Besov Spaces, Sobolev Spaces, and
Cauchy Integrals

PATRICK AHERN & WILLIAM COHN

1. Introduction and Statement of Results

Let B, denote the unit ball in C” with boundary S, the (2n—1)-dimensional
sphere. If do is normalized rotation invariant measure on S and fe L!(dv)
then for z € B,, we define the Cauchy integral

do({)
(1 - (Z, f))n )
In this paper we obtain conditions on f sufficient to imply that Cf belongs
to either the Besov space Bé’ or the Hardy-Sobolev space Hé’ , where >0

and 1< p < oo, Recall that a holomorphic function F defined on B,, belongs
to Hf if

Cf)={_ )

Il =IR°FI= sup | [RPF(ro)P do(6) <eo,

O0<r<li

where R? denotes the radial fractional derivative operator defined on the
class of harmonic functions on B, by

RPu(z)=3(1+k)PPi(z),

where u =Y P, (z) is the expansion of # in homogeneous harmonic poly-
nomials. Thus, if z=r{ where0<r<land ¢ eSS,

Rlu(z) = u(z) +r2% (r¢)
or

_ ° ou _ du
u(z)+ 2 (z, % +Z; 62,-)'
A holomorphic function F defined on B, belongs to Bé’ if
IFlsg=IRPFI , = [ IRPF@IP (=12~ dv(@) <o,

where dv denotes 2n-dimensional Lebesgue measure defined on C”.
The sufficient conditions we establish are of two types. The first we de-
scribe as “transverse” and the second we call “tangential”. The transverse
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results, whose proofs are relatively simple, are motivated by earlier work of
Ahern and Schneider [2; 3] and Phong and Stein [8]; see also [6] and [7].
The tangential theorems, whose proofs are more involved, are motivated by
more recent results of Ahern and Bruna [1]. We proceed to discuss the trans-
verse theorems.

In [3], Ahern and Schneider showed that if f is a bounded function on S
satisfying a uniform Lipschitz condition of order 0 < « <1 on almost every
slice, that is, if there exists a constant C such that for almost all { € S

(1.1) | fe’ 08~ fe?8)| < Cte,

then Cf belongs to the Lipschitz space A (B,) of holomorphic functions F
on B, satisfying the condition

|F(z)—F(w)|<C|z—w]|*

In this paper we prove a similar result which may be interpreted as giving a
condition on the behavior of f on slices that is sufficient to imply that Cf
belongs to the Besov space Bé’ . If fis a function defined on S, for { e S and
t > 0 define

A S =Fe"H)—f().
In addition, for each ¢ e S define the slice function
Se(e'?) = f(e'%).

If { € S then an analogue of (1.1) appropriate for dealing with Besov spaces
would involve some condition on the means

100y pe )l do.

Now, if F is holomorphic on B, and in Bf then the proof of Theorem A will
show that an equivalent norm on Bé’ is given by

1027 . . dt 1/p
m i0+1t)sy__ pm i0-\|p -
1+ (I, o Jo TR @00~ R D a0 1 do o)
ifm<B<m+l. Interchanging the order of the integrations on ¢ and 6 and
making the substitution e’?¢ for ¢ allows us to rewrite the second term as

1 m » dt l/p
1.2) (So Ss’AtR F(¢)| da(i’)m) .
It is therefore reasonable to wonder whether or not the boundedness of some
norm similar to (1.2) on a not necessarily holomorphic function f is suffi-
cient to imply that Cfe Bé’ . The following result shows that this is indeed
the case. To state it we define, for fe L(do), the transverse field

1 ) )
Ns6)=1 5 (550 -5 )
J J



Besov Spaces, Sobolev Spaces, and Cauchy Integrals 241

Here and in what follows, all derivatives are to be interpreted in the sense of
distributions.

THEOREM A. Let 1< p <o and suppose that m is a nonnegative integer
such that m<B<m+1. Then a sufficient condition that Cf e Bé’ is that
there be functions gy, g1, ..., &y, in L'(do) satisfying

(N f(§) =g;(%)
for j=0,...,m such that

dt
t1+p(B—m) <

! p
[, [ 1A g0l dote)
forj=0,...,m.

REMARK. Notice that if f is sufficiently smooth then
: d .
105y i0

In order to obtain a result that includes all real values of 8 it is necessary to
consider second-order differences. Define

A2f(E)=f"E)+ fle ) —21(%).

We prove the following result.

THEOREM A'. Let 1< p <o and suppose that m is a nonnegative integer
such that m<B<m-+2. Then a sufficient condition that Cfe€ Bf is that
there be functions go, 81y ..., &, in L(do) satisfying

(N)F(§) =g;(§)
Jor j=0,...,m such that

[, [ 183,17 do ()i < o

t1+p(B—m)

Jor j=0,...,m.

We remark that, as has already been indicated, our arguments will actually
show that if f is the boundary function of an A function then the sufficient
conditions (stated in Theorem A and Theorem A’) that fe Bé’ are also nec-
essary ones.

We also prove a version of Theorem A that is valid for Sobolev spaces.

THEOREM B. Let 1< p <o and suppose m is a positive integer. Then a
sufficient condition that Cf e HP is that there be functions g, ..., &, each in
L?(do) such that

(N f(§)=gi(})
Jor j=0,...,m.
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The second type of result presented here deals with complex tangential direc-
tions. Let 7; , and 7; ; denote the tangential differential operators

- 0F _ OF

T F(z)=7,— _5 9%

ik F(2) =2 52, 2 3z,
and

= oF oF

T F() =2, ——25,—.

It is a well-known principle that at a given point w on the unit ball, a holo-
morphic function can be expected to behave “twice as nicely” in the direc-
tion given by a vector v in C” which is “complex tangential” in the sense that
{w,v)=0, as opposed to the direction determined by a vector v for which
{w, v)# 0. This phenomenon is reflected in the fact that in many situations
one may formally replace the radial derivative operator R¥ by a generic op-
erator L2¥ obtained by composing 2k of the operators T; y or T; ;. For ex-
ample, it is easy to show that a holomorphic function F belongs to Hf if
and only if the admissible maximal function of L?*F belongs to L” for all
operators represented by L% as discussed above. This is because R! actually
appears among the operators represented by L2. On the other hand, if F is
holomorphic then 7; , F=0 for all T; ;, and it is natural to ask for char-
acterizations of Hf and Bj that do not involve the operators 7; ;. Such
characterizations have been recently given by Ahern and Bruna in [1]. They
proved, among other things, that if 7% denotes a generic operator obtained
by composing k of the operators T; ; then a holomorphic function F on the
unit ball belongs to H,f/z if and only if 7%F has admissible (or even radial)
maximal function in L?; see [1, Thm. 4.2]. Concerning Besov spaces, their
results show that F belongs to Bf if and only if

SB |T*F(2)|? (1—|z|)P*/2=8=1 gy (z) < oo,

where k> 28.

In this paper we give conditions on a function fe L!(do) which are in
terms of (the distributional derivative) 7%f and its behavior on “complex
tangential balls” embedded in S which are sufficient to imply that Cf belongs
to Bf. We will use the following notation. For n€ S, S’(x) will denote the
set of points A on the unit sphere in C” orthogonal to »; that is,

(1.3) S'(n)={NeS: (N, n)=0].

The symbol do’(\) will denote normalized (27— 3)-dimensional Lebesgue
measure on S’(»n). Similarly, B’(n) will denote the set of points w on the unit
ball in C" orthogonal to 7; that is,

(1.4) B'(n)={we B,:(w,7)=0}.

The symbol dv’(w) will denote normalized (2n—2)-dimensional Lebesgue
measure on B’(»). In polar coordinates we therefore have that
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w=p\, O0=<p=l,
and
dv'(w)=(2n—2)p*"3dpds’(\).
If ne S and we B’(n) let

(1.5) ®(n, w)=~1—|w[2n+w

be the mapping obtained by projecting the point s+ w (which lies in the
complex tangent space to S at 5) in the direction orthogonal to that complex
tangent space until it hits the sphere. For a fixed y€ S the points { on the
sphere may be parametrized by

(1.6) C=5(t, wy=e"®(y,w),

where 0 <¢ <27 and we B’(5). In terms of this parametrization do({) may
be written as (see [9, p. 15])

1.7 do(¢) = = di dv'(w).
27
For a function g defined on S and for ne€ S with we B, and (5, w) =0,
define

(1.8) Ag(n, w) =g(2(n, w))—g(n).

Suppose that 1 < p <o and y>0. Let g e C°(S). Let |g|, be the norm of g
in L?(do):

1/p
el = ([l do)
Then

1.9) lela,,~lel+

defines a norm on C*(S) which is stronger than the L! norm. Let A p,~ denate

the Banach space obtained by completing €%(S) in the norm | [,, .. It is

easy to see that A, . is contained in L!(do). Furthermore, from the defini-

tions given by (1.8) and (1.9), it is reasonable to assert that a function fe A,

possesses a degree of “smoothness” in the complex tangential directions.
We prove the following result.

1

) dp \VP
Ty T A2 NI 0’00 dot) )

0 p1+p7

THEOREM C. Let 1< p<oo, suppose k is a nonnegative integer, and let
k/2 < B< (k+1)/2. Then for f € L\(do) a condition sufficient to imply that
Cf belongs to Bf is that T*f belongs to A, »5_ whenever T* is an operator
obtained by composing k of the operators T; ;.

We also prove a version of Theorem C involving second-order differences.
With g, 9, and w as above, let

A2g(n, w)=g(W1—|w]2Zn+w)+g(\1—=|w]2n—w)—2g(n).
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Then, for ge C*(S),

d 1/p
el =leli+ ([} ], [ 192 a0l O dotny )

pl+p'y

also defines a norm on €%(S). Let A}, . denote the Banach space obtained
by the usual process of completion. As before A , 18 a subset of L'(do).

THEOREM C’. Let 1< p<oo, suppose k is a nonnegative integer, and let
k/2 < B < (k+2)/2. Then for f € L'(do) a condition sufficient to imply that
Cf belongs to B is that T*f belongs to A ,5_, whenever T* is an operator
obtained by composing k of the operators T; ;.

Concerning the necessity of the conditions appearing in Theorems C and C’,
we obtain the following result.

THEOREM D. Let Fe B} where 1< p <oo.

(@) Ifk/2<B<(k+1)/2 and T* is obtained by composing k of the oper-
ators 1; ;, then there is a constant C such that

IT*Fla, 13-, < CIR™PF| s

(b) Ifk/2<B<(k+2)/2 and T* is obtained by composing k of the op-
erators T; ;, then there is a constant C such that

"TkF“A2 28— k<C"R1+BFupp 1.

Finally, we consider sufficient conditions in tangential directions that imply
that Cf € Hi), for k a positive integer.

THEOREM E. Sufficient that Cfe H”, k2 Jor an L? function f where 1<
p<ooisthat T*fe LP for all operators T* obtained as the composition of k
of the operators T; ;.

In addition to the notation already introduced, we also adopt the follow-
ing two conventions. First, the letter C will stand for various numbers that
remain independent of the parameters with which they appear in context.
Second, if F is a function on the ball B, and { € S, then (for 0<r<1) by F,
we will mean the function on the sphere S given by F,({) = F(r¢).

2. Proofs of Transverse Results

Proof of Theorem A. Let g denote any one of the functions g;, where j =
0,...,m. Since Cf is holomorphic,

R!Cf(z) = Cf(z)+NCf(z),

where N is the formal field

n d
N=2%%g
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Calculate that
NCf(z)= SS FEIN(—<z, £)~"do(¢)

n{z, &)
A=<z, eyyre1 206€)

=|, /)

=-igs FEOUN,)(1=<z, £) " do($),

where in the last equation the symbol (/V,) indicates that the differentiations
are with respect to ¢ and not z. The argument given in [9, 18.2.2] allows us
to integrate by parts and arrive at

. 1
NCf(@)=i | N S(§) = 40 )

. 1
-—lSS g(f)mdﬁ'@)-

If we apply this reasoning to R™”Cf=(I+ N)"Cf, it follows that

1

—d
A=<z, oy 2®)

R"Cf(2)=| G()

= CG(z2),

where G denotes a linear combination of the functions represented by the
symbol g. Let F(z) =Cf(z), so that

2.1 R"F=CG.
If N e B, it is easy to check that

9 k
RF(N) = (1 “"ai') Fe(N).

It is shown in [4] that with m+1> 8, Fe B} if and only if
1
[IR™HE o (1=t 1-9-1dr < o,
Use [9, p. 15, Prop. 1.4.7] to calculate that

S;”Rm.HF'r "f)(l _r)(m+1—B)p—l dr

equals

1 27 .
EO SO L]Rm“F(re”’r)P(l—r)(m“-mp-ldadedr,

1
2w

which, with A =re?, equals

3 WL (og) mo

p
(1=r)m*+1=-Br-140 dr do.




246 PATRICK AHERN & WILLIAM COHN

Since F} is holomorphic on the unit disk B, the Besov norm

1 27 a m+1
||F§||p,+(§0 30 (H)‘a_)\) Fr(\)

is equivalent to the norm (see [10, Chap. V])

@.2) |!F;||p+(§; S;”)Af(m%) Fy(e®)

where

P 1/p
(1—r)<m+1—5>1’-1d0dr)

P dt l/p
do t1+(,8—m)p) ’

A,h(N) = h(e"\)—h(\).
We may rewrite the integral in (2.2) as

dt

Sl (18R e do— S
0Jo ! 1+ B-mp’

It follows that
1
SO ”Rm+1Fr ”[p)(l _r)(m-f-l—-B)p—l dr

is finite if and only if

L " (2TIA RME (010 dt
ESS SO SO IAtRnF(el f)lpdﬂmda(g‘)
! dt
= XS SOIAtRmF(g-)Ipm)—p— do'(g.) < 00,

It is easy to check that the Cauchy projection C commutes with the differ-
ence operator A,. Recalling (2.1) and using the fact that 1 < p < oo to apply
the theorem of Koranyi and Vagi [9, 6.3.1], it follows that

| JaR"F@)|? do6) = | |A,CG()IP do(s)
= [ lca, 6P do(s)

< CSS[A,G(g‘)IP do($).
Therefore

1 dt 1 dt
m p_ Yt o S
2.3) L SolAfR FE iy 4o = CSS SOIA,G(g-)]PtH(B_m)p do.

But the right-hand side of (2.3) is finite by the hypothesis of the theorem.
This completes the proof. ]

REMARK 1. The proof of Theorem B follows easily from the formula

R"CH@) = G

=<z, oy
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where G is a linear combination of the functions g, ..., g,, which was ob-
tained in the proof of Theorem A.

REMARK 2. In case f is holomorphic, in the proof of Theorem A we will
have CG = G, and the argument by slice integration shows that

dt

ArG=mp do({) <o

1A,GE)P
[, Fasow
is a necessary condition that fe BB .
Theorem A’ may be proved in a manner entirely similar to Theorem A; we
omit the details.
3. Proofs of Tangential Results
The following lemma will be needed for the proofs of Theorems C, C’, and E.

LEMMA 1. Let T™ be an operator obtained by composing m of the oper-
ators T; .. Then

1—<¢, m
TMCf@ =6y | T )

(1—(z, &Nn+m
where c,, = (—1)"(I'(n+m)/T(n)T'(m+1)).

do({),

Proof. The proof will be by induction; notice that the case when m =0 is
just the definition of Cf. Assume then that the lemma holds for m. Then

TUCS(@) = [ T Q) o e do()
and therefore
TICH@) = e | TA) (1(1 ;f ;;’f do(5)
= | TGk o do)
—c SS T £(5) (n+n(11)iz2 k;“)})(nlm(j )" do(5),

where if w=(wy,...,w,)e C" then w; ;, denotes the point in C, whose kth
coordinate is w;, whose jth coordinate is — W, and whose other coordinates
are 0. Observe that

(Mm+1)z;, &, YA =L 20" = —(m+ 1) 1, 221 =L 2™
= 7_;,[((1 - <§‘s z))m+ls

where now the operator 7; , denotes differentiation with respect to { instead
of z. It follows that
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m J» k( (g‘; Z>)m+1
f(g_) (1_< g—))n+m+l

(1—=(5, z)m+]
(1—(z, &H)ntm+l
where to obtain the second equality we have integrated by parts accord-

ing to [9, p. 396, eq. (4)], and have also used the fact that 7; , annihilates
(1—<(z, ). This completes the proof. C]

T Cf(z) =c, do({)

”i"f Js7

wit | TaT"() do(5),

We recall the following notation. For 5 € S, S’() will denote the set of points
A on the unit sphere in C" orthogonal to 7, that is, {(\, ) =0. The symbol
do’(\) will denote normalized (27— 3)-dimensional Lebesgue measure on

S'(n).

Proof of Theorem C. Let T* denote an operator obtained by composing
k of the operators T; ;. Then T**! has the form T'T*. By the results []
referred to earlier, it is sufficient to show that there is a constant C such that
the inequality

SB |T*H1Cf(2)|P (1— |z |)PEH+D/2=B)~1 gy (z) < C| T*f]}

pvzﬁ_k

holds for all fe C*(S).
Let z=rn, where e § and 0<r<1. By Lemma 1,

(1= rp)k
(1=Lry, £Y)ntk

where T is one of the operators T; ;. It follows that there is a point w; on
the ball B, satisfying {(wy, ) =0 for which

_ k
(1£ 7 )”,,>1k+1< wis 3 do ().

We again use the parametrization of S given by

F=e(V1=|wl2n—w),

where w ranges over the (2n—2)-dimensional subset of the unit ball, B’(»),
and 0 < ¢ < 2. Recalling that

do($) = —21? dtdv’(w),

TEHCf(rn) = ¢, T L TEF(E) da(f),

T*Cf(rm) = ¢ | TH/()

where dv’ is normalized (27— 2)-dimensional Lebesgue measure on B'(7),
it follows that (1/c,27)T*+'Cf(rn) may be written as

(1—r/1—|w|2eitykre—it

(1 _r\/l_IWIZe—it)n-i-k-i-l

27|" k !
3.1) § S T*F(E) (wy, wy dv'(w) dt.
0 JB(yp)

Since

S (1—r+/1—|w|2eit)kre—it
B (1—r/1—[w|2e-ityn+k+1

w, wydv'(w) =0,
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for each ¢, (3.1) remains unchanged if we replace TXf({) by
T f(§)—T*f(e"n).
Taking absolute value signs inside the integrals therefore gives the estimate
| T**'Cf(ry)|
SZWS [ka(f)—ka(ei’ﬁ)|lW|
0 JBMm |1—r1=[w|2ei|"+!
=CS27r Sl S | T*f(D(e"y, .oe"’k))—T."f(e"’n)lnz"‘2
0o JoJsn [1—r/T—p2e|7+!
where ®(7, w) is given by equation (1.5). Note that
Ag(n, w) =g(®(n, w))—&(n).
Minkowski’s integral inequality implies that

i/p
GSIT"“Cf(rn)l”da(n))

is dominated by a constant times

27 ¢l k £¢ it it RN p p*"2dpdt
So SO(SS(XS'(q)IAT f(e"n, pe"'\)| do ()\)) do(n) |1—ra/1=pZeit|n+1’

<C

dvdt

do’dpdt,

Notice that

. . D

equals
p
k it ’
L(Lf(e—n,,)'” F(n, pe"N)| do (M) do(n)

which, since S’(e"n) = S’(5), is equal to

p
k ’
Iy (I AT M) V) o,

which depends on p but not 7.
Define then

. , p 1/p
Glp) = (L(SS/(,,)'AT f(n, o\)| do (>\)> da(n)) .

It follows therefore that

1/p 27 ol G(p)p2n—2
Tk+l D <C .
(Ssl Crirm da(n)> = jo 50 |1—r/1—p2eit|n+1 dpdt

If we interchange the order of integration and integrate out the variable ¢,
then elementary considerations yield the estimate

1 G(p)p*"~?
o (1—=r)"+4p2n

1/p
(3.2) (SslT"“Cf(rn)lpda(n)) < CS
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Majorize the right-hand side of (3.2) by a constant times the sum
Vi—-r G 1 G
S r G(p) do+ S (0)
0 1—r VI=r  p?
Combine (3.2) and (3.3) to obtain the estimate

3.3) dp.

(3.4) S; LlT"HCf(rn)dea(n)(l—r)P“"“Vz—B)—l dr=C(,+L).

where

o\Jo 1—r

I, = SIG =r _G_(L)dp)p(l_,.)p((k+l)/2—ﬁ)—ld,.

and

/01 G(p) .V
I, = 1 — p)PE+D/2=B)=1 gy
=l S5 00) 00 a

Use Hardy’s inequality to conclude that

1/pT- P
I =S S "G(p)dp) (1—ryPk=0/2=B)-1 g,
o\Jo
=251 g(k—1-28) SS G(p) dp ng
0 0 s

<C Sl sPKk=28)-1G ()P ds,
0

where we have made the substitution s =+/1—r. Argue in a similar fashion
to deduce that

_(r G Y P((k+1)/2-B)~1
I, SOG = 2 dp) (I-r) dr
! _25 (1 G(0) .\ d
o) SO (S(k+1 28) Ss p2 dp) Ss

<C Sl sPK=28)+2p—-1(c=2G(5))P ds
0
1
=C SO sPk=20=1G(5)? ds.
From the definition of G and the fact that 1 < p <o, it follows that

G(S)PSS g |AT*f (5, s\)|? do’(\) do(n).
s Js'(n)
Therefore

1
L+L,<C SD sPk=26)-1 SS sz(n)mrk F(n, sN)|P do’(N) do(z) ds.

If we insert this last estimate into (3.4), we arrive at the conclusion that
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[, T 1CH P (=P EE 20 dy ()

n

is dominated by an absolute constant times
1
plk—2p)-1 k y 2 ke ?
f, s I Sy JATH S (o 5012 o'\ do () ds <[ TH1R

This completes the proof. O
The proof of Theorem C’ proceeds in a similar fashion.

Proof of Theorem C’. Recall that for » and w in S with {n, w) =0 we have

Ag(n, w)=g(®(n, W) +&(2(n, —w)) —2¢g(n),

where & is defined by equation (3). Again, let 7% denote an operator ob-
tained by composing k of the operators 7; ;. Then 7%*2 has the form 727*.
By the results [1] referred to earlier, it is sufficient to show that there is a
constant C such that the inequality

SB |T¥*2Cf (2)|? (1—|z|)P*+D2=0-1 gy (z) < C| T*f |22

P, 28—k

holds for all fe C*(S).

By Lemma 1,
1 , k
Tk+2 Cf(rﬂ) _ Cle TZ SS ka( r) ( (§ rn))

(1— (rna g‘»n+k

where 7} and 7, are chosen among the T; ;. It follows that there are points
w; and w, on the sphere S satisfying (w;, n) =0, i=1, 2, for which

(1—(& )k 2
—(ry, £Y)ntk+2 i1;11<rwi’ $rdo(S).

We will use parametrizations of S given by

t=e'(\1=|w|2y+w) and {'=e’(\1—=|w]2np—w),

where once again w ranges over the (2n—2)-dimensional subset of the unit
ball in C”,

do({),

TIC ) =a [ T

B'(n)={weB,:{w,q) =0},

and 0 < ¢ <2x. Then we may write
do($) = —I——dt dv'(w) and do({’)= —I—dt dv’'(w),
27 27

where dv’ is normalized (2n—2)-dimensional Lebesgue measure on B’(n).
It follows that (1/c,27w)T**2Cf(ry) may be written as either

2% k (1—-’- 1_|w|2ei1)krze—2it 2 )
3.5) go SBI(n)Tf(g‘) (l_r\/__vl_we_it)n”“ TTGwis w dv'(w) dt
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or
27 (1—r/1=|w|?eit)kr2e=2it 2

3.6 Tk 4 w’w d ’ w dt,
G-0) SO SB'(??) f(g.)(l—r\/_l-__leZe—it)n+k+2 Ef is W) dv'(W)
because

2 2

H(wi’ w)= H(W,', —W).

i=1 i=1
Since

1—r/1— w2 eitYkr2e—2it 2
[ Qo LoEeD e wydvon =0,
B'(y) (1 —ra/l _,w|2 e—tt)n+k+2 i=1
for each ¢, (3.5) and (3.6) remain unchanged if we replace TXf(¢) or T¥f(¢”)
by '

T*f()—T f(e"n) or TXf(¢)—T*f(e"n).

Adding the modified versions of (3.5) and (3.6) and taking absolute value
signs inside the integrals therefore gives the estimate

2”5 IAZka(ei"i‘, eitw)”wlz
By |1—r/1—|w|2eit|nt+2
The remainder of the proof follows the path taken in the proof of Theo-

rem C from the point where Minkowski’s integral inequality was applied;
we omit the details. [

dvdt.

| T*+2Cf(rp)| < CSO

We now establish Theorem D, which may be regarded as a converse to Theo-
rems C and C’, at least for functions that are holomorphic on B,,. We will
need to know that certain mappings are uniformly local diffeomorphisms.
To prepare for this we state the following result.

LEMMA 2. Let U:R"— R" be given by
U(x)=x+1tW(x),

where x = (Xxy, ..., X,) and W(x) = (W(x), ..., W,(x)), and suppose that there
exists a constant M such that
ow;

ax;

Jorall j, i, and k between 1 and n. Then there exists a constant e indepen-
dent of W such that, for M|t|<eandye R", U is1:1o0n the ball centered at
y of radius 1/4 and furthermore

|Det U(x)|>1/2

O2W

<M
axkax,-

o]

IWile <M, <M, and

o

for all xe R".

Proof. The proof of the inverse function theorem given in [5] can easily be
modified to yield the lemma. [
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Proof of Theorem D(a). Suppose that Fe Bf and k/2 <. Since p >1 and
since Bf € Hf for p <2, it follows that Fe H} and therefore R*/>Fe H'. By
the results in [1] it follows that, if 7% is an operator obtained by composing
k of the T; ;, then T*F has admissible limits a.e. do and the boundary func-
tion of T*Fis in L!(do). Since F, converges to F in Bé’ , it is therefore enough
to prove the inequality

: ’ dp 148
XO SS SS,M)IAF(TI, P)\)IP do ()\) dO'(’I]) m < C"R + 1;'"5’19_‘1

for all functions F which are holomorphic on a neighborhood of B,.
Assuming then that F is holomorphic on a neighborhood of the closure
of B, write

(B.7) TFF(/1—p2n+pN)—T*F(n) =I1,(n, p\) + Ip(n, p\) + I3(n, o)),

where

(3.9 Lin, N = [ = TR T= 971+ 90) d,

(3.9) Ln, N = -5‘; TEF(s(\/T= p2n+ p\)) ds,
19 .

(3.10) Iy(n, p\) = — S s TXF(sn) ds,

and r is a function of p that we will choose later. If we set

®(n, w) = N1=|w|2n+w

as before, it is not hard to show from (3.8), (3.9), and (3.10) that

[Ii(n, M) < C || XF(r(@(n, M) d,

I12(n, 00| = C [ 1YF(s(@(n, 9] ds,

and
1
1 I(7, oN)| < CSrIZF(sn)I ds,

where, in the terminology of [1], X is a differential operator of “weight”
(k+1)/2 and Y and Z are differential operators of weight (k+2)/2.

For each fixed value of 54 on § we may find a neighborhood N of 5, for
which it is possible to choose n—1 smooth functions w;(), j=1,...,n—1
such that for each ne N the set {w;j(y):j=1,...,n—1} is an orthonormal
basis for C"©nC. If 5 belongs to N then it follows that S’(») may be pa-
rametrized by

n—1
MO =M(®) = 3 Gy,
J=
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where
E= (519 cesy En—]) € Szn—3'
We may therefore write

n—1
Vin, 08) = V1—929+¢ X £ w;i(y),
j=1
and assert that with w= ¢\

S(n,w)=V(n,7), 7=0¢¢.

Fixing 7, we may apply the result of Lemma 2 to the map V by letting
¢/~/1—¢2 play the role of  and X7Z{ £;w;() play the role of W and con-
clude that there are constants §;, §,, and C such that for any 5, on S it is
possible to choose N so that N contains all points ¢ on the sphere satisfying
|¢ —n| <6, and for this NV and all |7| < é, the measure V,(do) defined on
V(N) by

Vildo)(E)=o(V Y(E))
is given by the equation
Vi(do)($)=H($) do(S),

where |H |, =<C.
Cover the sphere S with finitely many neighborhoods Ny, ..., N,,, where
each N, is as the neighborhood N described above. Then for j=1,..., 3,

. ?dg’
[ J| i 2017 o’ (M) diotn)
is less than a finite sum of the integrals

|1(n, N)|P do’(N) do()
(3.1 SN’ ] @
=], ], Juex@I dotn do'(d),

where A(£) (which depends on /) is the function defined above. If j =1, the
(1/p)th power of (3.11) is bounded by a constant times

I/p
ij S | XE(r(®(n, &N(£)))|? do(n) da'(g)> do.
San—3 JN;

0

Changing variables with the help of the remarks based on Lemma 2 allows
us to conclude that there is a constant C such that for ¢ <§,,

| IXFer@, oMeM|Pdotn) = | | XF(r(v(n, 7)|? dotn)
Ny Ny
= EV(NI)IXF(I‘W)I”V;(dG)(n)

< CSSIXF(rn)lp do(n).
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Thus, for p < 8,, the (1/p)th power of (3.11) is bounded by a constant times
o , 4 1/p o , 1/p
(1, Jxrewrdsnar®)” as= (] 1xmiparw) 4
= P" XFr "p
If j =2 a similar argument yields a bound on the (1/p)th power of (3.11) of

1
cS |YF,], ds.
r
For j =3 the conclusion that the (1/p)th power of (3.11) is bounded by

1
c| 1z, ds
is immediate.
Recall that
ATKF (9, pA\) =T*F(\/1—p2n+ p\) —TkF(n).

Then from (3.7), the estimates just discussed, and the fact that it is behavior
near p =0 which is important, it follows that
1 dp
k D ’ - -
go gs SS'(W)IAT £(n, p)\)l do’(\) do(n) p1+p(25—k)

is bounded by a constant times the sum

1 1 1 d
[o o101 x5 g e[| o973 (YR +1 28 ds) o

Recall that r was an arbitrary function of p. We choose r=1-—p? and
write the last two integrals in terms of r and get 1/2 times the sum
1 (k+1)/2—8)—1 1 k/2—-8) (1 ’ dr
[ a=n SXE N dr+ | (1-r)®2=0 | |YE, +|2F,], ds) {7~
; —
Apply Hardy’s inequality to the second term and deduce that the last sum is
bounded by a constant times

1 1
Sou — r)Pk+D2=B=1) X |2 g 4 So(l —r)yP kD2~ =V YF 1b | ZF |2 dF.

Since X has weight (k+1)/2 and both Y and Z have weight (k+2)/2 and
since 8< (k+1)/2, it follows from [1] that the last sum is dominated by a
constant multiple of [R'*#F |2 ,_,. This concludes the proof. O

Proof of Theorem D(b). We note again that it is enough to prove the in-
equality

1 dp
SO L Lm |2F (n, N)IP do’(N) o) =y < CIR'PF IS
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for all functions F which are holomorphic on a neighborhood of B,. Write
(3.12) AT F(n, pN) = I (n, o0N) + I (1, p\),

where
I;(n, pA) = A*T*F, (n, p\)
and

Lo(n, o) = | - (THF(s(@(, )+ THF(s(B(n, —p\) 2T F (s () s,

and r is a function of p that we will choose later. Then
é 2
[0 L TR @, 0N) dodo,

nmen={"{" <

and it can be seen that

prod
OBl i S_¢|XF,(<I>(7;, ON))| do d,
where X is a differential operator of weight (k+2)/2. It also can be seen
that |Z,(n, p\)| is dominated by a sum of the terms

S:IYF(S@(% S\)))| ds,

[ 127 (@0, ~pa] ds,
and

1
fr |WF(sn)|ds,

where Y, Z, and W are also differential operators of weight (k+2)/2.

Once again cover the sphere S with finitely many neighborhoods Ny, ...,
N,,, where each N, is as the neighborhood N described in the proof of Theo-
rem D(a). Then for j=1,...,4,

[ S | MNP o’ V) o)

is less than a finite sum of the integrals

L Loy 1 0100
(3.13)
={,, ] itn oMENIP do ) do'(8).

If j =1, the (1/p)th power of (3.13) is bounded by a constant times

0

p (o 1/p
I (j | IXF(r(q’(n,97\(2))))|"d0(n)dcr’(E)) do ds.
—9\JS2,-3 N
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It follows as before that the (1/p)th power of (3.13) is bounded by a con-
stant times

Sp 51(552’1_3 SSIXF(rn)IP da(n) dcr’(E))l/p dod¢

0

il

5 (1, 1xmip ) ads

={7{" 1xF., doas

= Co?| XF,|,.

For j=2,...,4, similar arguments yield successive bounds on the (1/p)th
power of (3.13) by

1
c| I¥Fl, ds,
r

1
c| 1zF,, ds
r
and

1
c| wE, ds.

Therefore, from (3.12) and the estimates just discussed it follows that

! k , dp
So Ss Ss'(,,)IAZT Fn, pMI” do’(N) do(n) p1+P26—H)

is bounded by a constant times the sum
1 1 1 p
J, PP * O XE p do+ | pp“‘—”’—‘(f G(s) ds) dp,
r

where G(s) =|YF;|,+|ZF;|, +|WF;| ,- We now choose r =1—p? and write
the last two integrals in terms of r and get 1/2 times the sum

1 1 1 P d
j (1—r)Pk+2/2-6)=1) X[ | dr+5 <(1—r)(’</2—ﬂ)g G(s) ds> .

0 0 r 1—r
Since k/2 < 3, we may apply Hardy’s inequality to the second term and
deduce that the last sum is bounded by a constant times the sum

1
Xo(l_r)p«k”)/z—m—l"XF”Hg dr

1
+ [ A= PP & DD Y |2+ | ZF [+ W, 12) dr.

Since X, Y, Z, and W have weight (k+2)/2 and since B < (k+2)/2, it
follows from [1] that the last sum is dominated by a constant multiple of
IR'*BF|& .. This concludes the proof. O
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The remainder of the paper is concerned with the proof of Theorem E. We
require some preliminary groundwork.

LEMMA 3 (Krein). Let H be a Hilbert space with inner product {, ). Sup-
pose that Y is a dense subspace of H and that there is a norm | ||y defined on
Y which makes Y a Banach space and for which the inclusion map i: Y - H
is bounded. Let T and T* be operators defined and bounded on (Y, | |y) sat-
isfying the relation {Tx,y) ={x,T*y) forallx,ye Y. Then T and T* extend
to be bounded operators on H.

Proof. Suppose that xe Y. Then
| Tx|% = <Tx, Tx)
={x,T*Tx)
<[ x| |T*Tx|4.
If we square both sides of the last inequality, we get that
2
| Tx\E < | xIE | T* Tl
= x| <x, (T*T)%x)
2_ *
<|xIE~ ' (T*T)’x| 4
Squaring once more gives
3 3
| T\ <|xl7 2 NT*T)* x|}
3
=|x1% 2 U(T*T)Yx, (T*T)*x)
=[x ~2¢x, (T*T)*(T*T)%x)
3 2
<|xIE ' T*T)* x| .
In general the following relation holds:
n n__ * n—1
| Tx)5 < )xI5 ' (T*T)*" x|n.

Since i: Y — H is continuous, there is a constant C such that | x|z < C|x|y
for all x € Y. Therefore

n n n—1
| TxlE < Clxlg ' (T*T)* x|y
Let |7*T| denote the | |y norm of the operator T*7. It follows that
n n—1 n_
| Tx|Z < CI(T*D* x5 x|y

Taking (2")th roots of both sides of the last inequality and letting » go to «
gives
|Tx ] < (T | x5

This completes the proof. L]

Notice that the proof also gives the relation

|T|,, <I(T*T)|¥>
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For m=0,1,... and fe L?(do) define

(A=<, ¢y 4o

LEMMA 4. There is a constant C= C(m) such that

sup | [Hf(rm)]? do(n) = CI /1.

o<r<l

Hf(2)=H, f(2)={ /()

Proof. For 0<r<1 and a fixed m let H, (=(H,,),) be the operator H,:
L? - [? defined by
(1 - (g's "ﬂ))m
H = d .
S ={ @) T oy )
We must find a constant C(m) such that | H, | < C(m). Notice that H, = H*.
By the inequality given at the end of the proof of Lemma 3, it is therefore
sufficient to prove that there is a constant C such that

|15, fly=Clfly

for all fe Y, where Y is some Bdnach space continuously contained in Z2(do)
which is also dense in L?(do). We choose Y to be a Lipschitz space. Fix an «
between 0 and 1 and let A denote the space of functions continuous on S
satisfying

(3.14) |f()=f(m)] = C[¢—n|*.
Norm A by

| la=1/1w+Cs,

where Cy is the infimum of all C satisfying (3.14). Let G denote any first-
order derivative (d/dz; or 8/dz;) of Hf(z). It is enough to show that there
is a constant C(m) such that

|G(2) = Cm)|fla(1—]z]y*~".
Write z = ry where |y|=1. Then either

(1—<5 )™
(1—(z, {H)rtm

Ga)=|_ /() da({)

or
(1-45,2)"S;

(] — (Z, g-))n+m+1

for some j, where we have ignored harmless factors. Both expressions can

be handled in the same way; we consider only the second one. As in the
proof of Theorem C, use the parametrization

F=e"(V1=[wln+w)

G(z) = §S f() do (),

to write
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1 p2r f(YA—r/1—=|w|2eit)m{; )
(3.15) G(z)=S S , dtdv'.
B 2w Jo  (1—r~f1—|w|2e—it)yn+m+1
It can be verified that
S (a-r [v] e.) ¢ dt| < C(m),
0 (l—r\/l_IWIZQ—U)n+m+1

where C(m) is independent of 5, r or w. Proceed as in [3] and replace f({)
in (3.15) by the difference f(¢)—f(e~*¢). Since f(e~#¢) depends only on w
and not ¢, this introduces a bounded error term and yields the estimate

2r — —it
(3.16) |G(z)|sC(m)Ilfi|m+CSB’(n) SO |15?ﬁ%e21+1 dtdv'.

Since fe A, (3.14) and (3.16) imply that

617 16@ISCmIIa Ol [, |0 i i

Working with the second term in (3.17), we calculate that

L/( ) SZW [1]° ahahﬂ:Cﬁ’r Sl N dp dt
7

0 |1—r/1=|w[Zeit|n+1 0 [1—ra/1—pZeit|n+!

<cf' —2 4
B So (1—r)2+1¢2
_<_C(1——r)““.

Inserting this estimate into (3.13) gives the desired estimate and completes
the proof. 1

We will actually need to know that the operator H is bounded from L? to
L? when 1 < p < oo; that is, there is a constant C = C(m, p) such that

sup | |Hf(ro)|? do(n)= C|S15-

O0<r«li
To this end we state the following lemma.
LEMMA 5. Suppose ¢,n,we S, a>1, [1—=(& |2 <8, |1 —(w, H]VY2 =26,
and |1—<z, w)| < a/2(1—|z|?). Let C,,(z, ¢) be the kernel

(1 - <z9 f))n+m .

Then there is a constant C(a) such that

|Con(25 §) = Cpu(z, )| = C() 8]1— <, $H[ "7V,

Cn(z,$)=

Proof. The proof given in [9] for the case where m = 0 can be easily adapted
to work for the general case where m is a nonnegative integer. Ol
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LEMMA 6. There is a constant C(p, m) such that for 1< p<oco,

sup | |HSf(rn)|” do(n) = CL715.

O<r«li

Proof. The proof proceeds along the lines of the argument given in [9, Thm.
6.2.2]. The only difference is that instead of considering the maximal func-
tion M, H[g] it is enough to work with |H,[g]| and apply the L? result given
by Lemma 4. L]

We can now prove Theorem E.

Proof of Theorem E. By the results of [1], it is enough to show that the
radial maximal function of the tangential derivative 7*Cf is in L?. If we use
Lemma 1 it follows that 7*Cf = Hg for an L? function g. Apply Lemma 6
to deduce that

sup | |TCS(rm)|? do(n) = Clgl.
0<r<19s

Now use the fact that 7%Cf is a harmonic function (see [1]) to conclude that

its radial maximal function is in L”. This completes the proof. EI
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