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Conjugate Inner Functions
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I. Introduction

Let D denote the open unit disk in the complex plane, D= {z:|z|<1}, and
let m be normalized arclength measure on the boundary dD of D. If ¢ is
a nonconstant inner function on D, then C= C; denotes the composition
operator on H?=H?*(D) determined by ¢—Cy(f)=f-¢. Here o denotes
function composition. That Cy is bounded is proven in [7; 8]. The operator
C, does not tell everything about the analytic function ¢. Indeed, if e, is the
function e,(z) =z", then C. (e,)=e,,, so that, for n>1, C,, is the direct
sum of a 1-dimensional identity operator and a pure isometry of infinite mul-
tiplicity. As such, they are all unitarily equivalent to each other. On the other
hand, e, covers the disk » times so that these functions are not the same.

Each f in H* defines the analytic Toeplitz operator 7 on H 2 by Ty (h) =
Jh. Let A=A, denote the norm closed algebra generated by Cy and all the
analytic Toeplitz operators. Note that C, T, = T, Cy, so that A is commuta-
tive just in case ¢ is the identity function ¢(z) =z. From here on, the same
notation will be used to denote the H*® function, its boundary function, its
Toeplitz operator, and even its Gelfand transform. This convention is con-
venient and will cause no confusion.

Two inner functions ¢ and ¢ are conjugate if there is an analytic homeo-
morphism 7 of D satisfying 7oy = ¢o7. We prove the following:

THEOREM 1. [If ¢ and  are nonconstant, nonperiodic inner functions, then
they are conjugate if and only if the algebras A, and A, are isomorphic.

Here, ¢ is periodic if ¢ (z) =z, where ¢ denotes the n-fold iterate of ¢.
The analytic homeomorphisms of D are the Mobius transformations

where |a| <1 and |¢|=1. Theorem 1 is just the analytic version of what is
done in [1; 2; 4; 5] for composition operators on L? spaces. ‘

If 7 is a homeomorphism as in the theorem, then C,C,Co 1= C, and
C, fC;'= for, so that the map I'(a) = C,aC; ! is an isomorphism of A,
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onto A,. The interesting part of the theorem, then, is in the other direction.
We must first study the algebra A, more carefully.

II. The Algebra A

The measure meo¢ ! given by me¢ " 1(E)=m(¢ " (E)) is absolutely contir-
uous with respect to m, and

dme¢p™! o 2+ é(0)
Tam o= Re(z—qsw))

is the Poisson kernel for evaluation at ¢(0) [7]. Let A(z) be the reciprocal of
the normalized Cauchy kernel:

1—(0)z

(1-]p(0)2)/2"

Then h and A~! are in H®, and |A|*> = (P,,) ! almost everywhere on aD.
For any measurable function f on aD, {|h|*c¢fepdm=[ fdm and U=
Uy =T.4Cy is an isometry. If f is in H* then so is C,(f). Since moe¢plis
not only absolutely continuous but also equivalent to m, Cy is an isometry
on H*. Note that the set of operators of the form X%_, f,U", with f, in H%,
is dense in A. These operators will be called polynomials. Clearly (C,)" =
Csm. On the other hand,

n
(U¢,)" = (kljl 7‘ho¢(k)) C¢(n),

which is generally not the same as U, = T,,n,,¢(n)C'¢(n) where 4, is the outer
function satisfying

h(z)=

dmodf(”) -1/2 B

almost everywhere on aD.

Let T denote the g-algebra of Borel subsets of 3D and £, = ¢~ "(X) =
{6~ "(S): Se X}, and let E, denote the conditional expectation given T,,.
So if f is any positive or integrable function on aD, then E, (f) is X, mea-
surable and {5 E,(f) dm=Jg fdm for each S in I,. If f is I, measurable
then E, (fg) = fE,(g) for any function g. Also, E,(f) is positive whenever
f is positive, and |E,,(f)|« <|fl- if f is bounded. There is a function g
satisfying f = go¢'™ if and only if E,(f) = f, and in this case g is unique up
to a set of measure 0. We shall write g = fo¢p— (",

PROPOSITION 2.
n dm°¢_(n) -1
1. E ho ™) 2): - 0”) :
n(kl;lll i dm ¢

2. If fis in H?, then fU" defines a bounded operator if and only if
E,(|f|?) is bounded and
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dm

LU = (|f|’~ I}t ¢>""f2) e

o0

Proof. 1. Both U" and Uy are isometries, so if S€ T then [U"(xs)|*=
Uy (x$)|> = m(S). That is,

" dmog=

as desired.
2. Suppose f is in H?. Since |A|* and dme¢~"/dm are just Poisson
kernels, there are constants Kl and K, such that
dmeg =
dm

This and the fact that E, preserves inequalities yields that E,(| f|?) is bounded
if and only if

K| fI*= lfV V1¢“42 M < K| fI7.

2 (%)|2 - och(7)
A
is. If ge H? then

LU @I = [If1? TT o9 gog ™| dim

[ 2,2 169 g6 am
k=1

dmed— (M
[P s (P18
n dm°¢_(")
2 o (B2 Y o — (1)
(11 Mo o7 )6 (=)

n dm°¢_(n)
=E 2 hod® 2} 2 oM
(178 T eg P ) (S22 g
The last equality follows because C, is an isometry on H*. This shows that

n dmqu"(”)
E 2 oy (K2 oM
n(lfl kI;Illh ¢ | ) dm ¢

To show equality, pick g in H? so that |g| approximates, in the L? sense, the
characteristic function of the set on which

n dm°¢_(n)
2 oh (K12 Yo — (1) _r
E,,Qfl kl;Illh ¢ l) ¢ ( dm )

is almost its maximum. g

IA

lel3.

U=

(5]

We next define coordinate maps IT, on A such that IT,(Z{_, /L U*) =/,
Since fU" may be a bounded operator even if f is not a bounded function, it
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is necessary to define coordinate spaces that may be larger than H®. Let
={feH*:E (| f[*)eL”} and || f]l.=|/U"].

PROPOSITION 3.  Foreach n, K,, is a Banach space, H* €K, K, ., < H?,
and the inclusion operators are bounded.

We let K, be H®, E, the identity operator, and || ||o =] |«-

PROPOSITION 4. If ¢ is not periodic, then foreachn=0,1,2,3, ... there is
a map T1 from A to K, such that ||11,(a)|,, < |a| and T1,(Z¥. Okak) S

Proof. 1t suffices to show that || £, [, < |Z¥=0 /U*|. Let a=3¢_, iU

If, for some n, {z: |z] =1, ¢\ (z) =z} has positive measure, then ¢‘")(z) =z
for almost all z on dD. This case has been excluded. Consequently, the set
of fixed points of ¢ on dD has measure zero; that is, ¢ is aperiodic. As in
Halmos [6], if E € dD with m(E) > 0 and if k is a natural number, then there
is a subset F of E with m(F) > 0 such that the sets ¢ ~(F), n=1,2,..., k,
are pairwise disjoint.

Let

1/2 dniod—M\1/2
TN CA (| () Rl L R PR

Now pick F C E and m(F) > 0 such that the sets ¢{~%)(F) are pairwise dis-
joint for 1 < k < N. The operator a can act on L?(im) as well as H2. We tem-
porarily use |a|; and |a|; to denote the norms of these two operators. Pick
g in L2(m) such that |g—xp|<e€/|a|., |g]l < |xF|, and z°g € H? for some s.

Then
dmogp ="

WS 0Pbxel  [(En (17 TT1eegR ))eot= (22— Yo im

i=1

V(152 TTle=02 )xpes®
(1701 TTle= 00 xp6 dm

N .
> | fl? HIgo¢"’|2(xFoqb(’”)l(qb"")sP dm

k=0 i=1

IA

N
> Hgo "’(xFo¢"")(¢“‘>)s

k=0 i=1

a(z°xp)|* dm=|a(z*xp)|* = (|a(z°g)| + €)?

|
|
J

IA

(lalglz*hl+e)* = (lalxlg]+€)?
(

lalulxel+e).

IA
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Here, the two sums are equal because the function x ¢ is supported on
¢~ *)(F), and these sets are disjoint. 0

PROPOSITION 5. If ¢ is not periodic, then the coordinate maps satisfy the
product rule

k -
i (ab) = 3 (I;(@)) (T, (D)=8D).
i=0

Proof. This identity is true if @ and b are polynomials. That it is true for all
a and b follows by continuity. l

PROPOSITION 6. The closed ideal of A generated by U™t is N7_, ker I1,.

Proof. That the intersection of these kernels is a closed ideal that contains
U"*! follows from the product rule and the continuity of the IT;. Conversely,
suppose I1;(a) =0 for i <n. Let p, be a sequence of polynomials in A that
converges to a; then p, —37_o II;(p,)U’ is in the ideal generated by U"*!
and converges to a. Thus a is in the ideal generated by U”+1. O

It is necessary to examine the multiplicative linear functionals on A. Let M
denote the space of nonzero multiplicative functionals on A, and let A te
the maximal ideal space of H*. We will think of D as a subset of A and write
f(z) instead of z(f). For ze€ A, let M, ={aeM: a(f)=f(z) for all fin
H®>}. If ¢ is not periodic then no M, is empty. Indeed, if «, is defined by
a.(a) =11y(a)(z), then o, is in M,.

The inner function ¢ can be extended from D to a transformation of A
as follows. If fis in H*, let T(f)= f~¢, and let T* be the adjoint trans-
formation of 7. Then, if ze A and f and g are in H*, it is easily verified that
T*(z2)(fg)=T*2)(f)T*(z)(g) so that T* maps Ato A, and if z is in D then
T*2)(f)=z(fd) = f(¢(z)) or T*(z) = ¢(z). The restriction of 7* to A is
the desired extension of ¢ and will be called ¢ as well.

Let A, denote the disk algebra on the closed disk D, = {|z|<r}; A, is thus
the uniform closure of the polynomials in the algebra of all continuous func-
tions on D,. We write 4 for A, and A, is just the field of complex numbers.

PROPOSITION 7. Suppose that ¢ is not periodic.

(@) If ze A and ¢(z) #z, then M, ={a,]}.

(b) If ze A and ¢(z) =z, then there is an r (0<r=<1) and a bounded
algebra homomorphism p, of A to A, such that a € M, if and only if
there is a £ in D, such that a(a) = p,(a)(£) for all a in A.

(¢o) IfzeD and ¢(z) =z, then r =1 and p, maps onto A.

Proof. (a) If z is not a fixed point of ¢, then pick f in H® with f(z)#
S(#(z)). Then, for ae M, a(U) f(z) =a(U)a(f)=a(Uf)=a((f-¢)U)=
a((fod)a(U)) = f(¢(z))(U). Thus o(U) =0. So « agrees with a, on sums
of the form 37_, f;U’. But such sums are dense in A, so o= qa,.
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(b) Suppose z is a fixed point of ¢. Let r=sup{|a(U)|: € M,}. Since
M, is compact, there is a 8 in M, such that |3(U)|=r. If fis in H®, then
SU"€ A and | f(z)|r"=|B(fU")| =|fU"|=|fll. Suppose |&|<r. If a=
=0 fn U", then || full, = ll a| and

e

= 3 lh@lals 3 lal(l) < = [l/r

Hence the map a(ZH_, f,,U") =3N_o f.(z) &8 extends to all of A. Clearly
a €M, and so |a|=1. prz(E Of,,U")1sthepolyn0m1alm£2,, o Jn(Z)E",
then pz(En o L, U™(Eo) is just a(ZE. of,,U”) Consequently

pz( » fnU”> <
n=0

where the former norm is the supremum on D,; thus p, extends to be con-
tinuous on all of A. Note that the set {a(U): o€ M,]} is closed and so must
be D,.

(c) If z e D is a fixed point then r = 1. Indeed, if |z| <1 then evaluation at z
has norm (1—|z|?)~Y? as a linear functional on H2. Thus, if a=32_, £, U"
is in A, then

(2)&6

u,

N N
S LA@IIE"s 3 1k ()2 g

N N
< 3 a1 =12P) 2l slal 1 -12P) 2 3 J

Hence the map a - X4_, f,(z)£" extends to A as long as |£| < 1. Therefore
r =1. It remains to show that p, maps A onto 4. But if g isin 4 then g(U) is
defined by the functional calculus, g(U) is in A, and p,(g(U)) =g. O

The map z — o, naturally imbeds A as a subset of M. Similarly, if z is a fixed
point of ¢ such that the “radius” r of M, is positive, then part (b) of Propo-
sition 7 identifies M, with the disk D,. So M is the union of disks, one of
which looks like A and the others like true disks D. Furthermore, A acts as
an algebra of analytic functions of these disks, like % on A and like 4 on
the others.

DEFINITION. A subset C of M is an analytic disk for A if

(a) C is the closure of its interior, and
(b) if ae A and «a(a) =0 for all « in some nonempty open subset of C,
then a(a)=0 for all « in C.

PROPOSITION 8. The maximal analytic disks in M are A and those M,
with positive radius.

Proof. That A and the nontrivial M, are analytic disks is clear. Since U van-
ishes only on A and z —z, vanishes only on M, , these are maximal analytic
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disks. If C is any analytic disk, then the interior of C must have nontrivial
intersection with the interior of either A or one of the M . In the first case
U must vanish on C, in the latter case z — gy does. In either case, C must be
contained in one of the indicated disks. O

III. Proof of Theorem 1

Suppose ¢ and ¢ are two aperiodic inner functions and I is an algebra iso-
morphism from A, to A,. Let M and N denote the spaces of multiplicative
functionals on A, and A,. Then I induces a map vy from N to M given by
a(I’(a)) =y(a)(a). The map vy is a homeomorphism since the topologies
on M and N are determined by their corresponding algebras. The defining
equation for v shows that it maps analytic disks to analytic disks. In partic-
ular, y(A) is a maximal analytic disk in M. But since no M, = D, is homeo-
morphic to A, it must be that y(A) = A. That is, if I, denotes the nth coor-
dinate map for both A, and A, and if (for w in A) 8,, is the functional in N
given by 8,,(b) =I1y(b)(w), then there is a z=7(w) in A such that y(8,,) =
a,. So for a in Ay, B,(I'(a)) = a,,(a); in particular, if f is in H* then
S(r(w)) =11 (I () (w).

LEMMA 9. TIo(I'(U,))=0.

Proof. If we A, then
o (T'(Ug)) (W) = B, (T'(Uy)) = oty ) (Uy) = I (Uy) (7(w)) = 0. U

LEMMA 10. II,(I'(U,))#0.

Proof. If I1,(I'(U,)) =0, then I'(U,) is in the closed ideal of A, generated
by (U¢)2. Then the isomorphism I' induces a homomorphism of the quotient
Banach algebra A, /A, U, onto the algebra A, /Aw(U¢)2, where A, U, and
A¢(U¢)2 denote (respectively) the closed ideals of A, and A, generated by
U, and (Uy,,)z. But this is impossible because the former quotient is com-
mutative and the latter is not. ]

The homeomorphism 7 of A has been constructed. It remains to show that
der=7oY. If f€e H™ then U, f=(f¢)U,. Hence,

II(IU) () =11(T'(f=9) T'(Uy)).
But
IL(T(U) () =I(TUD (T (f)) oy + (T UgH I1(T'(S))
=1 (DU NI (T'( )y
by the product rule and the fact that ITo(I'(Uy)) = 0. Furthermore,
(D (fe) T (Ug)) =T (fop)Io(I'(Uy)) o ¢ + (T (f ) I (T'(Uy))
=Io(T'(f)) I (I'(Uy)).
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Therefore,

0 =TI (I (U IIo(I'(f)) oy = Io(I'(f2 ) IL; (I'(U,))
= I (T (Ug) [T (T (f)) ey — o (T (f )]

Here the product of two functions, analytic in D, is the zero function. One
of the functions is not identically zero, so the other must be:

(T () —1o(I'(f=9)) = 0.

Recalling that II;(I'(g)) =ge°7 for g in H®, we have feroy = fogor. But
S € H® is arbitrary, so 7oy = ¢o7. Finally, if e is the identity function of D,
e(z) =z, then

7(2) = e(7(2)) = oty (€) = o (I'(2)) = II(T'(e))(2),

so 7 is analytic on D.

IV. The Periodic Case
What happens if ¢ is periodic? Which ¢ are periodic?

PROPOSITION 11. If ¢ is an inner function of period n, then ¢ is conju-
gate to a rotation p(z) =cz, where c" =1.

Proof. According to [3], an analytic homeomorphism ¢ of D has either one
fixed point in D, or one on the boundary of D, or two on the boundary of
D. Furthermore, if ¢ has boundary fixed points, then one of them is attrac-
tive in the sense that ¢ (z) converges to this fixed point for each z in D.
But this cannot happen if ¢ is periodic, so ¢ must have its fixed point « in
D. Let 7(z) =(z—a)/(&iz—1). Then 7 le¢o7 has period » and fixes 0, and
so must be a periodic rotation of D. O

A proposition similar to Proposition 4 is true for periodic ¢.

PROPOSITION 12. If ¢ has period n, then for each k < n there is a bounded
coordinate map I1; of A onto H*® such that
n—1

a= Y M, (a)U*
K=0

Joreach ain A.

Proof. 1t is first shown that if a=X?Z} f;U’ then | fi|<|a|. Let 7 be an
analytic homeomorphism of D such that 7 le¢or is a periodic rotation.
If E={ze€dD:|fi(a)|=]|f]|—e€}, then E intersects one of the sets {r(e*’):
(j—1)2w/n=60< j2n/n} in a set of positive measure. Let F be that set. Then
the sets ¢~ (F), 0 <i < n, are disjoint. The desired inequality now follows
as in the proof of Proposition 4. Set IT (7= f;U’) = f, and extend I,
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continuously to all of A. Every @ in A can be written as 72} IT; (a) U¥,
since this is true for polynomials and the set of polynomials is dense in A.
]

In case ¢ has period n, A, has only n complex homomorphisms.

PROPOSITION 13. If ¢ has period n then M =M,,, where w is the fixed
point of ¢ and {a(U): a € M} is just the set on nth roots of unity.

Proof. If o« e M then a(U)" = a(U") =1, so «(U) is a root of unity. If
e is the identity function in H*, e(z) =z, and if e € M,,, then «(U)w=
a(U)a(e) =a(Ue) = a(ecpU) = ¢p(w)a(U). Thus w is the fixed point of ¢.
Conversely, if d" =1, then setting a(a) = (X724 I1;(a)(w)d’) defines a com-

plex homomorphism with «(U) =d. L]

COROLLARY 14. If Ay and A, are isomorphic and ¢ has period n, then
so does .

So A, is quite simple when ¢ is periodic, yet our theorem fails miserably in
this case. If ¢ and ¢ are rotations of period n, then for some i and j (0 <,
j<n), =y and y) = ¢, so that A, and A are not only isomorphic but
equal. Yet a simple computation shows that ¢ and y will be conjugate only
if they are the same.
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