Critical Sets in the Plane

ALEC NORTON & CHARLES PUGH

1. Introduction

A point x e R™is critical for a smooth (C*) function f: R” — R if its deriva-
tive at x is zero, (Df), =0. If x is not critical then it is regular. We are inter-
ested in the topology of the set of all critical points of f,

cp(f):i={xeR™: fiscritical at x}.

In contrast, the (Antony) Morse-Sard theory measures the set of critical
values cv(f):= f(cp(f)), while (Marston) Morse theory counts the “types”
(maximum, saddle, minimum) of critical points. We say C C R" is critical if
C =cp(f) for some smooth f:R”—R, and properly critical if such an f
exists which is proper, that is, inverse images of compact sets are compact.
Clearly, a critical set is closed. What other properties does it have? When
m =1it is easy to see that there are no other requirements—any closed set in
R is critical. In R? there is just one other requirement in the compact case.

THEOREM 1. A compact non-empty subset of R? is critical if and only if
it is properly critical if and only if the components of its complement are
multiply connected.

Recall that a component of a topological space S is a maximal connected
subset of S; it is rmultiply connected if it is not simply connected. Theorem 1
is proved in Section 4. For example, if C is any finite set of points or a Can-
tor set in the plane, then it is properly critical. Their complements are mul-
tiply connected. On the other hand, a circle is not critical. Note that the con-
dition of multiple connectivity is a topological condition on the complement,
not on C. For example, if C is the union of a circle and a point then it is criti-
cal if and only if the point is inside the circle. Similarly, for functions defined
on the 2-sphere, the union of the equator and the two poles is a critical set,
but not the equator and two points in the Northern hemisphere.

We permit the critical points p to be degenerate; the nondegenerate criti-
cal points (the Hessian (D?2f) » has nonzero eigenvalues) form a discrete set,
making all of our considerations trivial. Typically, the critical points we
construct are infinitely flat. See Section 2.
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It is for simplicity that we deal with compact sets and not closed sets. The
situation with closed sets is more complicated; the generalization of Theo-
rem 1 appears in Section 5. However, let us point out here that it is unrea-
sonable to expect properness of f when the critical set is noncompact. For
if C=cp(f) is closed, unbounded, and connected, then by Sard’s theorem
f is constant on C, say f(C)=c, and f ~!(c) is noncompact, contrary to
f being proper.

Proof of the easy half of Theorem 1. Suppose that U is a simply connected
component of the complement of cp(f). Since cp(f) # 0, U is bounded. Let
¢ be a regular value of f assumed on U. Then I" = f ~!(c) N U is a non-empty
compact boundaryless 1-manifold; it consists of Jordan curves J and f=c¢
on J. At some point p inside J we have a maximum f(p) > ¢, a minimum
Sf(p)<c,or f=cinside J. In any case (Df), =0 at some p inside J. Since U
is simply connected, p € U, contrary to U being in the complement of the
critical set. 1

The corresponding issues in dimension 2 = 3 are tackled in [4], but we make
a few comments here. It is easy to see that any finite set in R” is a critical set
but that the (m#—1)-sphere is not. Indeed, the 2-dimensional argument just
given proves Theorem 2.

THEOREM 2. If C C R" is critical, compact, and non-empty, then any
bounded component of C¢ has disconnected boundary. In particular, no
compact hypersurface in R™, smooth or not, is a critical set.

Space curves are more fun. The function f(x, y, z) =z(x%+y%—1) is critical
exactly at the unit circle in the z =0 plane in R3. It is not proper because the
whole z =0 plane is part of £ ~!(0). In fact, we have this next theorem.

THEOREM 3. A circle in R3 is not properly critical.

Proof. When m =2, the point at « in R” has small connected neighbor-
hoods V. Under f, the image of V is connected. By properness,

inf{|fv|:veV}->o as inf{lv|:veV}- .
Since fV is connected, this implies that
inf{ fv:veV}—->o or sup{fv:velV}]-> —ox.

Hence, the image of a proper function f: R?® >R is a half-ray (—oo, a] or
[a, ©0); we assume it is the latter and that cp(f) = C. The minimum value a
is achieved and f ~!(a) is a non-empty subset of cp(f). Assume that cp(f)
is an embedded circle C. Since C is connected, f is constant on C; that
is, f(C)=a. Take any b>a and consider £ =f~1(b). It is a non-empty,
smooth, boundaryless, compact surface in R3. Inside each component of £,
f achieves a maximum or minimum; that is, inside each component of X
there lies a point of C. Since C is connected and disjoint from X, we see that
¥ is connected and encloses C.
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Properness of f implies that the gradient flow (i.e., the flow generated by
the vector field grad(f)) has the property that each of its trajectories off C
meets L. It follows that C¢ is diffeomorphic to £ XR. Adjoining the point
at infinity to R® produces the 3-sphere. The fact that C¢= X X R implies that
the neighborhood of o is foliated by copies of X. This can only happen if
¥ = S2. However, SZx R is simply connected, whereas R® minus an embed-
ded circle is never simply connected. Having arrived at a contradiction, the
theorem is proved. O

Theorem 3 shows two ways in which Theorem 1 fails in higher dimensions.
First, proper criticality and criticality for compact sets in R"” when m =3
are inequivalent, since the circle is critical but not properly so. Second, mul-
tiple connectedness of the complement of a compact set does not imply that
it is critical. For we could take the circle C and enclose it in a large sphere S,
and then draw a circle C’ outside S. The set K =CUSUC’ is compact, and
both components of its complement are multiply connected in the sense that
their homology and homotopy groups H,, H,, m,, w, are nontrivial. Suppose
that f:R¥—>R is a smooth function with cp(f) =K. Because C and S are
connected, f is constant on each; say f(C)=c and f(S)=0. Let B be the
compact ball bounded by S. Since f is nonconstant on B, we may assume
that max f | 5> 0. The maximum occurs at some point p interior to B and
therefore on C. Thus, ¢ > 0. Similarly, 0 < f(x) <c for all xe B\K. Thus,
for x e B, f(x) — 0 if and only if x — S. The interior of B is diffeomor-
phic to R3 by a diffeomorphism, say ¢: int(B) — R3, fixing C. Then F(x) =
log(fe¢~1(x)) is a smooth proper function on R? with critical set C, and
this contradicts Theorem 3.
A more general version of Theorem 3 is the following.

THEOREM 4. A non-empty compact connected set C C R" is properly crit-
ical if and only if it is smoothly cellular, that is, its complement is diffeo-
morphic to the complement of a point.

Proof. The “only if” part of the theorem has a proof similar to that of Theo-
rem 3. Let C=cp(f) =f ~!(a) for f: R" - [a, «) a smooth proper function,
and consider L = f ~!(b) as before. Then R"\ C = L xR, where T X o cor-
responds to o e S™. It is tempting to conclude that “clearly” £ = S~ !and
hence that R\ C = S”~1x R = R™\ 0. Here is a more convincing argument.

Choose a smooth compact disc D C S” such that o eint(D) and DNC =
0. (See Figure 1.) Every trajectory ¢,x of the grad( f)-flow in R”\ C crosses
oD on its way from the source C to the sink . Thus, the closure of the re-
verse orbit of D, ¥_(dD)={¢,x:t <0 and x € dD}, is a compact subset of
R™, Let 8: S — [0, 1] be a smooth bump function which is 1 on some neigh-
borhood of d_(aD)UC and 0 on some neighborhood W of «. Then Bf is
smooth on S” (even though f may be nasty at o) and —grad(3f) generates
a smooth flow ¢ on S™. It satisfies

(@) ¥, (x)=¢_(x) for xed_(dD) and ¢ =0, and

(b) Y,(x)=xforxeCUW and ¢t eR.
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Figure 1

If T'is large then ¥ = y: §” - §™is a diffeomorphism such that ¥(x) =x on
CUW and {¥"(D)} is a monotone family of smooth discs with U ¥"(D) =
S™\C. (See Figure 2.) In particular, S\ C is the monotone union of the
smooth open m-cells ¥"(int(D)). By a C® version of M. Brown’s monotone
cell theorem (proved in the appendix), S”\C is diffeomorphic to R” and
therefore R™\ C = R”\0.

To prove the converse, assume that ¢: R”\ C — R\ 0 is a diffeomorph-
ism. Reflecting ¢ in the unit sphere if necessary, we may assume that ¢ ex-
tends to a continuous map @: R"” — R sending C to 0. Choose a smooth
proper function g: R"” — R having a very flat minimum at 0 and having no
other critical points. Then f =g is smooth and proper, and cp(f)=C.

Figure 2
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That the minimum of g being flat enough implies smoothness of f appears
as Lemma 3 in the next section. O

We thank M. Brown, R. Gompf, and M. Shub for useful conversations.

2. Flat Critical Points

Let g:R™ 5 R” be any function, continuous or not, and let ACR" be a
closed set. We say that g is k-flat at A if

lgx—gy|

|x—y|*
In other words, as (x, y) approaches the 4-diagonal A 4= {(a,a) e R” XxR"},
the variation of g over the segment [x, y] becomes much less than its kth
power. We say that g is co-flat at A if it is k-flat for all kK = 0. More generally,
recall that a modulus of continuity is a function u(s) > 0, defined for s >0,
such that u(s) — 0 as s —» 0. The function g is u-flat at A if

lg(x)—g(»)|
0,(x,y):=
W6 7) p(lx—yl)

If g is C!then g is critical at p if and only if it is 1-flat at p. If R” and R” are
replaced by smooth manifolds M and N”, then we make the corresponding
definition using smooth compact charts. It is easy to see that u-flatness is
independent of the particular coverings considered.

The idea of flatness and its use to smooth off corners as in Lemma 3 below
are reminiscent of the Kneser-Glaeser rough composition theorem. See [1,
p. 35]. However, we are concerned with the differentiability of flat composi-
tions, not their existence, and this makes our results more elementary.

First we prove an existence result for uncomposed flat functions.

Op(x,y):= -0 as inf{|x—a|+|y—al}—-0.
aeA

-0 as (x,y)— A,

LEMMA 1. Given a compact set K CR"™ and a modulus of continuity p,
there is a smooth proper function g:R" — [0, ) such that g 0)=K and
gisp-flat at K. If m=1then f=§g has cp(f)=K and is p-flat at K.

Proof. This is an easy differential topology exercise. Choose a locally finite
partition of unity, 1 =3 o; on R”\ K, such that the support of each g; is dis-
joint from K. Define g =3 ¢;0;, where ¢; » 0 rapidly as supp(s;) - K and
€; — oo as supp(o;) — . The assertion in dimension 1 is clear (it includes
Theorem 1 on R). ]

LEMMA 2. Ifg:R"—>R"isco-flat at a closed set ACR™ and if g is smooth
on A, then g is smooth on all of R'" and all its derivatives vanish on A.

Proof. «o-flatness implies 1-flatness, so if @ € A and v € R” then
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as t - 0. Convergence is uniform in v, |v| <1. This implies that (Dg),, exists
and equals zero. Thus, Dg:R"” - L(R",R") is a well-defined map that is
smooth on A€, We claim that Dg is co-flat at A.
For x, ve R”, we have
g(x+tv)—g(x)

(Dg)x(v) = , +r(x,v,t)

and r/t — 0 as { —» 0. Convergence is uniform in v, |[v| <1, but it conceivably
depends on x. If (x,y) » A4 with x, y e A°and x # y, choose f = #(x, y) such
that

0<t=<|x—y|, ___r(x,tv,t) <|x—yl**!, and r»un <|x—y|**L
Then
|(Dg)x(v)—(Dg),(v)|
|x—y|*
g(x+tvt)—g(X) (e, £)— g(y+tvt)—g(y) —r(u.1)
N x—F

<Ok 1(x + 10, X) |0 T+ 84 (420, Y) |04 2|x — ),

and since 0 < ¢ <|x—y|, this quantity tends to zero as (x,y) > Ay If x or y
belongs to A then (Dg), or (Dg), equals zero, and the preceding estimate
improves. Thus Dg is k-flat at A for all k£, and we can apply induction to
conclude that D(Dg) exists everywhere and vanishes on 4. Continuing, we
see that g is smooth and that (D"g)a =0forallaeAand k=1. Ol

We shall prove that pulled-back and pushed-ahead functions ¢*g = go¢ and
©.8 =go¢ ! are smooth when ¢ is not entirely smooth but g is very flat.

LEMMA 3. Suppose that A, B are compact subsets of smooth manifolds
M™ N" and ¢: M — N is a continuous map sending A into B, which is
smooth off A. There exists a modulus of continuity v such that if g: N-R
is smooth and v-flat at B then the pulled-back function op*g =gop: M - R is
smooth. If in addition ¢ diffeomorphs A onto B€ then, for some modulus
of continuity p, the pushed-ahead function ¢,g=gop~': N— R is smooth,
provided that g: M — R is smooth, constant on A, and p-flat at A.

Proof. The pulled-back function ¢*g =go¢ is intrinsically defined on M.
Since smoothness and flatness are local issues, we may assume that M, N are
smooth compact manifolds with boundary, that they are contained in R",
R”, and that they contain A4, B in their interiors. Working in a single coordi-
nate system like this is mainly a notational simplification. Define

v(s) =inf{e‘1/|"‘y|:x,yeMand le(x)—(y)|=s].

Then v(Jex—py|) = e~ VIx=)l If g is »-flat at B, then gog is co-flat at A and
(by Lemma 2) smooth on M. That is, ¢*g is smooth.
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The analysis of the push-ahead ¢, g =ge¢p~': N - Ris similar. Again, mak-
ing everything local, we assume that M, N are compact smooth m-manifolds
with boundary, contained in R”, and containing A, B in their interiors. Be-
cause g is constant on A, ¢, g is well defined. We set

p(s)=infle V¥ x, ye Nand | Y(x)— o~ (»)| = 5}.

Then p(|o ' (x)—¢ 1 (»)|) <e V*7 If g: M- Ris p-flat at A then gog ™!
is co-flat at B and, by Lemma 2, go¢~!is smooth. U

REMARK. Observe that ¢*g and ¢, g are as flat as we want at A and B by
proper choices of » and p.

3. Some Plane Topology

In this section we do some standard 2-dimensional pushing and pulling. Any
collection § of disjoint Jordan curves in R? has a natural partial order. One
writes J < J’ to indicate that J is enclosed by J'. If neither J< J” nor J"< J
then one says that J, J” are mutually exterior. (See Figure 3.) Clearly, distinct
maximal elements of § respecting the partial order < are mutually exterior.

Figure 3

LEMMA 4. (See Figure 4.) Let § be a finite collection of disjoint Jordan
curves in R% The subcollection of maximal elements respecting the partial
order < forms the frontier of the unbounded component of R*\U . gJ-

Proof. Clear. O]

LEMMA 5. Given a compact set K C R? and given e > 0, there exist finitely
many mutually exterior smooth Jordan curves J,, ..., J, such that:

@) Jy,...,Jy are disjoint from K but are contained in the e-neighborhood
of K; and
(b) KXC U D;, where aD; = J,.

Proof. Let g: R?>— [0, =) be the function supplied by Lemma 1. It is smocth
and proper, and g ~1(0) = XK. By the Morse-Sard theorem, most of its values
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N

Figure 4

are regular. Let ¢ > 0 be a small regular value. Then I" = g ~!(¢) is a compact
smooth 1-manifold that lies in the e-neighborhood of K. Necessarily, T is
disjoint from K, separates K from oo, and consists of finitely many smooth
Jordan curves vy, ..., v,,. By Lemma 4, there are finitely many mutually ex-
terior Jordan curves Jy, ..., J; among vy, ..., v,, such that U J; separates K
from oco. Thus X is contained in the discs D; bounded by the J;. Since the J;
are part of I', they lie in the e-neighborhood of K and miss K. ]

LEMMA 6 (Punctures). Any non-empty connected open subset U of S? is
diffeomorphic to a punctured 2-sphere where the punctures form a totally
disconnected compact subset K of a longitude. Besides, a diffeomorphism
¢: U— S?\K can be chosen so that it extends to a continuous map @: S*—
82, isotopic to the identity, which pinches distinct connected components
of S?\U to distinct points of K.

REMARK. The set U can be quite nasty—it could be a disc minus C x [0, 1]
where C is a Cantor set, or it could be a disc with a dendrite or non-locally
connected boundary minus a set of holes that accumulate densely at the
boundary. (See Figure 5.)

Proof. Let P be the complement of U; that is, let P =R?\ U. We may assume
that P is interior to the unit disc D. Choose ¢y > 0 with ¢y < dp;, (P, D),
where d;, denotes the minimum distance between points of P and dD.
By Lemma 5, there exist disjoint discs Dy, ..., D, whose union contains P,
and aD; is a smooth Jordan curve lying in the e;-neighborhood of K with
6D,ﬂP =@.

Set D°=\ D;; it is a compact smooth neighborhood of P. Then choose
€, > 0 with €; < d;, (P, 3D°). Inside each D;, we use Lemma 5 on D;NP to
find a finer family of discs covering P; this time their boundaries lie in the ¢;-
neighborhood of P. Since dD; NP =@, this is valid. Repeating the construc-
tion, we get a sequence {"} of finite covers of P, D" ={D{", ..., D}'}, where
D}"is a smooth disc and k = k(m). We may assume each D/ meets P.
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Figure 5

Set D =\J; D{". The D™ are a nested strictly decreasing sequence of com-
pact smooth neighborhoods of P such that D" is contained in the ¢,,-neigh-
borhood of P. We may assume that ¢,,— 0 as m — oo,

For each m=0,1,2, ..., choose an index i =i(m)e{l, ..., k(m)} and set

Om= i’?m) and Q= ﬂ Om-

We claim that if Q # @ then it is a component of P. Clearly, Q,, is compact,
connected, and splits P; that is, each component of P lies wholly in Q,, or
wholly in its complement.

If Q is not a single component of P then there exists a point x € Q\P.
By hypothesis, P°= U is a connected neighborhood of <, and so there is a
path v in U from x to oo, For some ¢ > 0, v misses the e-neighborhood of P,
and so yNaD" =@ for large m. In particular, yN3aQ,,=9d. But since x € Q,
X € Q41 Since Q,, 4 is a disc that is interior to Q,,, there is a path 8 in
Q. +1 from PN Q to x. (See Figure 6.) Then BU+~ is a path from P to oo that
misses dD"™, and contradicts the fact that P C D", This proves the claim that
Q is a component of P.

Figure 6
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To complete the proof of Lemma 6, we must construct a diffeomorphism
of U to S?\ K, where K is some totally disconnected subset of a longitude L.
We do so by stages. Let ¥ be a diffeomorphism of S2 to itself, isotopic to the
identity, that sends each disc D? of D°to a disc A that is small and has non-
trivial intersection with L. Then let ¢, be a diﬁ'eomorphism of S? to itself
that sends each disc A? to itself and sends each disc v (D ) to a much smaller
disc Al also having nontrivial intersection with L. (See Figure 7.) Off A®=
U; A?, let ¢, be the identity map. (We are using the fact that there is no ob-
struction to moving several disjoint subdiscs to new positions in a larger disc.)

Figure 7

Inductively assume that ¢,, ..., ¥, have been defined and set

¥ =VYme - o¥q.
Let ¥, be a diffeomorphism of S? to itself that sends each disc A" to itself
and sends the subdisc \Ifm(Dm“) to a much smaller subdisc A’"Jrl having
nontrivial intersection with L. We may ensure that diam(A7*!) < 1/(m+1).
Off A" =J; AY, make ¢, the identity map.

The composition diffeomorphisms ¥,, and ¥,, ., differ only on D", and
the difference of their values on D/" is confined to AY. Since diam(A7')=30
as m — oo, it follows that ¥,, converges uniformly to a limit as 7 — oo, say
¥ =lim ¥,,, and ¥ diffeomorphs U= U,,(D")¢ onto V=U,,,(A™)*. By con-
struction, K =(,, A" is a compact totally disconnected subset of L and K =
V<. Because infinite nested intersections of the discs D/" are components of
P, and infinite nested intersections of the discs A}’ are points of K, we see
that ¥ sends distinct components of P to distinct points of K. The diffeo-
morphisms ¥4, ¥, ... are isotopic to the identity because they equal the iden-
tity on parts of S2. The diffeomorphism v, is isotopic to the identity by
choice. Thus, ¥ =1lim ¢, -+ ey is isotopic to the identity. L]

4. Compact Planar Critical Sets

In this section we prove the harder half of Theorem 1: A compact subset of
the plane is critical if each component of its complement is multiply con-
nected. If f: M —[0,1] is smooth and cp(f) = US, then we say that f is a
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boundary-critical Morse function for U. Inside U, f has no critical points,
while outside U, all points are critical. On connected components of U<,
f is constant. The exterior of a bounded set B C R" is defined to be the con-
nected component of co in B€; we denote it by ext(B).

LEMMA 7. Open multiply connected subsets of S* have boundary-critical
Morse functions.

Proof. First assume that the open, multiply connected set U= X\ K, where
K is a relatively closed, totally disconnected subset of the interval (—1,1) X
{0} in the x-axis and I is the open square X =(—1,1) X (—1,1). Since U is
multiply connected, K # @; we assume that K contains the origin. By Lem-
ma 1 there is a smooth function g: R — [0, 1] such that

g (0)=K*={xeR: (x,0)eKor |x|=1],
and g is very flat at K* Define

1
G_(x) =an1 g(t)dt and G, (x) =S g(t)dt,
- X
where a is a constant chosen so that G_(0) = G, (0). We glue the functions

G. together as
_ | G(x) if x=0,
G(x)—{G+(x) if x=0.

Then G: R — [0, 1] is smooth, positive on (—1, 1), and zero elsewhere; G is
very flat at K*; and cp(G)=K* Let 3: R —[0,1] be a smooth bump func-
tion such that 8 is positive on (—1, 1), zero on the rest of R, and has a unique
critical point in (—1,1) at 0. We may make this critical maximum as flat as
we want. Let B=cp(8)=(y:|y|=1or y=0}. We then set

h(x,y)=G(x)B(y).

It is clear that #: R? - [0, 1] is a smooth function, positive on T and zero else-
where. If (x, y) e X is a critical point of 4 then both partials of / vanish there.
This happens if and only if y=0and (x, 0) € K. That is, cp(#) = K Uext(L).
This takes care of the case U= X\ K. Note that since G and 8 are very flat
at K* and B, respectively, £ is very flat at the critical set K Uext(X).

Now consider the general case where U is a multiply connected open sub-
set of S2. By Lemma 6 there is a continuous map ¢: S2— S? such that Uis
carried diffeomorphically to the complement of a compact totally discon-
nected subset K C L, where L is some longitude of S2. The components of
U* are carried to distinct points of K. There is also a map y: SZ— S? that
diffeomorphs X onto S2\ o, sends the exterior of I to oo, and sends the x-
axis to the longitude L. We consider the subset X’=y ~1(K) of the x-axis,
and apply the previous case to obtain a smooth function 4#: R®>— [0, 1] such
that 4 is very flat at K’ Uext(X), #~1(0) =ext(X), and cp(h) =K’ Uext(X).

First we apply Lemma 3 and the subsequent remark with M =N = §2,
A=ext(X), and B = {co}. Since A is constant on 4 and # is very flat at A, we
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know that 4 pushes ahead to a smooth function, y,/4: S?— [0, 1], where . &
is very flat at o and cp(y.4) =K. Then we apply Lemma 3 with M=N=
S?, A=U¢ and B=K. We see that ¥, h pulls back to a smooth function
e*(Yh)=f:8%>[0,1], and that f is very flat at U€. In particular, cp(f) D
U*. On the other hand, each x € U is carried by ¢ to a point of $2\ K and
then by ¢! to a point of X\ K". (See Figure 8.) It follows that x is regular
and cp(f)=U°". O

Figure 8

EXAMPLE. If Uis a2-holed annulus (a “pair of pants”; see Figure 9), then
Lemma 7 produces a function critical only on U*. Its graph is a double vol-
cano with no saddle between the craters.

Figure 9

Proof of Theorem 1. Let K be a compact non-empty subset of the plane. In
Section 1 we showed that if K is critical then each component of K€ is mul-
tiply connected. (This was easy.) Now we prove the converse.

We consider the components of K¢, and label them U,, Uj, ..., where Uy =
ext(K) is the unique unbounded component of K°. Each U; is multiply con-
nected and we can use Lemma 7 to find an appropriate boundary-critical
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Morse function f; for it. On Uj, f; has no critical points, but f; is constant
on each component of Uf. Now any other Uy lies entirely in one component
of Uf because it is connected. Thus, f; is constant on each Uy with k7 j.

For j=0, we may assume that f;1(0)=oc0. For j =1, choose constants
a;> 0 such that the C7 size of a; f; is <27/, The series

f(x)=log fo(x)+ X a; f;

converges uniformly in the C* sense. It can be differentiated termwise, and
we see that

[1/fo(X)1(Dfo), if xeUy,
(Df)x=1 ai(Df})y if xeU; and j=1,
0 if xekK.

Thus, cp(f)=K. Since fy(x)—0 if and only if |x|—> oo, log f; is proper
and so is f. O

5. Unbounded Planar Critical Sets

Given a closed, noncompact X C R?, when is K critical? That is, when is there
a smooth function f: R?> - R such that K =cp(f)? We say that o is arcwise
accessible in U C R™ if there is an arc «: [0, ) — U such that «(#) - o as
t — oo,

THEOREM 5. A closed set K CR? is critical if and only if o is arcwise
accessible in each simply connected component of K°.

An example of an unbounded connected open set in R?in which oo is not arc-
wise accessible is given by

W= {(x,y)eR2:0<y—%sin;IC—<1 and 0<x<12.

(See Figure 10.) Topologically, W is an open disc, and clearly o is not arc-
wise accessible in W. By Theorem 5, W€ cannot be critical. One may also
check this directly: If cp(f) D W° then f is constant on W, and (some
thought shows that) an interior maximum or minimum is forced on it.

If K is any closed set of parallel lines in R? then the components of its
complement are open strips. They are simply connected, and it is easy to see
directly that any such X is a critical set. This also follows from Theorem 5
since oo is arcwise accessible in the strips.

REMARK. At one time we believed in a different way to characterize the
simply connected components U of the complement to a critical set. We
thought they were “properly unbounded”, by which we meant that, for any
compact set B, U\ B has an unbounded component. Although it is trivial
that arcwise accessibility of co implies proper unboundedness, the converse
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Figure 10

is false. An example can be constructed by gluing countably many elongated
copies of W to a common disc.

LEMMA 8. There exists a boundary-critical Morse function f:R*>—][0,1]
for any open connected subset UC R? in which « is arcwise accessible.

Proof. If U is multiply connected then Lemma 7 applies and produces a
boundary-critical Morse function defined on all of S2, not just on R% Sup-
pose that U is simply connected and that « is an arc to «in U, «: [0, ) — U.
Then U\ {«(0)} is multiply connected and it has a boundary-critical Morse
function # defined on S2. Excising « from U leaves a simply connected set
U’; indeed, there is a continuous map ¢: S2 — S? which retracts o to . (See
Figure 11.) It can be arranged that ¢ is smooth except at oo, is the identity
map off a thin neighborhood of «, and diffeomorphs a*=R?*\« to R? In
particular, it diffeomorphs U’ onto U. Since the restriction of ¢ to a“is a
diffeomorphism onto R?, we see that the push-ahead of 4 | 4 under ¢ is the
boundary-critical Morse function f: R%>— [0, 1] that we seek. O]

Proof of Theorem 5. First, suppose that U is a simply connected compo-
nent of the complement of cp(f), where f:R?> - R is smooth. Choose a
regular value ¢ assumed by fon U. Then I' = f ~!(¢)N U is a smooth, non-
empty, boundaryless 1-manifold. It is properly embedded since c is regular.
This means that I' does not accumulate on itself and is a closed subset of R>.
Necessarily, I consists of Jordan curves and arcs that connect o to itself.
But as shown in Section 1, a Jordan curve J C T is impossible since f would
have to have a maximum or minimum inside J, say at p, and p would lie in
U since U is simply connected. Therefore I' consists of arcs to co in U, dem-
onstrating that oo is arcwise accessible in U.
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Figure 11

Second, suppose that K is a closed subset of R? and oo is arcwise accessible
in each simply connected component of K€, Let U;, U,, ... denote the com-
ponents of K¢. By Lemmas 7 and 8 there exists a boundary-critical Morse
function f;: R? - [0, 1] for each U;. Choose a constant a; >0 so that the C/-
size of a; f;, restricted to the disc of radius j, is less than 27/, Then ¥ f; con-
verges C*-uniformly on compact subsets of R?, and termwise differentia-
tion is legal. Since f; is constant on any Uy, k # j, we see that cp(f)=Kas
in the compact case. U

FINAL REMARK. One might ask what happens if we require that f be real
analytic. Clearly, the critical set is an analytic curve or variety (with singu-
larities permitted). One could conjecture that any analytic curve in the plane
whose simply connected complementary components are arcwise accessible
to oo is critical for some real analytic function on R2. Similarly, one could
ask about such global conditions on the critical set of a harmonic function.
However, this is only interesting in dimension at least 3, since the critical
point set of a nonconstant harmonic function on R? is discrete.

Appendix: Cellularity

In [3] Brown introduced the concept of (topological) cellularity of a com-
pact subset C C R”. One may consider six additional types of cellularity:
(1) Brown’s definition: C is the monotone intersection of compact
topological m-cells.
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(2) R"\C=R"\0, where “=” denotes homeomorphic.

(3) S"\C=R",

(4) C is the monotone intersection of compact smooth m-cells.

(5) Smooth cellularity: R”\ C = R”\0, where “~” denotes

diffeomorphic.

6) S"\C=R",

(7) C is properly critical and connected.

Brown showed that (1)-(3) are equivalent. Using the generalized Schoen-
flies theorem proved in [2], this reduces to showing that the monotone union
of topological open m-cells is an open m-cell. In what follows, we extend his
result to the smooth case and deduce that (4)-(7) are equivalent.

If m # 4 then there is no difference between smooth and topological open
m-cells, and thus no difference between smooth and topological cellular-
ity. This follows from the fact that R” has a unique smooth structure when
m# 4; see [6].

In the 4-dimensional case, however, pathology abounds: there exist com-
pact subsets C C R*such that $*\ C is homeomorphic but not diffeomorphic
to R*. (This amounts to the existence of “a fake R* occurring as an open sub-
set of the true R*” a result of A. Casson and M. Freedman; see [5, p. 98].)
Such a set C is topologically cellular because it obeys (3), but is not smoothly
cellular because it violates (6). Therefore, topological and smooth cellularity
are inequivalent in dimension 4, and Theorem 4 becomes false if they are
confounded.

SMOOTH MONOTONE CELL THEOREM. [If X=U X; is a smooth m-
manifold, X, C X, C ---, and X; =R" for each i, then X =~R",

Proof. Brown’s construction in [3] proceeds perfectly well in the smooth
case, up to the last step where one wants to assert that X = R" follows from
X being a smooth compact m-disc D to which smooth annular collars A;
are successively attached, A, being attached to dD, A, being attached to
d(DUA,), and so on. Justifying this requires “successively straightening the
smooth parameterization of A; ; without disturbing that of A4;.” More pre-
cisely, we establish the following lemma.

LEMMA. Suppose that f;: S"~1x[0,11- Ayand f,: S"~1x[1,2] > A, are
diffeomorphisms onto smooth m-annuli in the m-manifold X. If A\NA,=
f18S=1,S8, where S=S""1x1, then there is a diffeomorphism

f:8"1%[0,2] > A;UA,
extending f.
Proof. Set S’=f,S=f,S and consider the diffeomorphism g:
S8
hy U5
S = S
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Then (x,s) - f>(g(x,1),s) is a parameterization of A, that equals f; on S.
Thus, it is no loss of generality to assume that f,=f, on S.

Since f}, f, are smooth embeddings, they extend smoothly to embeddings
F, F, of 8" !'x[0,14+6] and S™~!x[1-36,2], respectively. The product
tubular neighborhood » of S in $”~! xR is sent by F,, F, to smooth tubular
neighborhoods vy, v, of §”in X. (See Figure 12.) By the uniqueness of tubular
neighborhoods, there is a diffeomorphism G: X — X such that G(»,) =»,.

/s

Figure 12

We may construct G so that it fixes all points on S’ and all points off a small
neighborhood of S’. Thus, GA,=A4,, GA, =A,, and G-F, is a parameteri-
zation of A4, having the same effect on » as does F). That is, we may assume
that Fi(x,s)=F,(x,0), where ¢ =0(x,s) is a smooth function defined for
|1—s| =<6 for which a(x,1)=1 and do/ds > 0. We replace ¢ with a smooth
function 7 = 7(x,s) so that 7 =¢ on a neighborhood of $”~!x[1-6,1],
7=s on a neighborhood of S~ x[1+8§, 2], and dr/ds > 0. (See Figure 13.)

s *
.«
.

1 .0
o] s=1+9d 2

Figure 13
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Then ¢: (x,s)~ (x, 7(x,s)) is a diffeomorphism S”~!x[1,2]9 and F;=
F,o¢ near S. That is, fjUF,°¢ extends f; to a diffeomorphism

SM=1x[0,2] > A4;UA,,
proving the lemma. O]

Returning to the proof of the smooth monotone cell theorem, we see that a
diffeomorphism f:R”— X =DUU A4; can be constructed as follows. Let
fo: R™(1) » D be a parameterization of D, f;: S™ !x[1,2]— A, a param- .
eterization of A;, and so forth. We may assume that A;NA;,;=/;(S;) =
fi11(S;), where S;=S""1x (i+1), i=1,2,.... We identify the unit (m—1)-
sphere, which is the boundary of R™(1), with S”~!x1. By the lemma, we
modify f| to g, so that it extends f,,. Next we modify f, to g, so that it extends
g1, and so on. Then f= fyUg,Ug,U--- is the required diffeomorphism. [J]

COROLLARY. If m#4 then conditions (1)-(7) are equivalent. If m=4
then the first three and the last four are equivalent, the former group being
strictly weaker than the latter.

Proof. As stated previously, equivalence of (1)-(3) was proved in [3]. In
Section 1 we used the smooth monotone cell theorem to show that (5) and
(7) are equivalent.

We assert that if D is a smooth compact m-cell in S”, then its complement
is a smooth open m-cell D’ and the closure of D’ is a compact smooth m-cell.
This is clear if D is a round disc. (See Figure 14.) In general, one can use the
smooth radial structure of D to define a diffeomorphism ¢: S fixing all
points off a small neighborhood of D and shrinking D to a smooth round

Figure 14
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disc. The truth of the assertion is invariant under the ambient diffeomorph-
ism ¢. From this it follows at once that (4) < (6).

It is clear that (6) = (5), and so to complete the proof of the equivalence of
(d-(7) it suffices to show that (7) = (4). This is easy. Choose a large smooth
disc D in R” containing C in its interior, and choose a large value of 7' so
that ¥(D) is interior to D, where ¥ =¢_+ and ¢ is the grad(f)-flow sup-
plied by (7). Then C is the monotone intersection of the smooth discs ¥ "*(D).
Thus, in all dimensions (4)-(7) are equivalent; clearly (6) = (3). If m # 4 then
R™ has a unique smooth structure, so (3)=(6) and all the conditions are
equivalent. If m = 4 then the Casson-Freedman fake R* shows that (3) # (6),
and so the equivalent conditions (1)-(3) are strictly weaker than (4)-(7). O
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