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The problem of characterizing subspaces of C(K) admitting contractive
projections has been considered by different authors. From Nachbin, Good-
ner, and Kelley’s theorems we obtain that if K is an extremely disconnected
compact Hausdorff space, then a closed subspace of C(KX) is the range of a
projection of norm 1in C(K) if and only if it is isometric to the continuous
functions on an extremely disconnected compact Hausdorff space. Linden-
strauss and Wulbert [4] extended this result when K is a compact Hausdorff
space, showing that a Banach space Y is isometric to the range of a con-
tractive projection in some C(K) if and only if Y is isometric to C (L):=
{feC(L): f(x)+ f(o(x))=0 vxe L} for some compact Hausdorff space L
and some involutive homeomorphism ¢ of L. Later on, Lindberg [2] gave
necessary and sufficient conditions for a closed separating subspace E of
C(K) to be the range of a projection of norm 1, obtaining that each contrac-
tive projection onto E can be given in terms of a real-valued continuous
function defined on the closure of the single extreme points and the closure
of the double extreme points.

In this paper we attempt to discuss the conditions for a separating sub-
space of C(X) to be the range of a compact contractive projection in C(X),
X being a Hausdorff completely regular topological space with a funda-
mental sequence of compact sets. .

Throughout this paper X will stand for any Hausdorff completely regular
topological space and CG(X) for the space of the continuous real-valued
functions on X endowed with the compact-open topology. Given a linear
subspace E of C(X) and a compact subset K of X, we shall set Eg:=
(feE:|f(x)|]<slvxeK}and Cx:={fe C(X):|f(x)|<1VxeK}, and de-
note by Ef and C§ their polar sets in the topological dual spaces of E and
C(X), respectively. E is said to be separating if, for each x,ye X, x#y,
there is some fe E such that f(x)s# f(y). E separates points and closed
sets of X if, for each closed subset A of X and xe X \ A4, there is some
feE such that f(x) ¢ f(A). For each xe X, 6, will denote the linear form
of (C(X))' (E’) such that 6,(f)=f(x) Ve C(X)(E). If A is a subset of
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(C(X))’ then z € A is said to be an extreme point of Aif z=Ax+(1—N\)y
(with 0<A <1 and x, ye A) implies that z=x=y.

Given x€ X, x is a double point of X if there is some y,e X such that
S(x)+f(y,) =0 for every fe E. If x is not a double point then x is called a
single point. If E is separating and x is a double point then y, is unique. The
set d(E) of all the double points may fail to be closed. So, for instance, 0
is not a double point of E={fe C(R): f(1/n)+ f(n)=0, ne N} since for
each a € R there is some f € E such that f(0)+ f(a) #0.

PROPOSITION 1. Let E be a separating linear subspace of C(X) and K a
compact subset of X. If z is an extreme point of Eg, then there exists some
a€R, |a| =1, and some x € K such that z = ad,.

Proof. If F:={aé,:|a|=1, xe K}, then its weakly closed convex cover is
contained in E%. On the other hand, if ¢ & CF">%) then there will be
some fe€ E such that ¢(f)>1and |f(x)|<1 vxeK; therefore o ¢ Eg and
CF°EE) = E2. Hence the extreme points of Eg are contained in F [1,
§25.1(6)]. O

It is worth pointing out that under the hypothesis of Proposition 1 there may
be some compact subset K of X and some x € X such that §, is not an extreme
point of Eg. For example, taking E:={fe C(R): f(%) = %(f(O) + (1))},
81/, is not an extreme point of Efy ; since 8y, = 380+ 36;. Under additional
suppositions a situation like this will not be able to hold.

PROPOSITION 2. Let K be a compact subset of X and let x € K. Suppose
that, for each fe E with f(x)=0, at least one of the following two condi-
tions holds:

(i) there exists some g € Ex and r >0 such that g(x)=1and g+ f/re€ Eg;
or

(ii) there is a sequence { f,,: n€ N} which is uniformly convergent to f in
K, and each f, verifies (i).

Then b, is an extreme point of Eg.

Proof. Let 6, = Nu*+(1—\)v*, with 0< X <1and u* v*e E}. First we shall
show ker 6, C ker u*Nker v*. Assume f(x)=0. If (i) holds, then 1=6,(g) =
Au*(g)+(1—N)v*(g) and 1 =06,(g+f/r)=Nu*(g+ f/r)+(1=N)v*(g+ f/r),
which requires u*(g) =v*(g) =1and u*(g+ f/r)=v*(g+ f/r)=1.So u*(f) =
v*(f)=0. If (ii) holds, given e> 0 there is some p € N such that if n= p,
sup{|(f—f,) (x)|: x€ K} <e. Therefore |u*(f—f,)|<eand |v*(f—f,)|<e.
And from u*(f,,) = v*(f,) =0it is clear that u*(f)=v*(f)=0.

Hence u*=ad, and v*=36,. On the other hand, as o€ E, there exists
some g € Ex such that g(x)=1,s01=|u*(g)|=|«| and 1 =|v*(g)|=|8|. And
from 1=46,(g) = Aad,(g)+(1—\)B6,(g) it is clear that oo = 3= 1. Therefore
u*=296, and v*=9,. U
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EXAMPLE. Let E:={fe C(R): f(0)+ f(1)=0}. Then, for each compact
subset K CR, if x€ K then b, is an extreme point of Eg. We shall show that
Proposition 2 holds. Assume f € E and f(x) = 0. For each ¢ > 0O there is some
6> 0 such that if || <& then | f(x+h)|<e. In case x# 0,1, we shall take
6 <maxf{|x|,|x—1|}. Let f.€ E such that

2 2

2 ) )
S ()= ——5—f(x—6)(y- (x- 5)) for ye [x—ﬁ, x—i],

) B
f=0 in ]x———,x+—[,

ff(y)=%f(x+6)(y—<x+g)> for ye[x+§,x+6:|,

and
S () =f(y) for yeR\[x—46,x+4].

Now {f7:=fi/n, n€N} is uniformly convergent to f in K, and for each
neN, if we take g, e Ex defined by

2 2

2 h) )
gn(y)=—6—(y—< ——2—>> for yE[x—i,x],

2 ) b
g,,(y)=—g(y—<x+§>> for ye[x,x+—2—:|,

and r, > supf| /;}(x)|: x€ K}, then g,+ f,}/r € Ek. O

b o
g,=0 in R\]x-———,x+——[,

LEMMA 1. If E separates points and closed sets of X, then the mapping
g:d(E)— d(E) such that o(x) =y, is continuous.

Proof. Let {x,:ae€l} be a net converging to x in d(E). Then for each
feE, {f(x,): ael} converges to f(x). So [f(yxa):ael} converges to
f(y,) and, since the topology on X is the initial topology defined by E,
{ Yx,: a €1} converges to y,; that is, {o(x,): a €I} converges to o(x). 0

From now on we shall assume that {K,: ne N} is a fundamental sequence
of compact sets of X. Given a linear subspace E of C(X), we shall say that
a projection p of C(X) onto E is compact contractive if, for each ne N,
sup{| pf(x)|: x e K,,} = sup{| f(x)|: xe K,;} Vf € C(X).

DEFINITION 1. We shall say that a single (double) point xe X is an ex-
treme single (double) point if §, is an extreme point of some Ef .

We shall denote by S (D) the set of all the extreme single (double) points
of X.
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LEMMA 2. The restriction of o to D is an involutive homeomorphism.

Proof. Take x € D; then §, is an extreme point of some E 1°<n' Clearly 6,(,) €
Eg , and if 8,y = Nu*+ (1 — N)v* (with 0 <A<land u*v*e Eg ) then
Oy =N—u*)+(1—-N)(—v*), so 6,=—u*=—v* and 6a(x)—u =p*. Hence
o(x)eD. . l

PROPOSITION 3. Let E be a separating subspace of C(X), p a compact
contractive projection of C(X) onto E, and p* the transpose linear map-
ping of p. Then:

(i) -for each xe S, p*(6,)=46,;

(ii) for each xe€ D, p*(6,) =t6,—(1—1)d,x), 0=t=<1.
Moreover, if E separates points and closed sets of X and d(E) is closed,
then (ii) also holds for each x € D.

Proof. For each xe X and ne N such that xe X, let
Efn={peC} :o|p=05,

which coincides with the closed convex cover of its extreme points. Now
p*8,€ ESfnsince, for each ge Cy,

| p*6,(8)|=|6x(pg)| =|pg(x)|<supf{|pg(»)|: yeK,)}
=supflg(¥)|: yeK,}=<1

and since, for each feE, p*6x(f)-— 0(pf)=06,(f).
On the other hand, if é, is an extreme point of Eg then each extreme

point of Eff~ is an extreme point of Cg ; for if ¢ is an extreme point of EXn
and = au*+(1—a)v* (with 0<a<1 and u* v*e Cg ), then § —-<pIE——
au*| g+ (1—a)v*|g, u*|g, v*|pe ER .So 8, = u*|p=v* (g, and u*, v*e EXn,
coinciding with ¢. Moreover, each extreme point ¢ of EXnis o= ad, with
|a|=1and z€ K, (i.e., ¢ =6, or ¢ = —4§,), and coincides with 6, on E. As E
is separating, if 6,| =6, then z=x and if —6,| =6, then z=a(x), which
may happen only if x is a double point and ¢(x) € K,,.
(i) If x € S then §, is the only extreme point of EX»and p*6,=6,.If xe S
then x =1lim;.; x; with x; € S. Therefore
limé, =4, and p*§,=limp*s,, =limé, =4,.
iel iel ief
(ii)) If xe D, o(x) € K,,, and 6, and —§,(,, are the extreme points of EXn,
then there will be some 0 <¢ =<1 such that p*é,=t6,— (1—1¢)d,(x). If o(x) &
K, then 6, is the only extreme point of EX»and (ii) also holds with #=1.
If E separates points and closed sets in X and d(F) is closed, then for
each xe D, x=1im,;; x; with x; € D. Now
p*oy=1lim p*6, =lim £;6, — (1= £;)8,(x) = 16— (1 —1)0y(x)

iel iel

forsomeO0<t=<1. ]
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An example showing that the conditions given in Proposition 3 are not suffi-
cient may be obtained by considering the projection p of G(N) in C(N)
defined by p(ay,as,as,a4,...)=(—a,,a5,a3,a,4,...) and K,:={1,2,...,n},
neN. Then E:= p(C(N)) is a separating subspace of C(N), p*(8;) =—d,,
and p*(6,) =4, for each n=2. So the double points of N, 1 and 2, satisfy
p*(52) = fﬁz— (1 - t)5a(2) with 7=1 and p*(61) = t61— (1—' t)BU(l) with #=0.
However, p is not a compact contractive projection since, examining K,
|a,| <|ay| is false in general.

DEFINITION 2. Given a closed subspace X’ of X, we shall say that the
subspace E of C(X) is compact isometric to the subspace F of C(X"’) if the
linear mapping Iy of E in C(X"’) such that the image of each feFE is its
restriction to X’ has range F, and if, for each ne N such that K, N X"’ #0,
sup{| f(x)|: x € K,;} = sup{| Iy f(x)|: x € K,}.

PROPOSITION 4. If E separates points and closed sets of X, d(E) is closed,
and E is the range of a compact contractive projection of C(X) onto E, then
E is compact isometric to F = { f € C(SUD): f(x)+ f(o(x)) =0 vxe D].

Proof. Let us show that the range of I, of Ein C(SUD) is F. Set A,
K,N(SUD) for each neN. Given f€eF, if f;: fIA then by the Tietze ex-
tension theorem there is some f; in C(K;) such that fil 4,=J1. For each
i=2,let f;e C(K;_;UA,;) be defined by f;:=f;_;on K;_; and by f;: =114
on A;. Then there is some f, in C(X;) such that f, |k;_jua,=fi- Let us define
fin (B(X) so that fIK f,,, for which IgUD(f) fclearly holds.

Now pf € E and Isyp(pf) = £, since pf(x) = 8,(pf) = p*8.(f/) = 8,(f) =
f(x) for each xe S and since pf(x) *Bx(f) = (10, — (1 = 1) by () =

t(f(x) + f(a(x)) — f(a(x)) = f(x) for each xeD.
Finally, if K, N(SUD) #@, then
supf| f(x)|: x € K,N(SUD)} <supf| f(x)|: xe K,}
=sup{|e(f)|: € E} }
=supf|e(f)|: p e ext E} }
<sup{|8,(f)|: oyeext E§ , xe K}
<supf| f(x)|: xe K,N(SUD)}

for every feE. O
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