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Introduction

A major problem of Teichmiiller theory is to characterize the closure of
Bers’s model of the universal Teichmiiller space 3. In this paper, we give new
geometric conditions that if satisfied by the range of a conformal mapping
from a disk guarantee that the Schwarzian derivative of that mapping is in
the closure of 3. The condition is described by defining a subclass of close-
to-convex functions. This result extends the work of Gehring and Astala [3].

Let B denote the Banach space of functions ¢ holomorphic on the unit
disk ID with finite norm

|6] = sup|é(2)|[1—|z[].

zeD
If f is conformal on ID and

cb-—logf( )= S12)

f(z)’

then |¢| <8 (see [13]). The development of injectivity criteria for functions
on ID led Becker and Pommerenke (see [4; 5]) to study the space

T={¢=(f"/f'): f conformal on the unit disk ID with X
quasiconformal extension to the Riemann sphere C}.

This subset of B is an alternative model for the universal Teichmiiller space
(see [3]).

In [3], Astala and Gehring develop a characterization of the closure of T
in the || norm. They apply this characterization to prove that f“/f’e cl(T)
if f is convex in the direction §. We introduce a new method which shows
that f”/f’e cl(T) provided that €\ f(ID) is the union of disjoint half-lines /,
where the angle of / is continuous in the prime end topology.

Let L denote the class of linearly accessible functions; that is, L ={ f con-
formal on ID with f(0)=0, f’(0)=1: C\ f(D) is the union of closed half-
lines such that the corresponding open half-lines are disjoint}. Lewandow-
ski [10; 11] (also see [6]) shows that L is equivalent to the class of close-to-
convex functions introduced by Kaplan [9]. Thus, given fe€ L, there exists
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a conformal map 4 such that #(ID) is a convex region and Re{ f"/h’} > 0. We
refer to A as the associated convex function of f.

The derivatives of log(f’(z)) for general functions f in L are not neces-
sarily in cl(T). Astala and Gehring [3] provide a counterexample, the star-
like function

Z
Writing f= goh for h convex, we have that
(= S(§) 1 14z _
h(z)—g0 c di= > log(l_z>—arctanhz

and that A(ID) is a strip. In particular, d4#(ID) is not smooth. This example
leads us to examine the following class of functions.

DEFINITION. Let fe L. We say that f is linearly accessible smoothly (de-
noted fe€ L) if the associated convex domain #(ID) has a boundary with a
continuously turning tangent (see Pommerenke [15, p. 295]).

We prove the following theorem.

THEOREM 1. Suppose that f is linearly accessible smoothly. Then

fll

fl
By observing that L, contains some important subclasses, we also obtain
the following.

ecl(T).

COROLLARY 1. Let fsatisfy Re f'> 0 or be a bounded starlike function.
Then
fll

f/
The map y(¢) = ¢’'— 3 (¢)* is a continuous imbedding of T into Bers’s model

of the universal Teichmiiller space 3, mapping (f”(z)/f’(z)) of f conformal
onto their Schwarzian derivatives

_ (SR, 1/ @)Y
{f,z}—(f,(z)) 2<f’(z))

(see [3; 7]). We therefore obtain the next corollary.

e cl(T).

COROLLARY 2. If fe L, then {f, z} € cl(3).

2. Sequences of Linearly Accessible Functions

Let H(ID) be the set of holomorphic functions on ID. Let P be the set of

p € H(ID) such that
Re{p}>0, p(0)=1.
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Choose a linearly accessible function f. Then f= goh, where Re{g’} >0 on
h(ID). Therefore,
r
hl
We define the approximating family { f,} (0 <X <1) of an fe L by
=p*-n.
We normalize each f, by an appropriate transformation so that f,(0)=0
and fy(0) =1. Clearly, as Re p > 0, we may choose a branch of the logarithm

so that Re p*» > 0. Thus £, € L, and by a result of Kaplan [9] we have the fol-
lowing lemma.

=p'

LEMMA 1. For 0<\<1, f, is univalent.

REMARK. Lemmas 1-5 hold for the approximating family { f,} of any f
in the full class L. The additional smoothness conditions imposed on the
subclass L, come to play in Lemma 6 and in Section 3.

Next, we show that

dr=22, 0=\=1,

r?

A

is a continuous path in B.
LEMMA 2. qukl—qb)‘z"—>0as )\1“‘*)\2.
Proof. As f{=h"-p*,

” hll pl
=2 =— 1.
MR h p
By the classical distortion bound,
ils—?‘_.
p | (A-iz)
Thus,
pl
[ 5, — &x,1=IN1—=N;|sup '_l(l—|z|2)
zeD| P
<2|N =)\,
In particular,
l¢r—@|—0 as A—1. ]

Some of the results on the geometry of f,(ID) needed for our result are now
demonstrated.

LEMMA 3. Let f be a linearly accessible function. Then the following are
equivalent:

(1) There exists a 6 = 6(\) > 0 such that

Re{ S }>O Sor |6| <.

eifh’
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(ii) There exists a A= \(6), 0< A<, and a p € P such that

S
P

Proof. Let (ii) hold. For the appropriate choice of the logarithm,

[f’(z)}‘/A [1 lOg[f’(z) H
h'(z) h'(z)

Thus
1/)\ 1/)
wf[re] )=l Ce{[7S] )
and so
(Z) 1/\ fl(z) 1/A T
{[ ’(z)] I if and only if Arg{[h,(z)] }<—2-.

We want to show that there exists a 6> 0 such that for all |6] <6,

—_ f/(z) 1/A T
—<A —0<—.
2 rg{ [ h'(z)] } 2
But as (ii) holds, this is true for 6 < (1—A)(w/2).
A symmetric argument shows that (i) implies (ii).

O

Half-lines in C\ f(ID) are “opened up” into sectors in the complement of
A(ID). This concept is made precise in Lemma 4, which shows that C\ £,(ID)
is the union of sectors of certain angular width. We note that later we will
need only part of this result, namely that C\ f,(ID) contains a suitable union

of sectors. (Also see Pommerenke [.14].)

LEMMA 4. Let {f,}, 0< <1, be the family of functions approximating
an fe L. Then there exists a ¢ = y(\) > 0 such that C\ f,(ID) is the union of

sectors of angle at least .

Proof. Choose an fy. By the previous lemma there exists a 6 = 6(\) such that

: N
(M) Re{eigz,

Let £ € [0, ), |0] < 8, and define the auxiliary function
F(z,t,0) = fi(z) +te"zh’(z).

}>0 for all |0]|<é.

Since
F,(z,¢,0)=f(z)+ te®®[h'(z)+zh"(z)]
and '
F,(z,t,0)=e"2h'(2),
we obtain
. Fz ZFZ f)\ Zh”
S = = — 1
(i1) R, el +z|1+ % ]
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As h is convex and (i) holds,

(iii) Re{ ol }>O

eith’
for all z € ID. In particular, Fe L and thus is univalent for all 7 € [0, o) and
|0| < 6. Also,

zZF,
i R £1>0.
(iv) e[ F, }
Therefore, since F' is univalent and satisfies (iv), we claim that
(V) F(]Ds t19 G)CF(D’ t2’ 0)

for ¢, < t,; that is, F is an unnormalized Lowner chain.

To prove the claim, we first assume that F is smooth on cl(ID) X IR*. There-
fore, inequality (iv) holds for all (z, ¢) e cI(ID) x R*, and this implies that
the flow vector F; always makes angle », 0 < v < w, with the tangent vector
T= ie"“’FZ(e"“’). Because each F is univalent, the flow is always directed out-
ward, and we get (v) in the smooth case. In the general case we consider a
sequence

(0,:0<p,<ppy1<1, p,—1asn— oo},
and define
Fy(z,1,0) =F(p,2, 1,0).
Since
F,(D,t,0)CF,(D,t,,0)

for #, < t, and all n, we obtain the general case by letting #n — o and applying
the Carathéodory kernel theorem.

We must now demonstrate the sector property. Again, we first assume that
F extends smoothly to the boundary. For @ fixed and y € [0, 27), (V) gives us
that f,(ID) = F(ID, 0, 6) does not contain the ray

po(n) ={fr(e™)+te®e™h’(e™): t = 0}.
Therefore, for all 8 € (-6, 6),
U a(y) = C\ A(D),

n€[0, 27)
where

a(n) ={f(eM) +te®en'(e™M): t =0, |0| < 6}.

Now, choose z € C\ /(D). Since f,(ID)=F(D,0,#), for some 0 e (—34,6)
we have ze C\ F(ID, 0, 0). Fe L for that 6, and so by a result of Bielecki and
Lewandowski [6] z is contained in some ray p,(7). The ray pg(7n) is contained
in the sector o(n) for || < 6. Therefore we get the reverse inclusion, and so

U o(p) =C\AUD).

nel0,2r)
Thus, we obtain the sector property for ¥ (\) =6(\) when F is smooth.
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In the general case consider we dF(ID). There is a sequence of points
zr € ID with f(z;) — w. Consider the corresponding sequence of sectors gy,

where
o CC\ A(|z] <]z

Each g; has vertex f,(z,) and angle ¥;, with ¢, = § for all k. Therefore, there
is a limit sector ¢ with vertex w and angle o = ¢. Thus a subsequence of the
o, converges to o in the sense of Carathéodory. Because ¢ C C\ f,(ID), and
o has angle a = ¥/(\) > 0, this completes the proof of Lemma 4. C

Let p be the spherical metric on the Riemann sphere €, and let w;, w, €
S(D)\ f(0), where f is a normalized conformal map on ID. Define

p(wl: w2) =1nf sup p(aly 012), .]= 1,23
C OtjEC

where C is any Carathéodory crosscut of  which separates w;, w, from
f(0). This defines the prime end metric of Mazurkiewicz [12] (also see Pom-
merenke {15, p. 351]). Let z; =f_1(wj), Jj=1,2. We have the following.

LEMMA 5 (Mazurkiewicz [12]). There exist constants K, K, > 0 such that
K

(log(3/|z1— 2, NV?"

This allows us to get a uniform bound on the modulus of continuity of the

functions f.
For fe L,, we have the following lemma.

Kilzi— 23 <= p(w, wy) <

LEMMA 6. If {f\} (0<\A<]1) is the approximating family for fe€ Ly, then
(D) is bounded.

Proof. The convex domain U= h(ID) has a boundary with a continuously
turning tangent, and therefore must be bounded. The function fy: ID — {2
may be written as

Hh=28rh,

where g§ = g*, for g a function with positive real part on U. By Harnack’s

inequality,
|gs($)| = cldist(§, aU) M

Let / be a half-line in U starting from ;= /(0) and ending at we/NaU.
Since U is a convex domain and dU is smooth, there exists a constant K
such that

dist($,dU) = K| ¢ — w|

for all ¢ €l. Therefore,

L ||
B®I=e| e mn
PR
<[c-K ]Sro(]f‘wb)‘_
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2[c-K™™] ox
=Ty el

< 00, U]

3. Quasidisks

A conformal map f: ID — Q has a quasiconformal extension to the Riemann
sphere € if and only if Q is a quasidisk (Ahlfors [1]). For fe L,, we wish to
show that { fY/fy} is in T. Equivalently, we need to prove the following.

THEOREM 2. If {£i} (0<\N<]) is the approximating family for fe€ L,
then f,(ID) is a quasidisk.

We use a criterion due to Gehring [8]. A set E C € is K-locally connected if
forallzeCandall r, 0<r <o,

(1) points in ENcl(B(z,r)) can be joined in ENcl(B(z, Kr)), and

(ii) points in £\ B(z, r) can be joined in E\B(z, r/K).
Here, “joined” means joined by an arc lying in the specified set. Gehring [8]
proves that a domain € is a quasidisk if and only if ©is K-locally connected
for a finite K.

Proof of Theorem 2. Choose an f, for 0 <\ < 1. We assume that 2, = £}(D)
does not satisfy either of Gehring’s two conditions, and arrive at a contra-
diction in both cases.

Case (i): Assume that for any constant K >1 there exists a z,€ Q,, an
r>0, and points zi,z, € @\Ncl(B(zg, 7)) which cannot be joined in 2,N
cl(B(zg, Kr)).

Let L be the line segment joining z; to z,. By hypothesis, L must intersect
C\Q,. Therefore we may assume that z;, z, € Q,. There exists a point z; €
dB(zy, Kr) and a sector ¢ of angle at least ¥/(\) > 0 and vertex z; such that ¢
separates z;, Z, in B(zg, r), but that 6N 2, = 0. By elementary geometry,

2r=|zi—z| = yA(K=Dr.
Thus

b= 2

K—-1’
which may be made arbitrarily small, contradicting Lemma 4. Therefore,
2, satisfies condition (i) of Gehring’s criterion.

REMARK. Condition (i) is satisfied for the approximating family {f,} of
any f in the full class L. We say in this case that £,(ID) is an “inner quasi-
disk.” The smoothness conditions satisfied by fe€ L are needed to show that
Q, satisfies condition (ii).

Case (ii): Assume that for any constant K > 1 there exist a z,€ C, an r >0,
and points z;, 2, € 2)\\ B(zy, r) which cannot be joined in Q,\ B(z,, r/K).
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The two points z;, Z, can be joined to arcs in the set dB(zq, r)N 2y, and so
we may assume z;, 2, € 0B(zg, r). Also, there must exist an arc 7 of the set
dB(zg, r/K)NQ, which separates z; and z, in 2,. Let ¢, = {pe?:0<0<2m)
for 0<p <1, and let vy, = f,(¢,) with counterclockwise orientation. For p
sufficiently close to 1, the arc vy, will intersect 7 in at least two points &; and
£, Let 0, =Arg £ '(£)), j=1,2, with 6, > 6, and 6 =6, —6,. We denote the
maximum change in tangent on v, between 6, and 6, by

|A; Arg{ f(pe”)}].
LEMMA 7. For all K> 0, there exists an 1> 0 and a py<1 such that
|As Arg{f(pe”)}| = x(1—7)

Jor p> py and for some pair of points &, and &, € Q). Moreover, n—0 as
K — o0,

Proof. Let c,, v,, and 7 be as above. We may choose p sufficiently close to
1, so that for p > p, there exist two points &, £, € 7Ny, with a point £; €7,
in between &; and &, such that &5 ¢ B(zg, ).

Let /,, /; denote the lines passing through &3 and tangent to dB(zq, r/K),
touching 8B(z,y, r/K) at ay, a,. Let oy be the interior angle of the intersec-
tion of /; and /, (see Figure 1).

¥p

Figure 1 Elementary reductions for the second case
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1
<2sin~1{ —).
7w <2 sin (K)

The arc consisting of the line segments connecting «;, £3, and «, has the min-
imal change in tangent of any continuous arc passing through those points.
This arc has total change in tangent of «(1—7).

The curve v, has a continuously turning tangent. Since this curve must
pass through £; and intersect dB(zq, r/K) at &;, &5, there must exist two
points on v, between &, and £, such that the change in tangent at those two
points is at least (1 —7). Therefore,

|As Arg{ fi(pe®)}| = m(1—1).
Clearly, n— 0 as K — co. 0

Since &5 ¢ B(zg, 1),

LEMMA 8. Given any e€> 0, there exists a v =v(¢) independent of 0 such
that for any p<1,

|Ag,—0, Arg{ f{(pe™)}| < mh+e
whenever |0, —6,| < v. Furthermore, v — 0 as e — 0.
Proof. Now f, = g, ° h, with gi(w) = pMw) for w € h(ID) with 4 convex.
Therefore,
() |A Arg{ f{(pe”®)}| < \|AArg{p(h(pe”))}|+|A Arg{h’(pe™)}].
Since Re{p(w)} >0,

(ii) |A Arg{p(h(pe™))}| <

for all 8 and p.

Now #(ID) is bounded, and 0A#(ID) has a continuously turning tangent
in C. The curve ¢, is smooth and compact for all p, 0 < p <1. Therefore
h'(pe™) is uniformly continuous on ¢,, and so given any e > 0 there exists a
v =r(e) independent of § where v —» 0 as e » 0, such that

(iii) |Ag,—0, Arg{h’(pe”)}| <e

whenever |6, —6,| <v. Moreover, as 84(ID) has a continuously turning tan-
gent, this estimate holds as p— 1.
The proof of the lemma follows by combining (i), (ii), and (iii). O

Choose an fe Ly, and consider the family {f,} as defined in Section 2. The
arc 7 discussed above is a Carathéodory crosscut. Let w;, w, be two pointsin
2, such that 7 separates w;, w, from f,(0), and such that

Arg{fi (@)} =0; <0, = Arg{f\ ()}
Therefore, by the Mazurkiewicz estimate (Lemma 5), for z; = f{l(wj), j=
1,2,
Ki|z1— 2> < p(w; — w)).
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Since
p(wl—wz)sdiam'r<21r(—1%),
we have
K, 82<2x( L)
=21 )
Clearly,

2 (%) <27 ( diam(IJ;‘(]D)) )

By Lemma 6, diam( f,(ID)) < e, and so 6 » 0 as K - . Now Lemma 8 al-
lows us to choose an e sufficiently small so that

|As Arg{ fi(pe®)}| < Th+e

for all p. However, for K sufficiently large, by Lemma 7 there exists an >0

such that
w(1—7n)>7h+e,

and such that, for all p > p,,
|A; Arg{ f(pe®)}| = x(1—1n).

This contradicts Lemma 8. Therefore, ©, must satisfy condition (ii) of
Gehring’s criterion, and hence f,(ID) is a quasidisk. ]

4. Proof of Theorem 1

Let f be an element of L, and let { f,} denote the approximating family for
0<A<1. Lemma 2 proves that

s

N f

as A— 1. By Theorem 2, f,(ID) is a quasidisk, and therefore fy'/fy is an ele-

ment of T. Thus, -
fll

fl

ecl(T).

S. Subclasses of L,

In this section we prove Corollary 1. First, let f satisfy Re{ f’} > 0. Then f is
in the class L, with associated convex function A(z) =z.

Next, let f be a bounded starlike function. Since f is starlike, there exists
a convex function A such that f(z) =zh’(z). And, since Re{zf’/f} >0,

0< Re{z;,} - ReU;’}.

Thus fe L, with associated convex function
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h(z) = SZI%er.

Because f is a bounded starlike function, f(ID) does not contain any sectors.
Thus, for the appropriate branch of the logarithm, Arg{ f(z)/z} is contin-
uous in cl(ID). But as Arg{ f(z)/z} = Arg{h’(z)}, dh(ID) has a continuously
turning tangent and therefore fe L. [l
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