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1. Introduction

The main purpose of this paper is to define equivariant Poincaré complexes,
and to show that our definition is good in the sense that its implications
for equivariant surgery are similar to those in the classical nonequivariant
theory. In particular, we show the following: (1) every G-manifold is an
equivariant Poincaré duality complex; (2) every finite G-Poincaré complex
has an equivariant spherical Spivak normal fibration; and (3) under suitable
gap hypotheses, the m—o Theorem holds for G-Poincaré pairs.

The paper is organized as follows. The remainder of this section reviews
some results from [CW3], mainly the existence of ordinary equivariant homol-
ogy and cohomology theories for which we can prove equivariant Thom iso-
morphism and Poincaré duality theorems. In Section 2 we prove the existence
and uniqueness of the equivariant spherical Spivak normal fibration. In Sec-
tion 3 we discuss the implications for equivariant surgery, including nor-
mal maps and the =—n Theorem. Throughout this paper G is to be a finite
group.

The following definitions from [CMW] are fundamental to the theory
of equivariant orientations. If X is a G-space, the fundamental groupoid
7(X; G) (or just X if G is understood) of X is the category whose objects
are the G-maps x: G/H — X, where H ranges over the subgroups of G;
equivalently, x is a point in X*. A morphism x— y, y: G/K - X, is the
equivalence class of a pair (o, w), where o: G/H— G/K is a G-map and
where w: G/H X I — X is a G-homotopy from x to y°o. Two such maps are
equivalent if there is a G-homotopy k: w = w’ such that £(«, 0, 7) = x(«) and
k(a,1,t)=yeo(x) for e G/H and t e 1.

Let G be the category of G-orbits and G-maps between them. There is
a functor ¢: 7X— G, given by ¢(x: G/H - X)= G/H on objects and by
¢(0, w) =0 on morphisms. This turns =X into a groupoid over G in the
sense of [CMW]. If f: X— Y is a G-map, then there is an induced map
St X > 7Y over G.
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Let 7109, be the category of n-dimensional orthogonal G-bundles over G-
orbits and G-homotopy classes of linear maps, so there is again a functor
¢: h0, > G, giving the base space. An n-dimensional representation of nX
is a functor p: #.X — h0O, such that ¢p = ¢; that is, it is a functor over G. A
map of representations of #.X is then a natural transformation over the
identity. More generally, if f: X — Y is a G-map, p is a representation of =X,
and p’ is a representation of 7Y, then a map p — p’ covering f is given by a
natural transformation n: p — p’e f, over the identity. If £ is an n-dimensional
G-bundle over the G-space X, then ¢ determines a representation p(¢) of
wX given by p(¢)(x: G/H —» X) =Xx*(£) on objects. p(¢) is defined on maps
using the covering homotopy property for G-bundles. Similarly, a map of
G-bundles gives rise to a map of induced representations.

If V is a representation of G, then there is a representation p of 7.X given
by letting p(x) = ¢(x) X V. We call this representation V again. If M is any
smooth G-manifold, then its tangent representation p is defined to be the
representation of wM associated with the tangent bundle of M.

We also need the following variations defined in [CMW]. There is a cate-
gory v0, of virtual bundles over orbits, for every integer n, positive or nega-
tive. Its objects are pairs of bundles, and its morphisms are virtual maps of
bundles. A virtual representation of wX is then a functor 7.X - v0,, over G;
we call a map #.X — k0O, an acfual representation to distinguish it from a
virtual one. Maps of virtual representations are defined in the same way as
maps of actual representations. The set of isomorphism classes of virtual
representations of #.X of all dimensions forms a group under direct sum,
called RO(nX). If X is compact, or more generally has only finitely many
components for each of its fixed sets, then RO(#X) is isomorphic to the
Grothendieck group of the monoid of isomorphism classes of actual repre-
sentations of #.X, under direct sum.

Using virtual bundles, we define GRU to be the category whose objects
are pairs (X, v), where X is a G-space and + is a virtual representation of
wX. A morphism (X, y) — (Y, 8) is given by a G-map f: X — Y and a map of
representations y — 6 covering f. For technical reasons explained in [CW3],
we make the following restriction: We only consider as objects in GRU
those (X, y) for which there exists a G-representation V such that, for all
objects x € X, if ¢(x) = G/H then (y DV )(x) = G Xy W—R" for some rep-
resentation W of H and some n. If X is compact this is no restriction at
all; in general one could probably do without this condition by using more
sophisticated techniques. If (X, v) e GRU, then define (X, y) X to be the
pair (X x1,v’) where y'=+vye°p,, p: X XI— X the projection. This gives us
the notion of homotopy and the homotopy category AGRU.

Finally, we can define spherical representations by repeating all of the
above using the category 4F, of spherical bundles over G-orbits and spherical
maps between them. Likewise, there is the category vF, of virtual spherical
bundles, which gives us virtual spherical representations. These categories
are all related by a commutative diagram



The Equivariant Spivak Normal Bundle and Equivariant Surgery 417

hO, - hs,
A3 !
v0, - vF,
of categories over G.

In order to define homology and cohomology, we need to specify coefli-
cients. The usual coefficients used are Mackey functors, which are contra-
variant functors from the stable orbit category G to the category @b of
abelian groups. As explained in [CW3], there is a similar construction pos-
sible with fundamental groupoids: #.X is a category with the same objects
as X, and with #.X(x, y) the free abelian group generated by equivalence
classes of diagrams x <z —y in wX. A local coefficient system on X, or a
#X-group, is a contravariant additive functor #X — @b. The coefficient sys-
tem we are most interested in is the Burnside ring system. This is the Mackey
functor @5: §— @b given by Q5(G/H) = A(H), the Burnside ring of H.
We can consider this a coefficient system on any X by composing with the
functor #X - G.

In [CW3] we constructed the following functors on AGRU.

THEOREM 1.1. Let (X, ) be an object in hGRU, let AC X, and let T be
a local coefficient system on X. Then there are abelian groups Hf (X,A;T)
and HA(X, A;T). These are functors on the homotopy category of pairs of
objects in GRAU and coefficient systems. Moreover, they satisfy the follow-
ing properties.

(i) These functors extend Bredon’s ordinary homology and cohomol-
ogy with twisted coefficients [Bl].
(ii) There are the expected long exact sequences.
(iii) There are isomorphisms

oy: HO(X, A;T) = HC, (X, A) X (D(V), S(V)); T)
and
oy HU(X, A;T)= HEV (X, A)x (D(V), S(V)); T)

Jor any G-representation V. These satisfy oy oy = oy .
(iv) If K C G then there is a restriction homomorphism

p: HY (X, A;T) - Hy g (X, A;T|K)

and a similar one in cohomology; we will usually write p(a)=a|K.
The composite

HP(GxgX,GxgA;T)— HY\ (GXg X, GXg A; T |K) —» HY\ g (X, A;T|K)

is an isomorphism, as is the similar map in cohomology.
(v) If KC G then there is a restriction to fixed sets

¢ HO(X, A;T) > HMEX (XK, AK;TK)
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and similarly in cohomology. We will write a¥ for ¢(a) and some-
times also for {(a)|ee H, x(X¥, A%;TX).
(vi) There is a cup product

~U—: HYUX, A; S)®HS(Y, B;T) » HY (X, A)X (Y, B); SOIT).
If Tis a wX-ring, then there is a cup product
—U—:HY(X, A;T)QHE(X, B;T) > HE (X, AUB;T).

This product satisfies («UB)|K =(a|K)U(B|K) and (aUB)X =
aXU gk,
(vii) There is a cap product

—N—:HYX,B; S)YQHE, 5(X, AUB;T) > HS(X, A; S®;x A+ T)

satisfying (aUB)Na=aN(BNa), («Na)|K=(ax|K)N(a|K), and
(eNa)X =aoXNaX.

The algebra involving the coefficients is explained in [CW3]. It suffices
for our purposes to know that @ is a ring, every coefficient system is a
module over @, and that Qg |K = Qk, (@)X |e=Z, @z O Qg = @, and
CG; ®:x AR =Q;. We must also note a convention used in discussing
fixed sets: X has only locally constant dimension, so H k(X K really stands
for a sum over the components of XX of homology groups of the indicated
dimensions.

The following is proved in [CW3] and also in [CW2] with a different
definition.

THEOREM 1.2 (Thom isomorphism). If & is a G-vector bundle over X,
and p is the corresponding representation of ©X, then there is a class t e
HE(X; Qg) such that

— Uty HU(X;T) — HE P(D(§), S(£); T)

is an isomorphism. t is called a Thom class for &. Moreover, t;| K is a Thom
class for £ as a K-bundle, and té" is a Thom class for £ as an NK/K-bundle.

In [CW3] we show the following.

THEOREM 1.3 (Poincaré duality). If M is a compact G-manifold and p is
the representation of M associated with the tangent bundle of M, then there
is a class [M,dM ] e HS(M, dM; Q) such that

—N[M,dM]: H{(M;RQg)—~ H,2 (M, 3M; Q)
and
—N[M,dM]: HY(M, dM;CGs) > HE . (M; Q)

are isomorphisms. [M, dM] is called a fundamental class for M. Moreover,
[M,dM]|K is a fundamental class for M as a K-manifold, and [M,oM1X is
a fundamental class for MX as an NK/K-manifold.
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2. The Spivak Normal Bundle

We now construct the equivariant Spivak normal bundle. All homology and
cohomology will be taken with coefficients in Q. Let 7 be a representation
of the fundamental groupoid of a given G-space X.

DEFINITION 2.1. X is a G-Poincaré duality space of dimension 7 if there
exists a class [ X]e HE(X) such that:

(@ —N[X]:HX)—>HE ,(X) is an isomorphism;
(b) foreach KC G, —N[X]X: H*(XX) - H_x_,(X¥) is an isomorphism.

More generally, the pair of G-spaces (X, Y) is a G-Poincaré duality pair of
dimension 7 if there exists a class [X,Y]e HCP(X,Y) such that:

(@) the maps —N[X,Y): HX(X) - HC ,(X,Y) and
—N[X,Y]: HY(X,Y)— HE ,(X) are isomorphisms;

(b) for each KC G, —N[X,YX: H*(XX) > H x_,(XX,YK) and
—N[X, Y1 (XX, YX) > H_x_,(XX) are isomorphisms.

The Poincaré duality theorem (1.3) shows that a closed G-manifold M is a
G-Poincaré duality space of dimension g, where p is the tangent representa-
tion of M, and more generally that the pair (M, dM) is a G-Poincaré duality
pair for any compact G-manifold M.,

Fix a G-Poincaré duality space X of dimension 7, and assume that X isa
finite G-CW complex. Choose a G-embedding of X in the G-representa-
tion V with regular neighborhood U, then one has the projection p: U—-» X
and the composite g: dU < U — X. One can replace p and g by a pair of G-
fibrations I'p: E=TU—- X and I'q: E,=T'dU— X. Let E/xE, denote the
fiberwise quotient over X, so that r: E/yEy,— X is a sectioned G-fibration.

THEOREM 2.2. For sufficiently large V, the map r: E/xEy— X is fiber
G-homotopy equivalent to a spherical G-fibration of dimension V —r.

The first step in the proof of Theorem 2.2 is the construction of a suitable
candidate for the Thom class of r.

LEMMA 2.3. There exists a class t € H;~"(U, dU) EHC’;’" (E,E,) such
that, for each K C G, if tXe HV*-7XUX, dUX) denotes the restriction of t
then

—UtK|: H*(x) » HV =71+ (Dp=Y(0)K, Tg (%))
is an isomorphism for each x € XX.

Proof. Since (U, dU) is a G-manifold of dimension V, one has a fundamen-
tal class [U, dU) e HF(U, dU). We take ¢ to be the dual of [X]e HE(X) =
HS(U) with respect to this class, so that t N [U, 3U] = [ X ]. Restricting to the
nonequivariant cohomology of the fixed sets, it follows that tXN[U, U X =
[X]X. Since U and X are G-Poincaré duality spaces, [U,dU]X and [X]¥
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are fundamental classes for the relevant fixed sets, and so can be written as
[UX, dUX] and [ XX], whence tXN[UX, 9UX]=[XX]. By the nonequivari-
ant theory [S], E{ — X% is equivalent to a spherical fibration with EX equiv-
alent to the corresponding disc fibration (fiberwise cone). It follows from
the above equation that #X is the nonequivariant Thom class of the fibration
EK — XX, showing the result. O

Choose any point x€ X, and let L be its isotropy. Write 7(x) =G X, 7,.
The restriction of the Thom class ¢ to the fiber determines an L-map F =
r~Yx)— K(W), where W=V— 7, and where K(W) is the Wth space of the
equivariant Eilenberg-MacLane spectrum with coefficients in the Burnside
system [LMM; CW1].

LEMMA 2.4. Fgr sufficiently large W, the unit S¥ — K(W) induces an iso-
morphism w,(S"") —» 7;(K(W)”’) for 0<i<dim W, for every JCW.

Proof. The result follows from the following computation of 7;(K(W)’).
One has

T{(K(W))=[S',K(W)’]
=[S, K(W)];
=H}"~/(8%
= H/(SY)
=H/ (S""), where n=dim W,
=H{ (E®).

Here, @ is the family of all proper subgroups of J, E® is the classifying
space of @ [P1], and E® is the cofiber of the projection E®* — S°. The
equivalence Hy_,(S"~")= H{_,(E®) follows from a connectivity argument,
for large enough W. Finally, one has A ,(E®)=Z if i=n, and 0 if i <n.
(This last step may be seen using Bredon’s universal coefficients spectral
sequence [B1].) N

Proof of Theorem 2.2. Consider again the map o: F—»K(W). If JCL,
then Lemma 2.3 asserts that ¢/| is the generator of the cohomology of F”,
and therefore F’ is a cohomology sphere, so that 7;(F/)=Z if i =n, and
0 if i < n, where n =dim W”. Further, the fact that ¢/ | is the generator
of the cohomology of F’, together with Lemma 2.4, implies that the map
a’: F/ - K(W)’ induces an isomorphism in homotopy up through dimen-
sion x. It now follows by the equivariant Whitehead theorem that the unit
u:S%— K(W) factors through F. If 8: S¥ — F is any L-map with a8 = u,
then B is a homology isomorphism on all fixed sets, and hence an equivariant
equivalence. O

We also have the following uniqueness result. Let X be a finite G-Poincaré
duality space of dimension 7 embedded in V with regular neighborhood
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U. Then there is a collapse map S¥ — U/oU = E/E,, where r: (E,Ey) - X
is the Spivak normal fibration. This determines a class « in TF(E/Ey) =
[SY, E/E,]g, satisfying ¢, Na,[SY] =[X]. We now have the following ana-
logue of [B2, §1.4.19], proved in essentially the same way.

PROPOSITION 2.5. Let £ be a (V— 7)-dimensional spherical fibration over
the G-Poincaré duality space X, and assume that there exists a class €
7r,9 (T) satisfying t: N (3, [SY1=[X]. Then there is a fiber homotopy equiva-
lence b: £ - r, unique up to fiber homotopy, such that Th.(8) = «.

Similar results for a Poincaré pair (X, Y) can be proved in a like manner.

3. Surgery

We can now duplicate many of the initial steps of nonequivariant surgery in
the equivariant context. Let X be a finite G-Poincaré duality space of dimen-
sion 7; we wish to determine if X is G-homotopy equivalent to a smooth
closed G-manifold. As usual, embed X in V with regular neighborhood U so
that U/dU — X is equivalent to a spherical fibration of dimension V' — 7. We
first meet the linearity obstruction; let us assume this vanishes so that there
is a linear G-bundle £ over X of dimension V' — 7, spherically equivalent to
the Spivak normal bundle. The collapse map c: §” - T¢ satisfies #;Nc,[S"] =
[X], where ¢, is the Thom class of £&. We wish to make c transverse to the
zero section of &, and here we may meet the first G-transversality obstruc-
tion. We shall see below that the assumptions we place on 7 in order to do
surgery in fact guarantee that this obstruction vanishes. Assuming that ¢ can
be made transverse, we let M =c~!(X) and let » be the normal bundle to
the inclusion of M in V. Then we have amap f: M — X covered by b: v — £.
Let d: SY— Tv be the collapse; this yields

[IM] = f(t,0dL[S"]) = ful f*1Nd SV ) = ;N[ SV = [ X].

Here, if pu is the representation of 7 M associated with the tangent bundle of
M, we are implicitly using the virtual map p=V—» > V—£ =7 to identify
grading. Notice now that

SEIME]=[XX]

for all K C G, since [MX]=[M)X and similarly for X. Thus f is a degree 1
map on components of the fixed sets. Hence we should make the following
definition.

DEFINITION 3.1. Let X be a G-Poincaré duality space of dimension 7,
and let £ be a (JV— 7)-dimensional bundle over X. A normal map into X is
a pair (f, b), where f: M — X is a G-map from a closed G-manifold M, and
b:v— § is a stable G-map from the normal bundle of M. This map is re-
quired to have degree 1, in the sense that f,[M]=[X], where, if u is the
dimension of M, we use pu=V—» - V—£ =7 to identify the gradings.
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A similar definition can be made for pairs. We shall show that, under certain
assumptions on the fixed-set data, a normal map in this sense is normal in
the sense of either [DP] or [LM]. The bundle data in a normal map, as we
defined it, is essentially stable, but some unstable data is needed to make
surgery work. One solution available to us is alluded to in [DR, §3], and
that is to put conditions on 7 that allow us to destabilize. Here is such a set
of conditions.

DEFINITIONS 3.2. (Local case) The virtual representation V—W of G is
ideal if the following is true. Let X C G, and decompose V' — W into a formal
sum of K-irreducibles as

V—W=R"@Y ZM.

Letd; =1, 2, or 4if Z,; is (respectively) real, complex, or quaternionic. Then
we require that

n0< d,-(n,-+1)—l
for all i 0.
(Global case) The representation 7 of the fundamental groupoid of X is
ideal if, for every object x € n.X, if 7(x)=G X (V—W) then (V—W) is an
ideal representation of K.

LEMMA 3.3. Let (f,b): (M, »)— (X, &) be a normal map, with X a Poin-
caré duality G-space of dimension T where 7 is ideal. With TM the tangent
bundle of M, let —b: TM -V —§¢ be the virtual negative of b. Then, for
some n=0, there exists a (rt@®R")-dimensional G-bundle ¢ over X and a
G-bundle map c: TM @ R" - ¢ covering f with ¢ = —b as virtual G-bundle
maps.

Proof of Lemma 3.3. Let B;O(k) denote the classifying space of k-dimen-
sional orthogonal G-bundles. If W is an orthogonal G-module, then there is
a G-map gy : B;O(k) > B O(k+|W|) given by addition of W. If Yis a y-
dimensional Poincaré complex (where + is ideal) and if p: E—> Y is (y+V)-
dimensional, let 6:Y — BgzO(|v|+|V|) classify p. We claim that & factors
through oy, : BcO(|v|+|V°|) » B O(]y|+|V|). If KC G, and C is a com-
ponent of YX, then 6X(C) is contained in a component of B;O(}y|+[V )X
equivalent to BOg(y(»)+V), where y e YX and Ox (W) denotes the group
of K-equivariant orthogonal automorphisms of W. Decompose y(y) and V'
into formal sums of K-irreducibles as

vy(»)=R"®I Z" and V=Rr@Y ZK.

Then Ox(y(y)+V) =11, A;(n; + k;), where A; = O, U, or Sp according as Z;
is real, complex, or quaternionic. It follows that the inclusion

BOx(y(»)+VC) - BOg(y(»)+V)

is a Min;o{d;(n; +1) —1}-equivalence. Since for each K C G, YK is vX =n,-
dimensional, the claim follows from the assumption that v is ideal. Finally,
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since homotopy classes of maps between bundles correspond to homotopies
between their classifying maps, the extra 1-dimensional connectivity in 5
permits destabilization of maps as well as bundles. The lemma follows by
applying this argument to X to destabilize V— £ and to M to destabilize the
map —b. L

REMARKS 3.4. (a) If X is a G-manifold of dimension 7 and 7 is ideal,
then Lemma 3.3 gives us a G-normal map in the sense of [LM]. However, all
one really needs for surgery is to be able to destablize restrictions of bundles
to embedded spheres of no more than half the fixed-set dimension, and for
this we can weaken the condition in Definition 3.2 to ny <2d;(n; +1) —2.
(b) Let f: MY — EY~7 be a G-map of the y-dimensional manifold M into
the total space of a (y— 7)-dimensional G-vector bundle, and assume that 7
is ideal. Then, by [P2, §4.13], f is G-homotopic to a map that is transverse
to the zero section. This justifies the claim in the first paragraph of this sec-
tion: If X is a 7-dimensional G-Poincaré duality space and if 7 is ideal, then
the collapse map SY— T¢ onto the Thom space of an associated (V—7)-
dimensional bundle can be made transverse to the zero section.

The following conditions are standard, and are required to make surgery
work.

DEFINITION 3.5. 7 satisfies the gap hypothesis if the following is true.
Suppose that ¢(x)=G/K and that 7(x)= G Xy V. For every x and every
L C K we require that either VX = VX or dim VX =2dim VX. We say that
7 has fixed sets of dimension = n if dim VX = n for all K and all x.

We now have the following.

THEOREM 3.6 (w-7 Theorem). Let (X,Y) be a G-Poincaré duality pair
of dimension t; suppose that 7 is ideal, satisfies the gap hypothesis, and
has fixed sets of dimension = 5. Suppose further that ©Y — w.X is an equiv-
alence of groupoids over G. If M is a smooth compact G-manifold and
f:(M,0M)—- (X,Y) is a degree 1 map covered by a stable G-bundle map
b:v—- &, then (f, b) is normally cobordant to a G-homotopy equivalence.

The proof is by induction on the fixed sets, following [DP], using nonequi-
variant surgery on each fixed set.
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