Compact Contractive Projections in Continuous Function Spaces

J. R. FERRER VILLANUEVA, M. LOPEZ PELLICER, & L. M. SANCHEZ RUIZ

The problem of characterizing subspaces of $\mathcal{C}(K)$ admitting contractive projections has been considered by different authors. From Nachbin, Goodner, and Kelley's theorems we obtain that if K is an extremely disconnected compact Hausdorff space, then a closed subspace of $\mathfrak{C}(K)$ is the range of a projection of norm 1 in $\mathcal{C}(K)$ if and only if it is isometric to the continuous functions on an extremely disconnected compact Hausdorff space. Lindenstrauss and Wulbert [4] extended this result when K is a compact Hausdorff space, showing that a Banach space Y is isometric to the range of a contractive projection in some $\mathfrak{C}(K)$ if and only if Y is isometric to $\mathfrak{C}_{\sigma}(L) :=$ $\{f \in \mathcal{C}(L): f(x) + f(\sigma(x)) = 0 \ \forall x \in L\}$ for some compact Hausdorff space L and some involutive homeomorphism σ of L. Later on, Lindberg [2] gave necessary and sufficient conditions for a closed separating subspace E of $\mathfrak{C}(K)$ to be the range of a projection of norm 1, obtaining that each contractive projection onto E can be given in terms of a real-valued continuous function defined on the closure of the single extreme points and the closure of the double extreme points.

In this paper we attempt to discuss the conditions for a separating subspace of $\mathcal{C}(X)$ to be the range of a compact contractive projection in $\mathcal{C}(X)$, X being a Hausdorff completely regular topological space with a fundamental sequence of compact sets.

Throughout this paper X will stand for any Hausdorff completely regular topological space and $\mathfrak{C}(X)$ for the space of the continuous real-valued functions on X endowed with the compact-open topology. Given a linear subspace E of $\mathfrak{C}(X)$ and a compact subset K of X, we shall set $E_K := \{f \in E : |f(x)| \le 1 \ \forall x \in K\}$ and $C_K := \{f \in \mathfrak{C}(X) : |f(x)| \le 1 \ \forall x \in K\}$, and denote by E_K° and C_K° their polar sets in the topological dual spaces of E and $\mathfrak{C}(X)$, respectively. E is said to be separating if, for each $x, y \in X$, $x \ne y$, there is some $f \in E$ such that $f(x) \ne f(y)$. E separates points and closed sets of X if, for each closed subset A of X and $x \in X \setminus A$, there is some $f \in E$ such that $f(x) \notin \overline{f(A)}$. For each $x \in X$, δ_x will denote the linear form of $(\mathfrak{C}(X))'(E')$ such that $\delta_x(f) = f(x) \ \forall f \in \mathfrak{C}(X)(E)$. If A is a subset of

Received February 2, 1990. Revision received November 28, 1990. Michigan Math. J. 38 (1991).

 $(\mathfrak{C}(X))'$ then $z \in A$ is said to be an extreme point of A if $z = \lambda x + (1 - \lambda)y$ (with $0 < \lambda < 1$ and $x, y \in A$) implies that z = x = y.

Given $x \in X$, x is a double point of X if there is some $y_x \in X$ such that $f(x) + f(y_x) = 0$ for every $f \in E$. If x is not a double point then x is called a single point. If E is separating and x is a double point then y_x is unique. The set d(E) of all the double points may fail to be closed. So, for instance, 0 is not a double point of $E = \{ f \in \mathcal{C}(\mathbf{R}) : f(1/n) + f(n) = 0, n \in \mathbb{N} \}$ since for each $a \in \mathbf{R}$ there is some $f \in E$ such that $f(0) + f(a) \neq 0$.

PROPOSITION 1. Let E be a separating linear subspace of $\mathfrak{C}(X)$ and K a compact subset of X. If z is an extreme point of E_K° , then there exists some $\alpha \in \mathbb{R}$, $|\alpha| = 1$, and some $x \in K$ such that $z = \alpha \delta_x$.

Proof. If $F := \{\alpha \delta_x : |\alpha| = 1, x \in K\}$, then its weakly closed convex cover is contained in E_K° . On the other hand, if $\varphi \notin \overline{CF}^{\sigma(E',E)}$ then there will be some $f \in E$ such that $\varphi(f) > 1$ and $|f(x)| \le 1 \ \forall x \in K$; therefore $\varphi \notin E_K^\circ$ and $\overline{CF}^{\sigma(E',E)} = E_K^\circ$. Hence the extreme points of E_K° are contained in F [1, §25.1(6)].

It is worth pointing out that under the hypothesis of Proposition 1 there may be some compact subset K of X and some $x \in K$ such that δ_x is not an extreme point of E_K° . For example, taking $E := \{ f \in \mathfrak{C}(\mathbf{R}) : f(\frac{1}{2}) = \frac{1}{2}(f(0) + f(1)) \}$, $\delta_{1/2}$ is not an extreme point of $E_{[0,1]}^{\circ}$ since $\delta_{1/2} = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$. Under additional suppositions a situation like this will not be able to hold.

PROPOSITION 2. Let K be a compact subset of X and let $x \in K$. Suppose that, for each $f \in E$ with f(x) = 0, at least one of the following two conditions holds:

- (i) there exists some $g \in E_K$ and r > 0 such that g(x) = 1 and $g + f/r \in E_K$; or
- (ii) there is a sequence $\{f_n : n \in \mathbb{N}\}$ which is uniformly convergent to f in K, and each f_n verifies (i).

Then δ_x is an extreme point of E_K° .

Proof. Let $\delta_x = \lambda u^* + (1-\lambda)v^*$, with $0 < \lambda < 1$ and $u^*, v^* \in E_K^\circ$. First we shall show $\ker \delta_x \subset \ker u^* \cap \ker v^*$. Assume f(x) = 0. If (i) holds, then $1 = \delta_x(g) = \lambda u^*(g) + (1-\lambda)v^*(g)$ and $1 = \delta_x(g+f/r) = \lambda u^*(g+f/r) + (1-\lambda)v^*(g+f/r)$, which requires $u^*(g) = v^*(g) = 1$ and $u^*(g+f/r) = v^*(g+f/r) = 1$. So $u^*(f) = v^*(f) = 0$. If (ii) holds, given $\epsilon > 0$ there is some $p \in \mathbb{N}$ such that if $n \ge p$, $\sup\{|(f-f_n)(x)| : x \in K\} < \epsilon$. Therefore $|u^*(f-f_n)| < \epsilon$ and $|v^*(f-f_n)| < \epsilon$. And from $u^*(f_n) = v^*(f_n) = 0$ it is clear that $u^*(f) = v^*(f) = 0$.

Hence $u^* = \alpha \delta_x$ and $v^* = \beta \delta_x$. On the other hand, as $o \in E$, there exists some $g \in E_K$ such that g(x) = 1, so $1 \ge |u^*(g)| = |\alpha|$ and $1 \ge |v^*(g)| = |\beta|$. And from $1 = \delta_x(g) = \lambda \alpha \delta_x(g) + (1 - \lambda)\beta \delta_x(g)$ it is clear that $\alpha = \beta = 1$. Therefore $u^* = \delta_x$ and $v^* = \delta_x$.

EXAMPLE. Let $E := \{ f \in \mathcal{C}(\mathbf{R}) : f(0) + f(1) = 0 \}$. Then, for each compact subset $K \subset \mathbf{R}$, if $x \in K$ then δ_x is an extreme point of E_K° . We shall show that Proposition 2 holds. Assume $f \in E$ and f(x) = 0. For each $\epsilon > 0$ there is some $\delta > 0$ such that if $|h| < \delta$ then $|f(x+h)| < \epsilon$. In case $x \neq 0, 1$, we shall take $\delta < \max\{|x|, |x-1|\}$. Let $f_{\epsilon} \in E$ such that

$$f_{\epsilon} \equiv 0 \quad \text{in} \quad \left] x - \frac{\delta}{2}, x + \frac{\delta}{2} \right[,$$

$$f_{\epsilon}(y) = -\frac{2}{\delta} f(x - \delta) \left(y - \left(x - \frac{\delta}{2} \right) \right) \quad \text{for} \quad y \in \left[x - \delta, x - \frac{\delta}{2} \right],$$

$$f_{\epsilon}(y) = \frac{2}{\delta} f(x + \delta) \left(y - \left(x + \frac{\delta}{2} \right) \right) \quad \text{for} \quad y \in \left[x + \frac{\delta}{2}, x + \delta \right],$$

and

$$f_{\epsilon}(y) = f(y)$$
 for $y \in \mathbb{R} \setminus [x - \delta, x + \delta]$.

Now $\{f_n^* := f_{1/n}, n \in \mathbb{N}\}\$ is uniformly convergent to f in K, and for each $n \in \mathbb{N}$, if we take $g_n \in E_K$ defined by

$$g_n \equiv 0 \quad \text{in } \mathbf{R} \setminus \left] x - \frac{\delta}{2}, x + \frac{\delta}{2} \right[,$$

$$g_n(y) = \frac{2}{\delta} \left(y - \left(x - \frac{\delta}{2} \right) \right) \quad \text{for } y \in \left[x - \frac{\delta}{2}, x \right],$$

$$g_n(y) = -\frac{2}{\delta} \left(y - \left(x + \frac{\delta}{2} \right) \right) \quad \text{for } y \in \left[x, x + \frac{\delta}{2} \right],$$

and $r_n > \sup\{|f_n^*(x)| : x \in K\}$, then $g_n + f_n^*/r_n \in E_K$.

LEMMA 1. If E separates points and closed sets of X, then the mapping $\sigma: d(E) \to d(E)$ such that $\sigma(x) = y_x$ is continuous.

Proof. Let $\{x_{\alpha}: \alpha \in I\}$ be a net converging to x in d(E). Then for each $f \in E$, $\{f(x_{\alpha}): \alpha \in I\}$ converges to f(x). So $\{f(y_{x_{\alpha}}): \alpha \in I\}$ converges to $f(y_x)$ and, since the topology on X is the initial topology defined by E, $\{y_{x_{\alpha}}: \alpha \in I\}$ converges to y_x ; that is, $\{\sigma(x_{\alpha}): \alpha \in I\}$ converges to $\sigma(x)$. \square

From now on we shall assume that $\{K_n : n \in \mathbb{N}\}$ is a fundamental sequence of compact sets of X. Given a linear subspace E of $\mathcal{C}(X)$, we shall say that a projection p of $\mathcal{C}(X)$ onto E is compact contractive if, for each $n \in \mathbb{N}$, $\sup\{|pf(x)| : x \in K_n\} \le \sup\{|f(x)| : x \in K_n\} \ \forall f \in \mathcal{C}(X)$.

DEFINITION 1. We shall say that a single (double) point $x \in X$ is an extreme single (double) point if δ_x is an extreme point of some $E_{K_n}^{\circ}$.

We shall denote by S(D) the set of all the extreme single (double) points of X.

LEMMA 2. The restriction of σ to D is an involutive homeomorphism.

Proof. Take $x \in D$; then δ_x is an extreme point of some $E_{K_n}^{\circ}$. Clearly $\delta_{\sigma(x)} \in E_{K_n}^{\circ}$, and if $\delta_{\sigma(x)} = \lambda u^* + (1 - \lambda)v^*$ (with $0 < \lambda < 1$ and $u^*, v^* \in E_{K_n}^{\circ}$) then $\delta_x = \lambda(-u^*) + (1-\lambda)(-v^*)$, so $\delta_x = -u^* = -v^*$ and $\delta_{\sigma(x)} = u^* = v^*$. Hence $\sigma(x) \in D$.

PROPOSITION 3. Let E be a separating subspace of $\mathfrak{C}(X)$, p a compact contractive projection of $\mathfrak{C}(X)$ onto E, and p^* the transpose linear mapping of p. Then:

- (i) for each $x \in \overline{S}$, $p^*(\delta_x) = \delta_x$;
- (ii) for each $x \in D$, $p^*(\delta_x) = t\delta_x (1-t)\delta_{\sigma(x)}$, $0 \le t \le 1$.

Moreover, if E separates points and closed sets of X and d(E) is closed, then (ii) also holds for each $x \in \overline{D}$.

Proof. For each $x \in X$ and $n \in \mathbb{N}$ such that $x \in K_n$, let

$$E_{X}^{K_n} := \{ \varphi \in C_{K_n}^{\circ} : \varphi \mid_E = \delta_X \},$$

which coincides with the closed convex cover of its extreme points. Now $p^*\delta_x \in E_x^{K_n}$ since, for each $g \in C_{K_n}$,

$$|p^*\delta_x(g)| = |\delta_x(pg)| = |pg(x)| \le \sup\{|pg(y)| : y \in K_n\}$$

 $\le \sup\{|g(y)| : y \in K_n\} \le 1$

and since, for each $f \in E$, $p^*\delta_x(f) = \delta_x(pf) = \delta_x(f)$.

On the other hand, if δ_x is an extreme point of $E_{K_n}^{\circ}$ then each extreme point of $E_{X_n}^{K_n}$ is an extreme point of $C_{K_n}^{\circ}$; for if φ is an extreme point of $E_{X_n}^{K_n}$ and $\varphi = \alpha u^* + (1-\alpha)v^*$ (with $0 < \alpha < 1$ and $u^*, v^* \in C_{K_n}^{\circ}$), then $\delta_x = \varphi|_E = \alpha u^*|_E + (1-\alpha)v^*|_E$, $u^*|_E$, $v^*|_E \in E_{K_n}^{\circ}$. So $\delta_x = u^*|_E = v^*|_E$, and $u^*, v^* \in E_X^{K_n}$, coinciding with φ . Moreover, each extreme point φ of $E_{X_n}^{K_n}$ is $\varphi = \alpha \delta_z$ with $|\alpha| = 1$ and $z \in K_n$ (i.e., $\varphi = \delta_z$ or $\varphi = -\delta_z$), and coincides with δ_x on E. As E is separating, if $\delta_z|_E = \delta_x$ then z = x and if $-\delta_z|_E = \delta_x$ then $z = \sigma(x)$, which may happen only if x is a double point and $\sigma(x) \in K_n$.

(i) If $x \in S$ then δ_x is the only extreme point of $E_x^{K_n}$ and $p^*\delta_x = \delta_x$. If $x \in \overline{S}$ then $x = \lim_{i \in I} x_i$ with $x_i \in S$. Therefore

$$\lim_{i \in I} \delta_{x_i} = \delta_x \quad \text{and} \quad p^* \delta_x = \lim_{i \in I} p^* \delta_{x_i} = \lim_{i \in I} \delta_{x_i} = \delta_x.$$

(ii) If $x \in D$, $\sigma(x) \in K_n$, and δ_x and $-\delta_{\sigma(x)}$ are the extreme points of $E_x^{K_n}$, then there will be some $0 \le t \le 1$ such that $p^*\delta_x = t\delta_x - (1-t)\delta_{\sigma(x)}$. If $\sigma(x) \notin K_n$, then δ_x is the only extreme point of $E_x^{K_n}$ and (ii) also holds with t = 1.

If E separates points and closed sets in X and d(E) is closed, then for each $x \in \overline{D}$, $x = \lim_{i \in I} x_i$ with $x_i \in D$. Now

$$p^*\delta_x = \lim_{i \in I} p^*\delta_{x_i} = \lim_{i \in I} t_i \delta_{x_i} - (1 - t_i) \delta_{\sigma(x_i)} = t\delta_x - (1 - t)\delta_{\sigma(x)}$$

for some $0 \le t \le 1$.

An example showing that the conditions given in Proposition 3 are not sufficient may be obtained by considering the projection p of C(N) in C(N) defined by $p(a_1, a_2, a_3, a_4, ...) = (-a_2, a_2, a_3, a_4, ...)$ and $K_n := \{1, 2, ..., n\}$, $n \in \mathbb{N}$. Then E := p(C(N)) is a separating subspace of C(N), $p^*(\delta_1) = -\delta_2$, and $p^*(\delta_n) = \delta_n$ for each $n \ge 2$. So the double points of N, 1 and 2, satisfy $p^*(\delta_2) = t\delta_2 - (1-t)\delta_{\sigma(2)}$ with t = 1 and $p^*(\delta_1) = t\delta_1 - (1-t)\delta_{\sigma(1)}$ with t = 0. However, p is not a compact contractive projection since, examining K_1 , $|a_2| \le |a_1|$ is false in general.

DEFINITION 2. Given a closed subspace X' of X, we shall say that the subspace E of $\mathcal{C}(X)$ is *compact isometric* to the subspace F of $\mathcal{C}(X')$ if the linear mapping $I_{X'}$ of E in $\mathcal{C}(X')$ such that the image of each $f \in E$ is its restriction to X' has range F, and if, for each $n \in \mathbb{N}$ such that $K_n \cap X' \neq \emptyset$, $\sup\{|f(x)|: x \in K_n\} = \sup\{|I_{X'}f(x)|: x \in K_n\}$.

PROPOSITION 4. If E separates points and closed sets of X, d(E) is closed, and E is the range of a compact contractive projection of $\mathbb{C}(X)$ onto E, then E is compact isometric to $F = \{ f \in \mathbb{C}(\bar{S} \cup \bar{D}) : f(x) + f(\sigma(x)) = 0 \ \forall x \in \bar{D} \}.$

Proof. Let us show that the range of $I_{\bar{S}\cup\bar{D}}$ of E in $\mathbb{C}(\bar{S}\cup\bar{D})$ is F. Set $A_n:=K_n\cap(\bar{S}\cup\bar{D})$ for each $n\in\mathbb{N}$. Given $f\in F$, if $f_1:=f|_{A_1}$ then by the Tietze extension theorem there is some \hat{f}_1 in $\mathbb{C}(K_1)$ such that $\hat{f}_1|_{A_1}=f_1$. For each $i\geq 2$, let $f_i\in\mathbb{C}(K_{i-1}\cup A_i)$ be defined by $f_i:=\hat{f}_{i-1}$ on K_{i-1} and by $f_i:=f|_{A_i}$ on A_i . Then there is some \hat{f}_i in $\mathbb{C}(K_i)$ such that $\hat{f}_i|_{K_{i-1}\cup A_i}=f_i$. Let us define \hat{f} in $\mathbb{C}(X)$ so that $\hat{f}|_{K_n}=\hat{f}_n$, for which $I_{\bar{S}\cup\bar{D}}(\hat{f})=f$ clearly holds. Now $p\hat{f}\in E$ and $I_{\bar{S}\cup\bar{D}}(p\hat{f})=f$, since $p\hat{f}(x)=\delta_x(p\hat{f})=p^*\delta_x(\hat{f})=\delta_x(\hat{f})=f(x)$ for each $x\in \bar{S}$ and since $p\hat{f}(x)=p^*\delta_x(\hat{f})=f(x)$.

Now $p\hat{f} \in E$ and $I_{\bar{S} \cup \bar{D}}(p\hat{f}) = f$, since $p\hat{f}(x) = \delta_x(p\hat{f}) = p^*\delta_x(\hat{f}) = \delta_x(\hat{f}) = f(x)$ for each $x \in \bar{S}$ and since $p\hat{f}(x) = p^*\delta_x(\hat{f}) = (t\delta_x - (1-t)\delta_{\sigma(x)}(\hat{f}) = t(f(x) + f(\sigma(x)) - f(\sigma(x)) = f(x)$ for each $x \in \bar{D}$.

Finally, if $K_n \cap (\bar{S} \cup \bar{D}) \neq \emptyset$, then

```
\sup\{|f(x)|: x \in K_n \cap (\bar{S} \cup \bar{D})\} \le \sup\{|f(x)|: x \in K_n\}
= \sup\{|\varphi(f)|: \varphi \in E_{K_n}^{\circ}\}
= \sup\{|\varphi(f)|: \varphi \in \operatorname{ext} E_{K_n}^{\circ}\}
\le \sup\{|\delta_x(f)|: \delta_x \in \operatorname{ext} E_{K_n}^{\circ}, x \in K_n\}
\le \sup\{|f(x)|: x \in K_n \cap (\bar{S} \cup \bar{D})\}
```

for every $f \in E$.

ACKNOWLEDGMENT. The authors are very grateful to the referee for his helpful suggestions.

References

- 1. G. Köthe, Topological vector spaces I, Springer, Berlin, 1969.
- 2. K. Lindberg, *Contractive projections in continuous function spaces*, Proc. Amer. Math. Soc. 36 (1972), 97–103.

- 3. J. Lindenstrauss, *Extension of compact operators*, Mem. Amer. Math. Soc. 48 (1964).
- 4. J. Lindenstrauss and D. Wulbert, On the classification of the Banach spaces whose duals are L_1 spaces, J. Funct. Anal. 4 (1969), 332–349.

Departamento de Matemática Aplicada Universidad Politécnica de Valencia 46071 Valencia Spain