
or cyclic) groups, and let Z be a compact metric space. Then for every e >0
thereis a 3= B(Z,¢), and for every a >0 there is a 6 = 6(Z, o), with the fol-
lowing property. Let Y C Z, and suppose o < 3 and p: E — Z is a map between
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compact metric spaces which has o, 8 fundamental groups in G over Y'©.
Let M be a 4-manifold, and let f: M — E be a map which is 6-1-connected
over Y©, If A is the union of finitely many disjoint disks, then for every
well-equipped s-immersion of A in f~Y(p~UY)) there is a well-equipped
(topological) e-embedding of A in f~(p N Y®)) with the same framed
boundary.

THEOREM 5.2 (Controlled A-cobordism). Let G be the class of all torsion
free poly-(finite or cyclic) groups, and let Z be a compact polyhedron
equipped with a metric. Then for every e >0 there is a 3= 8(Z,¢), and for
every a>0 there is a 6 =06(Z, ), with the following property. Let YCZ,
and suppose a < f3 and p: E— Z is a piecewise linear map between compact
polyhedra which has o, 8 fundamental groups in G over Y'©. If (W, My, M)
is a 5S-dimensional cobordism and f: W — E is a §-1-connected 6-h-cobordism
over YO, then f: W— E has an e-product structure over Y.

We remark that for simplicity we have backed away from the generality of
Theorem 7.2C of [3] in several respects. We have assumed Z to be compact,
which allows us to regard ¢, 8, o, and 6 as constants rather than functions.
We have taken p: E— Z to be a piecewise linear map between polyhedra
instead of a simplicial NDR [3, p. 108]. Our assumption that the groups in§G
are torsion free Kkills the obstruction groups which would otherwise arise.
(See the remark preceding Corollary 7.2B on page 109 of [3].) We have not
required the e-product structure over Y to agree with a previously exist-
ing §-product structure over a subset of Y. Also, we have not insisted that
the e-product structure be smooth off a regular neighborhood of a 1- or 2-
complex. The greater generality could be introduced in Theorems 5.1 and
5.2 at the cost of lengthening and complicating the proof in a routine way.

We now explain how to extract proofs of Theorems 5.1 and 5.2 from the
proofs of their precursors in [3]. The proofs of the controlled embedding
and /-cobordism theorems in [3] are logically similar in that each begins
with the given ¢ and works “backwards” through a finite number (say #n) of
steps to find 6. These n steps generate a finite sequence of positive numbers
€="70,71s---» Yn- Lhe proof is completed by setting 6 =+~,,. For 1 <i <n, the
ith step consists of a proof of a statement of the form: “For every v;_; >0,
there is a y; > 0 such that if certain subsets in the given situation all have Z-
diameter < v;, then the situation can be improved in some desirable manner
after which certain subsets all have Z-diameter <+;_;.” A point of funda-
mental importance in both proofs is that the determination of v; from «;_
is based solely on the topology and metric on Z, and is independent of the
other spaces or maps (suchas Y, p: E—~Z, f: M—E, or f: W— FE) appear-
ing in the theorem.

In the proof of the controlled embedding theorem in [3], there is only
one step which invokes the hypothesis that p: £ — Z has local fundamental
groups in G. Suppose this is the jth step. Then our proof of Theorem 5.1
uses steps 1 through j —1 of the proof in [3] to determine 8 = (3(Z, ¢) from¢;
and it uses steps j + 1 through n to determine é = 6(Z, o) from «. In step j,
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our proof replaces the appeal to the local fundamental groups hypothesis by
an appeal to the hypothesis that p: F— Z has «, 8 fundamental groups in §
over Y. More explicitly, beginning with yo=¢, steps 1 through j—1 of the
proof in [3] generate the sequence e =~y v; = --- = v;_; without invoking
the local fundamental groups hypothesis. We repeat these steps in our proof
of Theorem 5.1 and conclude by setting 8(Z, €) =y;_;/3. Similarly, begin-
ning with y; = o, steps j +1 through 7 of the proof in [3] generate a sequence
Q=7 Yjt1 *** ~ v, without invoking the local fundamental groups hy-
pothesis. Again, we repeat these steps in our proof and conclude by setting
0(Z, ) ="y

To complete our explanation of the proof of Theorem 5.1, we must tell
how to modify the crucial “jth step” of the proof of the controlled embed-
ding theorem in [3] in which the local fundamental groups hypothesis ap-
pears. This step establishes the statement: “For every vy;_; >0, there is a
v; > 0 such that if there is a size-v; disklike capped grope of height =4 in M
over Y with disjoint component images, then there is a (y;_;)-m-null
size-v;_; disklike capped grope of height = 4 in M over Y-V with disjoint
component images and with the same framed boundary.” (We say that a
capped grope with transverse spheres is size-v if the image of each com-
ponent of the grope has Z-diameter <+ and each transverse sphere has Z-
diameter < +. In addition, the grope is -y-m-null if each loop in the image of
the grope is null homotopic in a set of Z-diameter <+.) The proof in [3] of
this statement first uses the hypothesis (unavailable to us) that p: £ — Z has
local fundamental groups in G to find y; > 0, so that every subset A of Z of
diameter < v; is contained in a subset B of Z of diameter <+;_,/3 such that
the image of m;(p ~!(A4)) = m;(p ~}(B)) belongs to G. Then the proof invokes
Proposition 2.9 of [3] in a small neighborhood of each component of the
given size-y; capped grope over YD to get a size-(7yj—1/3) capped grope
over Y (%-173) with the property that each loop in its image becomes null
homotopic in a set of Z-diameter <+v;_;/3 when mapped into E. Finally, the
hypothesis that f: M — E is 6-1-connected where § <+;<+y;_;/3 is invoked
to conclude that the size-(y;_,/3) capped grope just obtained is y;_;-m;-null.
Our proof of the jth step first invokes the hypothesis that « <8 and p: E— Z
has «, 3 fundamental groups in G over Y, where 8=1;_;/3. Then we set
v; = o, and apply Proposition 2.9 of [3] and the é-1-connectedness of f as
before. This completes the proof of Theorem 5.1.

The proofs of Theorem 7.2C in [3] and of our own Theorem 5.2 have
the same basic outline. Throughout the proof one works with a collar
c:Myx[0,1]1-W on M, and with a handlebody decomposition of
cl(W—c(Myx[0,1])). For SC Z, the “handles over S” refers to the handles
of the decomposition which intersect f~!'(p ~!(S)). We say that the handle
decomposition is size-y if v is an upper bound on the Z-diameters of all
handles and collar fibers. Each step of the proof simplifies the handlebody
decomposition over Y while stretching the collar over more of f ~!(p ~}(Y)).
The ith step of the proof simplifies the handle decomposition over Y ¢ ~Yi-1,
and transforms the handle decomposition from size-+; to size-+;_;. The last
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step of the proof, which is the beginning of the process of simplifying the
handlebody decomposition, starts out with every collar fiber and every han-
dle of Z-diameter < v, =46. In the first step of the proof, which is the end
of the process of simplifying the handlebody decomposition, the last re-
maining handles over Y are cancelled and the collar is stretched over all of
S Y p~U(Y)), with all collar fibers of Z-diameter <y,=e¢, thus producing
an e-product structure over Y.

In the proof of Theorem 7.2C in [3], there is only one step that invokes a
local fundamental group hypothesis on the control map. Again, suppose this
is the jth step. Then, beginning with vy =, steps 1 through j —1 of the proof
of Theorem 7.2C generate a sequence e =yg = y; = --- = y;j_ without invok-
ing the local fundamental groups hypothesis. Similarly, steps j+ 1 through n
of the proof of Theorem 7.2C generate a sequence ;= yj 1= *** = Y, =0
without invoking the local fundamental groups hypothesis. Again we repeat
these steps in our proof of Theorem 5.2 as part of the process of determin-
ing B8 from e and 6 from «. However, here the situation differs slightly from
that in Theorem 5.1. Steps 1 through j —1 and j +1 through » alone are not
enough to determine 8 from e and 6 from «. We must delve into the jth step
as well. :

The jth step of the proof of the controlled #-cobordism theorem in [3]
established the statement: “For every v;_; >0, there is a y; > 0 with the fol-
lowing property. Suppose f: W — E is y;-1-connected over Y. Suppose the
handle decomposition of W is size-y;, all the handles over Y“~%) are of
index 2 or 3, and M is the ‘level surface’ between the 2- and 3-handles. Sup-
pose that if a 2-handle and a 3-handle intersect and their union intersects
f Y p~I(Y€~%-1)), then the excess intersections between the belt sphere
of the 2-handle and the attaching sphere of the 3-handle are paired by im-
mersed Whitney disks in M of Z-diameter < ;. Then conclude that all such
excess intersections are also paired by disjoint embedded Whitney disks in
M of Z-diameter <v;_;.”

If a detailed proof of this statement were given in [3], it would begin
by invoking the controlled embedding theorem of Section 5.4 of [3] to ob-
tain a 6’> 0 with the property that if f|M: M — E is 6’-1-connected over
Y€~ (i-1/3 then immersed Whitney disks in M N f~(p {(Y ¢~ 2-170))
of Z-diameter < 6’ can be replaced by disjoint topologically embedded Whit-
ney disks of Z-diameter <(v;_;)/3 with the same framed boundary. We
choose v;=min{6/2,v;_,/6]. Now suppose f:W —FE is v;-1-connected
over Y9, and suppose that the handle decomposition of W is size-y; and
that all the handles over Y€~ are of index 2 or 3. Since f: W— E is v;-1-
connected over Y¢~(-1”3_ and all handles are of Z-diameter < v;j» and only
handles of index 2 or 3 lie over Y ¢ ~(i-1/¥+%) it follows that f|M: M — E
is (27;)-1-connected over Y“~i-173)_ (Proof: A map of a 2-complex into
p~ U Y-’y can be lifted into W with Z-error <+;. This lift lies in
f Y p (Y~ i-179+9)) So it can be pushed off 2- and 3-handles and into
M, introducing a further Z-error <+;. Hence, the total Z-error of the lift to
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M is < 2+;.) Since 2v; <é’, the choice of 6’ guarantees that immersed Whit-
ney disks of Z-diameter <1; can be replaced by disjoint topologically em-
bedded Whitney disks of Z-diameter < +y;_; with the same framed boundary.

Unfortunately, the controlled embedding theorem in [3] requires the hy-
pothesis (unavailable to us) that p: E — Z has local fundamental groups in G.
At this point in our proof, we apply our Theorem 5.1 with the ¢ in the
statement of Theorem 5.1 replaced by v;_,/3 (with the given «), and with Y
replaced by Y€~ %-173_ Then Theorem 5.1 provides a 8>0 depending
on Z and v;_;/3, and a 6’> 0 depending on Z and «. We may assume 3 <
vj—1/3 and 6’ < «a. We now invoke our hypothesis that « < and p: E— Z
has «, 8 fundamental groups in G over Y‘© to reach the same point that
had been attained in the previous paragraph under the good local funda-
mental groups hypothesis. Specifically, we now know that if f|M: M- E
is 6’-1-connected over Y€~ ©%-1/3 then immersed Whitney disks in
MO f Y p~ (Y~ @v-1/3)) of Z-diameter < §’ can be replaced by disjoint
topologically embedded Whitney disks of Z-diameter <(v;_;)/3 with the
same framed boundary. We then set y;=6"/2. Since 6/2=a/2<B/2=<
Yj—-1/6, v; =min{é’/2,v;_;/6}. So we can now proceed as in the previous
paragraph to change immersed Whitney disks to embedded ones.

We observe that 3 is generated from e via the sequence e =yg= vy~ -+~
vj—1+ B, where the last arrow is provided by Theorem 5.1; hence we can
write 8 = 3(Z, e¢). Similarly, 6 =+, is now generated from « via the sequence
a6’ 06"/2=2; yji1 = - = v, =9, where the first arrow is provided by
Theorem 5.1; thus we can write 6 = 6(Z, «). This completes our explanation
of Theorem 5.2.

We end this section with a lemma which gives a useful condition for de-
tecting that a map is a 6-4-cobordism.

LEMMA 5.1. For every 6> 0, there is a v=y(6) with the following prop-
erty. Suppose (W, M,, M,) is a 5-dimensional cobordism, f:W — E and
p: E— Z are maps between metric spaces, and Y CZ. For ACZ, let A*=
X p~NA)). Then f: W —E is a 6-h-cobordism over Y if for each i =0, 1
and each k=0,1,..., 5, the following condition is satisfied:

(*) If £ <6, then every subset A of Y©) is contained in a subset B
of YOS such that diam B < diam A+~ and the inclusion-induced
homomorphism =, (A*, A*N\M;) - =, (B*, B*N\ M) is zero.

Proof. Set v=6/95. We will construct a §-homotopy over Z which joins
idy» to a map from Y * into M. By a similar argument, we can produce a
6-homotopy over Z which joins idy- to a map from Y * into M,.

Since W is a 5-dimensional ANR, there is a 5-dimensional polyhedron P
and maps ¢: W — P and y: P— W such that y.¢ is y-homotopic over Z to
idyy. There is a subpolyhedron Q of P such that ¢(Y*)C Q C ¢ ~}((Y")*).
Triangulate P so that Q is a subcomplex and so that for each simplex o of P,
¥(o) has Z-diameter <+y. For 0<k <5, let Q¥ denote the k-skeleton of Q.
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Set ap =1 and inductively define a, =2a;_;+2 for 1 < k < 5. Then a5 =9%4.
Set by=2+k for 0<k<35. For each k, 0 <k <35, we will inductively con-
struct an a;y-homotopy over Z, denoted ¥,: Q¥ x[0, 1] - (Y®))* such
that ¥, (x, 0)=y(x) and ¥,(x, 1) € M, for each x € O*.

First we construct ¥,. Let ve Q°. Set A={pofoy(v)}. Then ACY ™, So
condition (*) (with i =0 and k = 0) implies that A is contained in a subset
B of Y@V =y®7 gych that diam B < diam A+~ =+, and there is a path
¥y, {v} X [0,1] = B* such that ¥, ,(v,0)=v and ¥, ,(v,1) € M. Now de-
fine ¥: Q%% [0,1] » Y90V by ¥y =, ¢ 00 ¥y, ,. Then ¥, is the desired a,y-
homotopy over Z.

Next let 1 <k <5 and inductively assume that ¥,_,: Q*~!x[0,1]—
(Y®)* is an a,_,y-homotopy over Z such that for each x e Q¥ 1,
Vi 1(x,0)=¢(x) and ¥, _;(x,1) e M. Let ¢ be a k-simplex of Q. Set A=
pofo(Y(0) U¥;_ (80 X [0,1])). Then AC Y ®-1" and diam A < (2a;_;+1)y.
If we regard (¢ |o)U(¥,_;|00 %[0, 1]) as a representative of an element of
wi (A%, A*N M,), then condition (*) implies that A4 is contained in a subset B
of Yk—1tDM = y & gych that diam B < diam A+~ = (2a,_; +2)y = az,
and ¥;_;|do x [0, 1] extends to a map ¥, ,: 0 X [0, 1] = B* such that for each
xe€o, ¥ o(x,0)=y(x) and ¥, ,(x,1) € My. Now define ¥;: Q¥ x[0,1]—
(Yy* by W, = U{¥, ,: 0 is a k-simplex of Q). Then ¥ is the desired a,y-
homotopy over Z.

Finally, ¥so((¢ |Y ™) Xidg,y;) is @ 94y-homotopy over Z joining Yo |Y*
to a map from Y* into M,. If we follow the y-homotopy over Z joining
idy+ to Yo |Y™* with ¥so((¢ Y ™) Xid[g ), We obtain a 6-homotopy over Z
which joins idy~ to a map from Y * into M,,. ]

6. Conclusion of the Proof of Theorem 1

In this section we complete the proof of the converse direction of Theorem
1. The proof is based on Theorem 5.2 (Controlled A#-cobordism). The idea
is to stretch a controlled product structure over a portion of M X[0,1] so
that for some i =1, each fiber which originates in N; X {0} ends in U x {1}
and each point of X X {1} is the endpoint of a fiber which originates in
(int V;) X {0}. Then the product structure determines a homeomorphism
from N; to a neighborhood N of X in U. Since M is orientable and »; is a
regular neighborhood of a 1-sphere, N= S' x B3.

We apply Theorem 5.2 with the control space Z=[0, 1] and with e=1.
Then Theorem 5.2 provides a > 0. We set o =min{3/2, ¢}. Then Theorem
5.2 provides a 6 >0. We can assume 6 < 3. Finally, with this é as input,
Lemma 5.1 provides a v > 0.

Other variables in the statement of Theorem 5.2 are specified as follows:
Y=1[3,1], (W, My, M})=(Mx][0,1], M x {0}, Mx{1}), E=Mx[0,1], and
J=1idsx10,1;- The remaining variable is the control map p: E — Z. Its speci-
fication is more complicated.

Let /=2 be an upper bound of all the integers / which appear in the state-
ments of Lemmas 4.4 and 4.6 as k ranges from 0 to 5. Let n be a multiple
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of 4 which is an upper bound of {6/«, 8(/+2), (I+4)/v}. Vy, Vi, ..., V, and
N, N,,..., N, are the PL submanifolds of M specified in Section 3. For
0<i=<n, define the PL submanifold W; of M x[0,1] by Wy,=V,Xx[0,1]
and W; = (N; .1 X[0,1-(1/7D))UV; x[1—=(1/i),1]) for 1<i=<n. Then W,;C
int W;_, for1=i=<n. For 0=i<j=<n, define W(i, j) = cI(W; —W;). Finally,
choose the control map p: M x [0, 1] — [0, 1] to be any piecewise linear map
such that p(cl(MXx[0,1]1-Wy))={0}, p(W(i—1,i))=[(i—1)/n,i/n] for
1<i=n, and p(W,)={1}.

We must verify the hypotheses of Theorem 5.2. First, we argue that
over Y=[1 1], the control map p: M x[0,1] - [0, 1] has «, 8 fundamen-
tal groups in the class G of all torsion free poly-(finite or cyclic) groups. We
begin by observing that if 3 </ < j=<n, then the inclusion-induced homo-
morphisms m(W(i, j)) » = (W(i -2, j)) and ={(W;) —» 7 (W;_,) have images
isomorphic to Z. To see this, let # =1—(1/7) and consider the following two
commutative diagrams of inclusion-induced homomorphisms:

T (W(i,j)) — m(W(i-2,)))

1 1
1 (Cl(V;—Nji1) X {t}) — m(cl (Vi — Nji1) X {t})
l )
m (Vi X {t}) — T (Viea X {1]);
Ti(W;) — T (Wi-2)
) )

(Vi X {1}) — m(Vi—a X [t]).

In both diagrams, the vertical upward pointing arrows are isomorphisms
because the inclusions that induce them are homotopy equivalences. In the
first diagram, the vertical downward pointing arrows are isomorphisms be-
cause N;,; has a codimension-3 spine. Lemma 4.5 implies that the bottom
horizontal arrows in both diagrams have images isomorphic to Z. Hence,
the top horizontal arrows in both diagrams have images isomorphic to Z.
Now let A be a subset of [0, 1] of diameter < « which intersects [, 1]. Since
a<43, ACI[3,1]; and since n= 8(/+2) = 32, there are integers 4<i< j=<n
such that AC{(i/n, j/n] and (j—i)/n<a+(2/n). First consider the case
j<n—1. Since AC((i—1)/n,(j+1)/n), p A CW(i—1,j+1). Set B=
[(i—=3)/n,(j+1)/n]. Then diamB=(j—i)/n+4/n<a+(6/n)<2a=<f,
and W(i—3, j+1) C p~!(B). Since the image of
T (W(i—1, j+1) > m(W(i =3, j+1)

is isomorphic to Z, the image of m(p ~}(A4)) - = (p ~}(B)) is isomorphic to
a subgroup of Z and thus is an element of G. Now consider the case n—1=<
Jj=<n. Since AC((i—1)/n,1], p~(A)CW;_,. Set B=[(i—3)/n,1]. Then
diamB=(n—i)/n+3/n<(j—i)/n+4/n<B,and W;_; C p~Y(B). Since the
image of m;(W;_;) — m(W;_3) is isomorphic to Z, the image of m(p ~}(4)) —
w1 (p~1(B)) is isomorphic to a subgroup of Z and thus is an element of G.
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Second, we note that f: W — E is obviously é-1-connected because f=
idprxio,1]-

Third, we must verify that f: W — E is a §-h-cobordism over Y9 =[1,1].
We will achieve this by invoking Lemma 5.1. Hence, it suffices to prove that
for t=0,1and 0<k=<5, if { <6 then every AC[L,1]%) is contained in a
BC 1,119 such that diam B < diam A+v and my(A*, A*N(M x {t})) -
i (B*, B*N (M X {t})) is zero. We first introduce the following abbrevia-
tions. Forl=i<j=<mnandte(0,1], let (W), =W;N(M x{t}) and W(i, j), =
Wi, jYN(Mx{t}), and let M(i, j) = cl(V; = N;1), V(i,j)=cl(V;—V}), and
NG, j)=cl(N; 41— Njs).

We begin with the following observations.

(1) me(W(i,j),W(i,])o) > m(W(i—1,j),W(i—1,j)o) is zero for I+1=<
i<j=nand0=k=S5S.

(2) T (Wi, (W) o) = mi(Wi_a, (Wi_3)g) iszerofor 2<i<nand 0<k<5.

Q3) m (W, j),W(i,j)) > oW, j+1),W(i,j+1);) is zero for 1=<i<
j=n—land0=<k=<5S.

@) m(W,(W;)))=0forl<i<snand O0=<k=<S5.

To prove observation (1), note that W(i, j)o=N(i, j) X {0}, let t =1—(1/i),
and consider the following commutative diagram of inclusion-induced ho-
momorphisms:

Wk(W(i)j), W(I:J)O) - Wk(W(i—],j), W(l_l,.])())

¢l Ly
m (WG, ), NG, ) XT0, 1) = me (Wi =1, ), NG —1, ) X [0, 1)
ai t

The vertical arrows are isomorphisms. To see that { is an isomorphism, con-
sider the homotopy exact sequence of the triple

(Wi, j), N(i, j) x[0, 1, N(i, j) X {0})

and use the fact that . (N(i, j) X [0, t], N(i, j) X {0}) = 0. Similarly, {’ is an
isomorphism. 5 and 5’ are isomorphisms because the inclusions which in-
duce them are homotopy equivalences. Lemma 4.6 implies that the bottom
horizontal arrow is zero. Hence the top horizontal arrow is zero.

To prove observation (2), note that (W;)g= N, X {0}, let t =1—(1/i),
and consider the following commutative diagram of inclusion-induced ho-
momorphisms:

(Wi, (Wi)o) —  m(Wis2, (Wi2)o)

£l L&
7l-k(.I/Vi’]\'ri-f-l><[Os t]) - Tk(uyi—Za]Vi—lx[O’ t])
71 T

we(V; X {1}, Nipy X 1)) — mp (Vi X U], Nj—y X {1)).
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The vertical arrows are isomorphisms for the reasons given in the proof of
observation (1). Lemma 4.2 implies that the bottom horizontal arrow is
zero. Thus, the top horizontal arrow is zero.

To prove observation (3), note that W(i, j); =V (i, j) X {1}, let t =1—(1/}),
and consider the following commutative diagram of inclusion-induced ho-
morphisms:

7T'/((I/V(l’.})’I/V(ls.])l) - 7rk(W(l:J_I_l)’I/V(la.]_|_l)l)

¢l 1
T W, ),V DX = m (WG, j+D, VG, j+D) X1, 1)
"t T

(M1, j) X {2}, Vi, J) X)) — mp(M (i, j+ 1) X {2}, VI, j+ 1) X ().

The vertical arrows are isomorphisms for the reasons given in the proof of
observation (1). Lemma 4.4 implies that the bottom horizontal arrow is
zero. Thus, the top horizontal arrow is zero.

Observation (4) follows from the fact that the inclusion of (W), =V; X {1}
into W; is a homotopy equivalence.

Now let =0,1and 0 < k < 5. Suppose { <6 and A C [, 11©). We must find
BC[1,1]€%Y such that diam B <diam A+~ and mi(A4* A*N(M x {t})) -
i (B*, B*N(M % {t})) is zero. Since § < 1, AC[3,1]. Since n=8(/+2), then
there are integers /+2<i<j<n such that AC[i/n,j/n] and (j—i)/n<
diam A+ (2/n). Set B=[(i —/—1)/n, min{(j +/+1)/n,1}]. Since n > (I +2) /7
and +—¢<infA<(i+1)/n, = +y)<3—-¢—U+2)/n<(i+I-=1)/n; so
BCl3, 14+, Also, since n=2(/+2)/y, diamB< (j—i)/n+2[+2)/n<
diam A+ (2/+4)/n < diam A + . At this point we break the argument into
four cases.

Case I: t=0 and j+I+1<n. Since AC((i—1)/n,(j+1)/n) and B=

[(i—1-1)/n,(j+1+1)/n],
A*=p YA cw(i-1,j+1) and W(i—I-1,j+1)Cp (B)=B"

Observation (1) implies that
(Wi =17+ 1), W(i—1,j+1) o) > m(W(i—1—-1,7+1),W(i—1—-1, j+1)o)
is zero. Hence m;(A*, A*N(M X {0})) - 7, (B*, B*N(M % {0})) is zero.

Case 2: t=0and n—1—1=< j<n. Since AC ((i—1)/n,1] and B =
[(i—1-1)/n,1], A*=p~Y(A)CW;_,; and W;_;C p~}(B) = B*. Observation

(2) implies that m(W;_1, (W;_1)o) = m(W;_3,(W;_3)0) is zero. Hence
T (A%, A* N (M X {0})) — 7 (B*, B*N (M % {0})) is zero.

Case 3: t=1and j+1+1<n. Since AC((i—1)/n,(j+1)/n) and B =
[(i—=1-1)/n,(j+1+1)/n],

A*=p N A cwW(i—1,j+1) and W(i-1,j+I+1)Cp~(B)=B*
Observation (3) implies that
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(Wi —1,j+ 1), W(i—1,j+ D)) »m Wi —1,j+1+1),W(i—1, j+1+1))
is zero. Hence my(A*, A*N(M x {1})) - m(B*, B*N (M x {1})) is zero.

Case 4: t=1and n—I1—1=<j<mn. Since AC ({(i—1)/n,1] and B=
[(i—1—1)/n,1], A*=p~Y(A) CW;_, C p~}(B) = B*. Observation (4) implies
T (Wi—1, (Wi—1)1) = 0. Hence (A", AN (M X {1})) = m(B*, B*N(M X {1}))
is zero.

We have just completed the verification of condition (%) in the hypothesis of
Lemma 5.1. Thus Lemma 5.1 implies that f: W — E is a 6-h-cobordism ovsr
Y(©), Hence, the hypotheses of Theorem 5.2 are now verified. Theorem 5.2
provides f: W— E with an e-product structure over Y, where f=1idysx(013
and Y'=[3, 1] where e = ;. This means there is an embedding

e:Mx[0,1] ->Mx[0,1]

such that for every x e M, e(x,0)=(x,0), diam p(e({x} x[0,1])) <, and
P U([$, 1) Ce(M X[0,1]).
Set i=(3)n+1and j=n/2. Then i and j are integers. We will prove that

V, x {1} Ce(N; X {1}) C V; x (1}.

(M x {1}) Ne(M x [0,1]) C e(M X {1}) because e(M X {0}) = M X {0} and
e(Mx(0,1))=inte(Mx[0,1])Cint M x[0,1]=M x(0,1). It follows that
since V, x {1} C W, C p~I({1}) Ce(M x[0,1]), V,x {1} Ce(M x {1}). Sup-
pose xe M and e(x,1) e V,, X {1}. Then 1—p(x, 0) = p(e(x, 1)) — p(e(x,0)) <
1. So p(x,0) € (%, 1]. Thus, (x,0) e W;_; N (M x {0}) = N; x {0}. Hence,
x € N;. This proves V,, X {1} Ce(N; X {1}). Now let y € N;. Then p(e(y,0)) =
p(»,0) e p(N; x{0})C p(W;_)) C[3,1]. So

(2)—ple(y, 1)) = p(e(»,0)) —p(e(y,1)) < L.

Hence, p(e(y,1)) €(3,1]. Therefore, e(y,1) e W;. Since WJ-Cp_l([§, 1) C
e(M x[0,1]), intW; C e(M x (0,1)). Consequently, e(y,1) € aW;. Clearly
OW; C (N X (0D U Y, X (1) Uel((M X [0,1]) = W)).  e(5,1) & Ny, X {0}
because N;,; X {0} Ce(M X {0}). e(y,1) ¢ cl((M x [0,1]) — W}) because
p(cl((M x[0,1]) —W;)) C[O, %] and p(e(y,1)) > 1. We conclude that e(y,1) =
V; X {1}. This proves e(N; X {1}) CV; X {1}.

The projection of M X {1} to M carries e(N; X {1}) to a set N satisfying V,, C
NCV;. N is homeomorphic to S'x B* because N= N, and N; is a regular
neighborhood of a I-sphere in the orientable manifold M. XCint NCNCU
because X CintV, and V;CVy=U,CU. U

REMARK. It is only at the end of the proof of Theorem 1, when the con-
trolled #-cobordism theorem is invoked, that the hypothesis that X have the
shape of an S!-like continuum is really essential. It is possible to find ver-
sions of the neighborhood constructions in Section 3 and the homotopy
lemmas in Section 4 which work for any X having fundamental dimension 1.
In that case, the neighborhoods would have spines that are arbitrary compact
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1-dimensional polyhedra, and thus their fundamental groups would be fi-
nitely generated free groups. But the only such group for which the con-
trolled A-cobordism theorems of [3] are known to hold is the free group on
one generator, Z.
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