Isomorphic Operator Algebras and Conjugate Inner Functions

T. B. HOOVER

I. Introduction

Let D denote the open unit disk in the complex plane, $D = \{z : |z| < 1\}$, and let m be normalized arclength measure on the boundary ∂D of D. If ϕ is a nonconstant inner function on D, then $C = C_{\phi}$ denotes the composition operator on $H^2 = H^2(D)$ determined by $\phi - C_{\phi}(f) = f \circ \phi$. Here \circ denotes function composition. That C_{ϕ} is bounded is proven in [7; 8]. The operator C_{ϕ} does not tell everything about the analytic function ϕ . Indeed, if e_n is the function $e_n(z) = z^n$, then $C_{e_n}(e_m) = e_{nm}$ so that, for n > 1, C_{e_n} is the direct sum of a 1-dimensional identity operator and a pure isometry of infinite multiplicity. As such, they are all unitarily equivalent to each other. On the other hand, e_n covers the disk n times so that these functions are not the same.

Each f in H^{∞} defines the analytic Toeplitz operator T_f on H^2 by $T_f(h) = fh$. Let $\mathbf{A} = \mathbf{A}_{\phi}$ denote the norm closed algebra generated by C_{ϕ} and all the analytic Toeplitz operators. Note that $C_{\phi}T_f = T_{f \circ \phi}C_{\phi}$, so that \mathbf{A} is commutative just in case ϕ is the identity function $\phi(z) = z$. From here on, the same notation will be used to denote the H^{∞} function, its boundary function, its Toeplitz operator, and even its Gelfand transform. This convention is convenient and will cause no confusion.

Two inner functions ϕ and ψ are conjugate if there is an analytic homeomorphism τ of D satisfying $\tau \circ \psi = \phi \circ \tau$. We prove the following:

THEOREM 1. If ϕ and ψ are nonconstant, nonperiodic inner functions, then they are conjugate if and only if the algebras \mathbf{A}_{ϕ} and \mathbf{A}_{ψ} are isomorphic.

Here, ϕ is periodic if $\phi^{(n)}(z) = z$, where $\phi^{(n)}$ denotes the *n*-fold iterate of ϕ . The analytic homeomorphisms of D are the Möbius transformations

$$\tau(z)=c\frac{z-a}{1-\bar{a}z},$$

where |a| < 1 and |c| = 1. Theorem 1 is just the analytic version of what is done in [1; 2; 4; 5] for composition operators on L^2 spaces.

If τ is a homeomorphism as in the theorem, then $C_{\tau}C_{\phi}C_{\tau}^{-1}=C_{\psi}$ and $C_{\tau}fC_{\tau}^{-1}=f\circ\tau$, so that the map $\Gamma(a)=C_{\tau}aC_{\tau}^{-1}$ is an isomorphism of \mathbf{A}_{ϕ}

Received July 23, 1990. Revision received July 3, 1991. Michigan Math. J. 39 (1992).

onto A_{ψ} . The interesting part of the theorem, then, is in the other direction. We must first study the algebra A_{ϕ} more carefully.

II. The Algebra A

The measure $m \circ \phi^{-1}$ given by $m \circ \phi^{-1}(E) = m(\phi^{-1}(E))$ is absolutely continuous with respect to m, and

$$\frac{dm \circ \phi^{-1}}{dm} = P_{\phi(0)}(z) = \operatorname{Re}\left(\frac{z + \phi(0)}{z - \phi(0)}\right)$$

is the Poisson kernel for evaluation at $\phi(0)$ [7]. Let h(z) be the reciprocal of the normalized Cauchy kernel:

$$h(z) = \frac{1 - \overline{\phi(0)}z}{(1 - |\phi(0)|^2)^{1/2}}.$$

Then h and h^{-1} are in H^{∞} , and $|h|^2 = (P_{\phi(0)})^{-1}$ almost everywhere on ∂D . For any measurable function f on ∂D , $\int |h|^2 \circ \phi f \circ \phi \, dm = \int f \, dm$ and $U = U_{\phi} = T_{h \circ \phi} C_{\phi}$ is an isometry. If f is in H^{∞} then so is $C_{\phi}(f)$. Since $m \circ \phi^{-1}$ is not only absolutely continuous but also equivalent to m, C_{ϕ} is an isometry on H^{∞} . Note that the set of operators of the form $\sum_{n=0}^{N} f_n U^n$, with f_n in H^{∞} , is dense in A. These operators will be called polynomials. Clearly $(C_{\phi})^n = C_{\phi}(n)$. On the other hand,

$$(U_{\phi})^n = \left(\prod_{k=1}^n T_{h \circ \phi^{(k)}}\right) C_{\phi^{(n)}},$$

which is generally not the same as $U_{\phi}^{(n)} = T_{h_n \circ \phi}^{(n)} C_{\phi}^{(n)}$ where h_n is the outer function satisfying

$$|h_n| = \left\lceil \frac{dm \circ \phi^{-(n)}}{dm} \right\rceil^{-1/2} = [P_{\phi^{(n)}(0)}]^{-1/2}$$

almost everywhere on ∂D .

Let Σ denote the σ -algebra of Borel subsets of ∂D and $\Sigma_n = \phi^{-(n)}(\Sigma) = \{\phi^{-(n)}(S) : S \in \Sigma\}$, and let E_n denote the conditional expectation given Σ_n . So if f is any positive or integrable function on ∂D , then $E_n(f)$ is Σ_n measurable and $\int_S E_n(f) \, dm = \int_S f \, dm$ for each S in Σ_n . If f is Σ_n measurable then $E_n(fg) = fE_n(g)$ for any function g. Also, $E_n(f)$ is positive whenever f is positive, and $||E_n(f)||_{\infty} \le ||f||_{\infty}$ if f is bounded. There is a function g satisfying $f = g \circ \phi^{(n)}$ if and only if $E_n(f) = f$, and in this case g is unique up to a set of measure 0. We shall write $g = f \circ \phi^{-(n)}$.

PROPOSITION 2.

1.
$$E_n \left(\prod_{k=1}^n |h \circ \phi^{(k)}|^2 \right) = \left(\frac{dm \circ \phi^{-(n)}}{dm} \circ \phi^{(n)} \right)^{-1}$$
.

2. If f is in H^2 , then fU^n defines a bounded operator if and only if $E_n(|f|^2)$ is bounded and

$$||fU^n||^2 = ||E_n(|f|^2 \prod_{k=1}^n |h \circ \phi^{(k)}|^2) \frac{dm \circ \phi^{-(n)}}{dm} \circ \phi^{(n)}||_{\infty}.$$

Proof. 1. Both U^n and $U_{\phi}^{(n)}$ are isometries, so if $S \in \Sigma$ then $||U^n(\chi_S)||^2 = ||U_{\phi}^{(n)}(\chi_S)||^2 = m(S)$. That is,

$$\int \left(\prod_{k=1}^{n} |h \circ \phi^{(k)}|^2 \right) \chi_{\phi^{-(n)}(S)} dm = \int \left(\frac{dm \circ \phi^{-(n)}}{dm} \circ \phi^{(n)} \right)^{-1} \chi_{\phi^{-(n)}(S)} dm$$

as desired.

2. Suppose f is in H^2 . Since $|h|^2$ and $dm \circ \phi^{-(n)}/dm$ are just Poisson kernels, there are constants K_1 and K_2 such that

$$|K_1|f|^2 \le |f|^2 \prod_{k=1}^n |h \circ \phi^{(k)}|^2 \frac{dm \circ \phi^{-(n)}}{dm} \circ \phi^{(n)} \le |K_2|f|^2.$$

This and the fact that E_n preserves inequalities yields that $E_n(|f|^2)$ is bounded if and only if

$$E_n\left(|f|^2\prod_{k=1}^n|h\circ\phi^{(k)}|^2\right)\frac{dm\circ\phi^{-(n)}}{dm}\circ\phi^{(n)}$$

is. If $g \in H^2$ then

$$||fU^{n}(g)||^{2} = \int |f|^{2} \prod_{k=1}^{n} |h \circ \phi^{(k)}|^{2} |g \circ \phi^{(n)}|^{2} dm$$

$$= \int E_{n} \left(|f|^{2} \prod_{k=1}^{n} |h \circ \phi^{(k)}|^{2} \right) |g \circ \phi^{(n)}|^{2} dm$$

$$= \int E_{n} \left(|f|^{2} \prod_{k=1}^{n} |h \circ \phi^{(k)}|^{2} \right) \circ \phi^{-(n)} \left(\frac{dm \circ \phi^{-(n)}}{dm} \right) |g|^{2} dm$$

$$\leq \left\| E_{n} \left(|f|^{2} \prod_{k=1}^{n} |h \circ \phi^{(k)}|^{2} \right) \circ \phi^{-(n)} \left(\frac{dm \circ \phi^{-(n)}}{dm} \right) \right\|_{\infty} ||g||_{2}^{2}$$

$$= \left\| E_{n} \left(|f|^{2} \prod_{k=1}^{n} |h \circ \phi^{(k)}|^{2} \right) \left(\frac{dm \circ \phi^{-(n)}}{dm} \circ \phi^{(n)} \right) \right\|_{\infty} ||g||_{2}^{2}.$$

The last equality follows because C_{ϕ} is an isometry on H^{∞} . This shows that

$$||fU^n||^2 \le ||E_n(|f|^2 \prod_{k=1}^n |h \circ \phi^{(k)}|^2) \frac{dm \circ \phi^{-(n)}}{dm} \circ \phi^{(n)}||_{\infty}.$$

To show equality, pick g in H^2 so that |g| approximates, in the L^2 sense, the characteristic function of the set on which

$$E_n\left(|f|^2\prod_{k=1}^n|h\circ\phi^{(k)}|^2\right)\circ\phi^{-(n)}\left(\frac{dm\circ\phi^{-(n)}}{dm}\right)$$

is almost its maximum.

We next define coordinate maps Π_n on **A** such that $\Pi_n(\sum_{k=0}^N f_k U^k) = f_n$. Since fU^n may be a bounded operator even if f is not a bounded function, it

is necessary to define coordinate spaces that may be larger than H^{∞} . Let $K_n = \{ f \in H^2 : E_n(|f|^2) \in L^{\infty} \}$ and $|||f|||_n = ||fU^n||$.

PROPOSITION 3. For each n, K_n is a Banach space, $H^{\infty} \subseteq K_n \subseteq K_{n+1} \subseteq H^2$, and the inclusion operators are bounded.

We let K_0 be H^{∞} , E_0 the identity operator, and $\| \|_0 = \| \|_{\infty}$.

PROPOSITION 4. If ϕ is not periodic, then for each n = 0, 1, 2, 3, ... there is a map Π_n from \mathbf{A} to K_n such that $\|\Pi_n(a)\|_n \leq \|a\|$ and $\Pi_n(\sum_{k=0}^N f_k U^k) = f_n$.

Proof. It suffices to show that $||f_n||_n \le ||\sum_{k=0}^N f_k U^k||$. Let $a = \sum_{k=0}^N f_k U^k$. If, for some n, $\{z : |z| = 1, \phi^{(n)}(z) = z\}$ has positive measure, then $\phi^{(n)}(z) = z$ for almost all z on ∂D . This case has been excluded. Consequently, the set of fixed points of $\phi^{(n)}$ on ∂D has measure zero; that is, ϕ is aperiodic. As in Halmos [6], if $E \subseteq \partial D$ with m(E) > 0 and if k is a natural number, then there is a subset E of E with E with E with E such that the sets E is a natural number, and E is a natural number, then there is a subset E of E with E with E such that the sets E is a natural number, then there is a subset E of E with E is a natural number, then there is a subset E of E with E is a natural number, then there is a subset E of E with E is a natural number, then there is a subset E of E with E is a natural number, then there is a subset E of E with E is a natural number, then there is a subset E of E with E is a natural number, then there is a natural number, then the natural number is a natural number.

Let

$$E = \left\{ z : |z| = 1, \left(E_n \left(|f|^2 \prod_{i=1}^n |h \circ \phi^{(i)}|^2 \right) \right)^{1/2} \circ \phi^{(-n)} \left(\frac{dm \circ \phi^{-(n)}}{dm} \right)^{1/2} > |||f_n|||_n - \epsilon \right\}$$

Now pick $F \subset E$ and m(F) > 0 such that the sets $\phi^{(-k)}(F)$ are pairwise disjoint for $1 \le k \le N$. The operator a can act on $L^2(m)$ as well as H^2 . We temporarily use $\|a\|_L$ and $\|a\|_H$ to denote the norms of these two operators. Pick g in $L^2(m)$ such that $\|g - \chi_F\| \le \epsilon/\|a\|_L$, $\|g\| \le \|\chi_F\|$, and $z^s g \in H^2$ for some s. Then

$$(\|f_n\|_n - \epsilon)^2 \|\chi_F\|^2 \le \int \left(E_n \left(|f|^2 \prod_{i=1}^n |g \circ \phi^{(i)}|^2 \right) \right) \circ \phi^{(-n)} \left(\frac{dm \circ \phi^{-(n)}}{dm} \right) \chi_F dm$$

$$= \int E_n \left(|f_n|^2 \prod_{i=1}^n |g \circ \phi^{(i)}|^2 \right) \chi_F \circ \phi^{(n)} dm$$

$$= \int |f_n|^2 \prod_{i=1}^n |g \circ \phi^{(i)}|^2 \chi_F \circ \phi^{(n)} dm$$

$$\le \int \sum_{k=0}^N |f_k|^2 \prod_{i=1}^k |g \circ \phi^{(i)}|^2 (\chi_F \circ \phi^{(k)}) |(\phi^{(k)})^s|^2 dm$$

$$= \int \left| \sum_{k=0}^N f_k \prod_{i=1}^k g \circ \phi^{(i)} (\chi_F \circ \phi^{(k)}) (\phi^{(k)})^s \right|^2 dm$$

$$= \int |a(z^s \chi_F)|^2 dm = \|a(z^s \chi_F)\|^2 \le (\|a(z^s g)\| + \epsilon)^2$$

$$\le (\|a\|_H \|z^s h\| + \epsilon)^2 = (\|a\|_H \|g\| + \epsilon)^2$$

$$\le (\|a\|_H \|\chi_F\| + \epsilon)^2.$$

Here, the two sums are equal because the function $\chi_F \circ \phi^{(k)}$ is supported on $\phi^{-(k)}(F)$, and these sets are disjoint.

PROPOSITION 5. If ϕ is not periodic, then the coordinate maps satisfy the product rule

$$\Pi_k(ab) = \sum_{i=0}^k (\Pi_i(a))(\Pi_{k-i}(b) \circ \phi^{(i)}).$$

Proof. This identity is true if a and b are polynomials. That it is true for all a and b follows by continuity.

PROPOSITION 6. The closed ideal of **A** generated by U^{n+1} is $\bigcap_{i=0}^{n} \ker \Pi_{i}$.

Proof. That the intersection of these kernels is a closed ideal that contains U^{n+1} follows from the product rule and the continuity of the Π_i . Conversely, suppose $\Pi_i(a) = 0$ for $i \le n$. Let p_k be a sequence of polynomials in **A** that converges to a; then $p_k - \sum_{i=0}^n \Pi_i(p_k)U^i$ is in the ideal generated by U^{n+1} and converges to a. Thus a is in the ideal generated by U^{n+1} .

It is necessary to examine the multiplicative linear functionals on **A**. Let M denote the space of nonzero multiplicative functionals on **A**, and let Δ be the maximal ideal space of H^{∞} . We will think of D as a subset of Δ and write f(z) instead of z(f). For $z \in \Delta$, let $M_z = \{\alpha \in M : \alpha(f) = f(z) \text{ for all } f \text{ in } H^{\infty}\}$. If ϕ is not periodic then no M_z is empty. Indeed, if α_z is defined by $\alpha_z(a) = \Pi_0(a)(z)$, then α_z is in M_z .

The inner function ϕ can be extended from D to a transformation of Δ as follows. If f is in H^{∞} , let $T(f) = f \circ \phi$, and let T^* be the adjoint transformation of T. Then, if $z \in \Delta$ and f and g are in H^{∞} , it is easily verified that $T^*(z)(fg) = T^*(z)(f)T^*(z)(g)$ so that T^* maps Δ to Δ , and if z is in D then $T^*(z)(f) = z(f \circ \phi) = f(\phi(z))$ or $T^*(z) = \phi(z)$. The restriction of T^* to Δ is the desired extension of ϕ and will be called ϕ as well.

Let A_r denote the disk algebra on the closed disk $\bar{D}_r = \{|z| \le r\}$; A_r is thus the uniform closure of the polynomials in the algebra of all continuous functions on \bar{D}_r . We write A for A_1 , and A_0 is just the field of complex numbers.

PROPOSITION 7. Suppose that ϕ is not periodic.

- (a) If $z \in \Delta$ and $\phi(z) \neq z$, then $M_z = \{\alpha_z\}$.
- (b) If $z \in \Delta$ and $\phi(z) = z$, then there is an r $(0 \le r \le 1)$ and a bounded algebra homomorphism ρ_z of \mathbf{A} to A_r such that $\alpha \in M_z$ if and only if there is a ξ in \bar{D}_r such that $\alpha(a) = \rho_z(a)(\xi)$ for all a in \mathbf{A} .
- (c) If $z \in D$ and $\phi(z) = z$, then r = 1 and ρ_z maps onto A.

Proof. (a) If z is not a fixed point of ϕ , then pick f in H^{∞} with $f(z) \neq f(\phi(z))$. Then, for $\alpha \in M_z$, $\alpha(U) f(z) = \alpha(U) \alpha(f) = \alpha(Uf) = \alpha((f \circ \phi) U) = \alpha((f \circ \phi) \alpha(U)) = f(\phi(z)) \alpha(U)$. Thus $\alpha(U) = 0$. So α agrees with α_z on sums of the form $\sum_{i=0}^{n} f_i U^i$. But such sums are dense in A, so $\alpha = \alpha_z$.

(b) Suppose z is a fixed point of ϕ . Let $r = \sup\{|\alpha(U)| : \alpha \in M_z\}$. Since M_z is compact, there is a β in M_z such that $|\beta(U)| = r$. If f is in H^{∞} , then $fU^n \in \mathbf{A}$ and $|f(z)|r^n = |\beta(fU^n)| \le ||fU^n|| = ||f||_n$. Suppose $|\xi_0| < r$. If $a = \sum_{n=0}^{N} f_n U^n$, then $||f_n||_n \le ||a||$ and

$$\left| \sum_{n=0}^{N} f_n(z) \xi_0^n \right| \leq \sum_{n=0}^{N} |f_n(z)| |\xi_0|^n \leq \sum_{n=0}^{N} ||a|| \left(\frac{|\xi_0|}{r} \right)^n \leq \frac{||a||}{1 - |\xi_0|/r}.$$

Hence the map $\alpha(\sum_{n=0}^N f_n U^n) = \sum_{n=0}^N f_n(z) \xi_0^n$ extends to all of **A**. Clearly $\alpha \in M_z$ and so $\|\alpha\| = 1$. If $\rho_z(\sum_{n=0}^N f_n U^n)$ is the polynomial in $\xi \sum_{n=0}^N f_n(z) \xi^n$, then $\rho_z(\sum_{n=0}^N f_n U^n)(\xi_0)$ is just $\alpha(\sum_{n=0}^N f_n U^n)$. Consequently

$$\left\|\rho_z\left(\sum_{n=0}^N f_n U^n\right)\right\| \leq \left\|\sum_{n=0}^N f_n U^n\right\|,$$

where the former norm is the supremum on D_r ; thus ρ_z extends to be continuous on all of **A**. Note that the set $\{\alpha(U): \alpha \in M_z\}$ is closed and so must be \bar{D}_r .

(c) If $z \in D$ is a fixed point then r = 1. Indeed, if |z| < 1 then evaluation at z has norm $(1-|z|^2)^{-1/2}$ as a linear functional on H^2 . Thus, if $a = \sum_{n=0}^{N} f_n U^n$ is in **A**, then

$$\begin{split} \sum_{n=0}^{N} |f_n(z)| |\xi|^n &\leq \sum_{n=0}^{N} ||f_n||_2 (1-|z|^2)^{-1/2} |\xi|^n \\ &\leq \sum_{n=0}^{N} ||f_n||_n (1-|z|^2)^{-1/2} |\xi|^n \leq ||a|| (1-|z|^2)^{-1/2} \sum_{n=0}^{N} |\xi|^n. \end{split}$$

Hence the map $a \to \sum_{n=0}^{N} f_n(z) \xi^n$ extends to **A** as long as $|\xi| < 1$. Therefore r = 1. It remains to show that ρ_z maps **A** onto **A**. But if g is in **A** then g(U) is defined by the functional calculus, g(U) is in **A**, and $\rho_z(g(U)) = g$.

The map $z \to \alpha_z$ naturally imbeds Δ as a subset of M. Similarly, if z is a fixed point of ϕ such that the "radius" r of M_z is positive, then part (b) of Proposition 7 identifies M_z with the disk \bar{D}_r . So M is the union of disks, one of which looks like Δ and the others like true disks \bar{D} . Furthermore, A acts as an algebra of analytic functions of these disks, like H^{∞} on Δ and like A on the others.

DEFINITION. A subset C of M is an analytic disk for A if

- (a) C is the closure of its interior, and
- (b) if $a \in A$ and $\alpha(a) = 0$ for all α in some nonempty open subset of C, then $\alpha(a) = 0$ for all α in C.

PROPOSITION 8. The maximal analytic disks in M are Δ and those M_z with positive radius.

Proof. That Δ and the nontrivial M_z are analytic disks is clear. Since U vanishes only on Δ and $z-z_0$ vanishes only on M_{z_0} , these are maximal analytic

disks. If C is any analytic disk, then the interior of C must have nontrivial intersection with the interior of either Δ or one of the M_{z_0} . In the first case U must vanish on C, in the latter case $z-z_0$ does. In either case, C must be contained in one of the indicated disks.

III. Proof of Theorem 1

Suppose ϕ and ψ are two aperiodic inner functions and Γ is an algebra isomorphism from \mathbf{A}_{ϕ} to \mathbf{A}_{ψ} . Let M and N denote the spaces of multiplicative functionals on \mathbf{A}_{ϕ} and \mathbf{A}_{ψ} . Then Γ induces a map γ from N to M given by $\alpha(\Gamma(a)) = \gamma(\alpha)(a)$. The map γ is a homeomorphism since the topologies on M and N are determined by their corresponding algebras. The defining equation for γ shows that it maps analytic disks to analytic disks. In particular, $\gamma(\Delta)$ is a maximal analytic disk in M. But since no $M_z = \overline{D}_r$ is homeomorphic to Δ , it must be that $\gamma(\Delta) = \Delta$. That is, if Π_n denotes the nth coordinate map for both \mathbf{A}_{ϕ} and \mathbf{A}_{ψ} , and if (for w in Δ) β_w is the functional in N given by $\beta_w(b) = \Pi_0(b)(w)$, then there is a $z = \tau(w)$ in Δ such that $\gamma(\beta_w) = \alpha_z$. So for a in \mathbf{A}_{ϕ} , $\beta_w(\Gamma(a)) = \alpha_{\tau(w)}(a)$; in particular, if f is in H^{∞} then $f(\tau(w)) = \Pi_0(\Gamma(f))(w)$.

LEMMA 9. $\Pi_0(\Gamma(U_\phi)) = 0$.

Proof. If $w \in \Delta$, then

$$\Pi_0(\Gamma(U_\phi))(w) = \beta_w(\Gamma(U_\phi)) = \alpha_{\tau(w)}(U_\phi) = \Pi_0(U_\phi)(\tau(w)) = 0. \quad \Box$$

LEMMA 10. $\Pi_1(\Gamma(U_\phi)) \neq 0$.

Proof. If $\Pi_1(\Gamma(U_\phi)) = 0$, then $\Gamma(U_\phi)$ is in the closed ideal of \mathbf{A}_ψ generated by $(U_\psi)^2$. Then the isomorphism Γ induces a homomorphism of the quotient Banach algebra $\mathbf{A}_\phi/\mathbf{A}_\phi U_\phi$ onto the algebra $\mathbf{A}_\psi/\mathbf{A}_\psi(U_\psi)^2$, where $\mathbf{A}_\phi U_\phi$ and $\mathbf{A}_\psi(U_\psi)^2$ denote (respectively) the closed ideals of \mathbf{A}_ϕ and \mathbf{A}_ψ generated by U_ϕ and $(U_\psi)^2$. But this is impossible because the former quotient is commutative and the latter is not.

The homeomorphism τ of Δ has been constructed. It remains to show that $\phi \circ \tau = \tau \circ \psi$. If $f \in H^{\infty}$ then $U_{\phi} f = (f \circ \phi)U_{\phi}$. Hence,

$$\Pi_1(\Gamma(U_\phi)\Gamma(f)) = \Pi_1(\Gamma(f \circ \phi)\Gamma(U_\phi)).$$

But

$$\Pi_1(\Gamma(U_\phi)\Gamma(f)) = \Pi_1(\Gamma(U_\phi))\Pi_0(\Gamma(f)) \circ \psi + \Pi_0(\Gamma(U_\phi))\Pi_1(\Gamma(f))$$
$$= \Pi_1(\Gamma(U_\phi))\Pi_0(\Gamma(f)) \circ \psi$$

by the product rule and the fact that $\Pi_0(\Gamma(U_\phi)) = 0$. Furthermore,

$$\Pi_{1}(\Gamma(f \circ \phi)\Gamma(U_{\phi})) = \Pi_{1}(\Gamma(f \circ \phi))\Pi_{0}(\Gamma(U_{\phi})) \circ \psi + \Pi_{0}(\Gamma(f \circ \phi))\Pi_{1}(\Gamma(U_{\phi}))$$
$$= \Pi_{0}(\Gamma(f \circ \phi))\Pi_{1}(\Gamma(U_{\phi})).$$

Therefore,

$$0 = \Pi_1(\Gamma(U_\phi))\Pi_0(\Gamma(f)) \circ \psi - \Pi_0(\Gamma(f \circ \phi))\Pi_1(\Gamma(U_\phi))$$

= $\Pi_1(\Gamma(U_\phi))[\Pi_0(\Gamma(f)) \circ \psi - \Pi_0(\Gamma(f \circ \phi))].$

Here the product of two functions, analytic in D, is the zero function. One of the functions is not identically zero, so the other must be:

$$\Pi_0(\Gamma(f)) \circ \psi - \Pi_0(\Gamma(f \circ \phi)) = 0.$$

Recalling that $\Pi_0(\Gamma(g)) = g \circ \tau$ for g in H^{∞} , we have $f \circ \tau \circ \psi = f \circ \phi \circ \tau$. But $f \in H^{\infty}$ is arbitrary, so $\tau \circ \psi = \phi \circ \tau$. Finally, if e is the identity function of D, e(z) = z, then

$$\tau(z) = e(\tau(z)) = \alpha_{\tau(z)}(e) = \alpha_z(\Gamma(z)) = \Pi_0(\Gamma(e))(z),$$

so τ is analytic on D.

IV. The Periodic Case

What happens if ϕ is periodic? Which ϕ are periodic?

PROPOSITION 11. If ϕ is an inner function of period n, then ϕ is conjugate to a rotation $\rho(z) = cz$, where $c^n = 1$.

Proof. According to [3], an analytic homeomorphism ϕ of D has either one fixed point in D, or one on the boundary of D, or two on the boundary of D. Furthermore, if ϕ has boundary fixed points, then one of them is attractive in the sense that $\phi^{(n)}(z)$ converges to this fixed point for each z in D. But this cannot happen if ϕ is periodic, so ϕ must have its fixed point α in D. Let $\tau(z) = (z-\alpha)/(\bar{\alpha}z-1)$. Then $\tau^{-1} \circ \phi \circ \tau$ has period n and fixes 0, and so must be a periodic rotation of D.

A proposition similar to Proposition 4 is true for periodic ϕ .

PROPOSITION 12. If ϕ has period n, then for each k < n there is a bounded coordinate map Π_k of \mathbf{A} onto H^{∞} such that

$$a = \sum_{k=0}^{n-1} \Pi_k(a) U^k$$

for each a in A.

Proof. It is first shown that if $a = \sum_{i=0}^{n-1} f_i U^i$ then $||f_k|| \le ||a||$. Let τ be an analytic homeomorphism of D such that $\tau^{-1} \circ \phi \circ \tau$ is a periodic rotation. If $E = \{z \in \partial D : |f_k(a)| \ge ||f_k|| - \epsilon\}$, then E intersects one of the sets $\{\tau(e^{i\theta}) : (j-1)2\pi/n \le \theta < j2\pi/n\}$ in a set of positive measure. Let F be that set. Then the sets $\phi^{(-i)}(F)$, $0 \le i < n$, are disjoint. The desired inequality now follows as in the proof of Proposition 4. Set $\Pi_k(\sum_{i=0}^{n-1} f_i U^i) = f_k$ and extend Π_k

continuously to all of **A**. Every a in **A** can be written as $\sum_{k=0}^{n-1} \Pi_k(a) U^k$, since this is true for polynomials and the set of polynomials is dense in **A**.

In case ϕ has period n, A_{ϕ} has only n complex homomorphisms.

PROPOSITION 13. If ϕ has period n then $M = M_w$, where w is the fixed point of ϕ and $\{\alpha(U): \alpha \in M\}$ is just the set on nth roots of unity.

Proof. If $\alpha \in M$ then $\alpha(U)^n = \alpha(U^n) = 1$, so $\alpha(U)$ is a root of unity. If e is the identity function in H^{∞} , e(z) = z, and if $\alpha \in M_w$, then $\alpha(U)w = \alpha(U)\alpha(e) = \alpha(Ue) = \alpha(e \circ \phi U) = \phi(w)\alpha(U)$. Thus w is the fixed point of ϕ . Conversely, if $d^n = 1$, then setting $\alpha(a) = (\sum_{i=0}^{n-1} \Pi_i(a)(w)d^i)$ defines a complex homomorphism with $\alpha(U) = d$.

COROLLARY 14. If \mathbf{A}_{ϕ} and \mathbf{A}_{ψ} are isomorphic and ϕ has period n, then so does ψ .

So A_{ϕ} is quite simple when ϕ is periodic, yet our theorem fails miserably in this case. If ϕ and ψ are rotations of period n, then for some i and j (0 < i, j < n), $\phi^{(i)} = \psi$ and $\psi^{(j)} = \phi$, so that A_{ϕ} and A_{ψ} are not only isomorphic but equal. Yet a simple computation shows that ϕ and ψ will be conjugate only if they are the same.

References

- 1. W. B. Arveson, *Operator algebras and measure preserving automorphisms*, Acta Math. 118 (1967), 95–109.
- 2. W. B. Arveson and K. B. Josephson, *Operator algebras and measure preserving automorphisms II*, J. Funct. Anal. 4 (1969), 100–134.
- 3. R. B. Burckel, *Iterating analytic self-maps of disks*, Amer. Math. Monthly 88 (1981), 396–406.
- 4. D. W. Hadwin and T. B. Hoover, *Operator algebras and the conjugacy of transformations*, J. Funct. Anal. 77 (1988), 112–122.
- 5. ——, Operator algebras and the conjugacy of transformations II, Proc. Amer. Math. Soc. 106 (1989), 365–369.
- 6. P. R. Halmos, Lectures on ergodic theory, Chelsea, New York, 1956.
- 7. E. A. Nordgren, Composition operators, Canad. J. Math. 20 (1968), 442-449.
- 8. ——, Composition operators on Hilbert space, Hilbert space operators, pp. 37-63, Lecture Notes in Math. 693, Springer, Berlin, 1978.

Department of Mathematics University of Hawaii Honolulu, HI 96822