Multipliers of de Branges Spaces

B. MARK DAVIS & JOHN E. MCCARTHY

0. Introduction

Hilbert spaces of functions on the unit circle T that can be extended to ana-
lytic functions on the disk D lie at the heart of harmonic analysis, from the
solution of the prediction theory problems of Szegd [24], Kolmogorov [14],
Helson and Szego [13], and Helson and Sarason [12], to the success of the
theory of de Branges and Rovnyak on spaces contractively contained in A2
in [4]. In this paper we consider certain of these latter spaces.

Let b be a fixed function in the unit ball of H*, the bounded analylic
functions on D; let D, = (1—T,T5)"/?, where T,,: H? —» H? denotes the Toep-
litz operator of multiplication by the function # followed by projection onto
H?, the space of square-integrable functions on the circle whose negative
Fourier coefficients vanish. Then the de Branges space JC(b) is defined to be
the range of D, with an inner product that makes D, into a partial isometry.
3C(b) is a (not necessarily closed) subspace of H?, on which the evaluation
functionals at points in the disk are continuous.

The spaces JC(b) were introduced by de Branges and Rovnyak in [5] and
[6] and have been studied and utilised in various contexts, ranging from
model theory [1] and kernels of Toeplitz operators [10], to exposed points in
H'123] and complex function theory [22]. The structure of the spaces, how-
ever, is still not well understood; a natural question to ask is, given a spe-
cific b, what are the multipliers of JC(b); that is, what functions (necessarily
in %) multiply JC(d) into itself? This question has been addressed in [20],
[21], [15], and [16]; we shed some further light on it below, but the general
solution is still unknown.

For any (positive) measure g on the circle, H2(g) will denote the closure
of the (analytic) polynomials in L?(x). In Section 1 we introduce the mea-
sure p;, associated with b; a function m is a multiplier of JC(b) if and only if
the Toeplitz operator T, defined a priori on polynomials, is bounded on
H(up).

Let us call a measure p Szegd if it is absolutely continuous with respect to
Lebesgue measure o on the circle, and if evaluation at any point of D is a
continuous linear functional on H?(u); any Szegd measure can be written

Received March 21, 1990. Revision received October 1, 1990.
Michigan Math. J. 38 (1991).

225



226 B. MARK DAVIS & JOHN E. McCARTHY

as |h|?o, where h is some H? function [9, p. 144]. If, in addition, the trunca-
tion operator I1 that takes a formal Fourier series Y- _ @,2" to X =0 a@,2"
is bounded on L?(u), then p is called Helson-Szegé. In Section 2 we show
that if u=|h|%0 is a Szegd measure then a necessary condition for 7}, to be
bounded on H?(y) is that m be in the range of 7j; in the special case that
1=|p|*p, where p is a polynomial and p is Helson-Szegd, we show that this
condition is also sufficient (Theorem 2.3).

In Section 3 we consider the effect of adding a singular measure to an ab-
solutely continuous one. Let T(g) = {m e H™: Ty is bounded on H?(n)}, and
let p = p,+ ug be the decomposition of u into absolutely continuous and sin-
gular parts (with respect to o); then we can classify 7(x) in terms of T(n,)
when p, consists of a finite number of atoms.

THEOREM 3.8. Lefpu= |h|20+2,,N=1 r,0x,, where h is an outer function in
H?, and each r, is positive. Then the following are equivalent:
(i) misin T(u).
(ii) For each n, m is in T(|h|*a+5y,).
(iii) (@) m is in T(|h|?0).
(b) Foreach n, the Fourier series of m at \, converges to some num-
ber m(\,), say.
(c) For each n, mis in TI(\,—Z)hH?>.
Moreover, condition (c) is equivalent to:
(c’) For each n,

b

The absolutely continuous part of u, being Szego is equivalent to the func-
tion b not being an extreme point of the unit ball of A *; whether or not this
is the case introduces a dichotomy into the study of multipliers of JC(b). For
example, in [20] Sarason showed that a (nonconstant) polynomial is a mul-
tiplier of JC(b) if and only if b is not extreme. In Section 4 we show that
the polynomials are not the only functions that are always multipliers in the
non-extreme case; in particular, we show the following.

1 m(z)—m(\,) |?
h(z) Z—N\,

do(z) < oo,

THEOREM 4.2. The H® function m is a multiplier of every 3C(b) space,
when b is not an extreme point of the ball of H®, if and only if there is some
constant ¢ >0 such that m(n) = O(exp(—cvn)).

In Section 5 we consider the extreme point case. We prove the following.

THEOREM 5.1. If b is an extreme point of the ball of H®, and m is a non-
constant multiplier of 3C(b), then m is a cyclic vector of S*.

In Section 6, we ask some questions, and make some conjectures, on what
the multipliers of JC(b) are in general.

We would like to thank Derek Westwood for valuable discussions, and
Donald Sarason for many useful remarks on an earlier draft of this paper.
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1. The Measure p,

Let b be a fixed nonconstant function in the unit ball of H*. The function
(1+ b)/(1—b) then has positive real part and so can be represented as a
Herglotz integral

dM’b(ew) + iC,

1+ b(z) _S e+z
1—b(z) Jreif—z

where c is a real constant and p, is a unique positive Borel measure.
For each function f in H?(p,), define a function ¥, f on D by

i0
(Vs.f)(2) = (S 1—{%_)7 dub(e"*’))(l —b(2)).

Sarason proved in [23] that ¥V}, is an isometry from H 2(up,) onto JC(b).

For any measure g on the circle, H 2(n) decomposes into the direct sum of
L*(p,) and H?(p,); if log(du,/do) is integrable (with respect to o) then g, is
Szego; if log(dp,/do) is not integrable then p, is not Szegd, and H 2(u,) =
L?*(p,). For a discussion, see for example [2] or [9].

Considering the measure p;, notice that the absolutely continuous part of
p is (1=|b]»)/|1=b|*)o (look at radial limits of R(1+5)/(1—b)). By the
above remarks, the absolutely continuous part of p, is therefore Szegd if
and only if log(1— |b|2) is integrable; this integrability in turn is equivalent
to b not being an extreme point of the unit ball of H* [7]. So if b is an ex-
treme point of the ball then H?(up) = L*(up), and H?(pp) has no analytic
structure; if b is not an extreme point then evaluation at a point of the disk is
a continuous functional on H?2(u;), so this space can be thought of as having
analytic extensions to the disk. This disparity is reflected by the very different
behaviour of the multipliers of JC(b) in the two cases.

For future reference, let us also note that p, is purely singular if and only
if |b|=1 o-almost everywhere, that is, if and only if b is inner.

By looking at what V; ! does to multiplication by m on 3C(b), Lotto
showed in [15] that a function m in H is a multiplier of 3C(b) if and only
if the operator T, defined on polynomials by 7;;( p) = I1/mp, has a continu-
ous extension to all of H?(u,). Thus the problem of determining multipliers
of 3C(b) is reduced to the more tractable one of finding which co-analytic
Toeplitz operators are bounded on H 2(up), that is, finding T'(up)-

Let ¢, ) denote the formal inner product of two Fourier series; that is, if
f(2) ~ 32 _pa,z" and g(z) ~ Si- _w byz”, then (f, 8) = X 5= _w a,b,. We
shall often write {f, g) as | fgdo, where, if necessary to avoid convergence
problems, we think of this integral as lim, 1, { f(re’®)g(re?®) do(6).

Let S be the unilateral shift, which we think of as multiplication by the
independent variable. Then the action of 7j; on a polynomial p of degree d
is given by

(1.1) (Tnp)(2) =P, my+{p, Smdz+ -+ +{p, Sm)z".
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2. Szego Measures-

Suppose p is a Szegd measure. Then it can be written as |/#|?c for some outer
function 4 in H? (see, e.g., [9]). Moreover, u being Szegd means that the
functional that assigns to a polynomial its zeroth coefficient is continuous
on H?(p). So if Ty, is bounded on H?(u) then the functional p+— (77 p)(0) is
bounded, which from (1.1) means there is a constant C such that -

2.1) Kp, my| < CJSTIplzdu

for all polynomials p. The set of analytic functions m that satisfy (2.1) can
be identified with the dual of H?(x), and we shall denote this set by H?(n)*.

In [11] it is observed that the space H?(|h|?c) is the same as the space of
quotients H?%/h, and consequently that m is in H?(g)* if and only if it is in
the range of Tj, that is, if and only if there exists some f in H? such that
m =I1hf. Thus we have the next proposition.

PROPOSITION 2.2. A necessary condition for a function m in H® to be in
T(|h|?0) is that m be in the range of Tj.

It follows from [21] that this condition is not, in general, sufficient; it does
suffice, however, if the distant future and past are at a positive angle in
L?(n). Let F, be the set of analytic polynomials, whose first d coefficients
are zero; and let ®; be the set of co-analytic polynomials whose first d co-
efficients vanish. In this terminology, a Helson-Szegé measure is one for
which @_; and &, are at a positive angle. In [12], Helson and Sarason showed
that ®_, and ¥, are at a positive angle in L?(x) if and only if p = l plzp, where
p is a polynomial of degree less than or equal to d, and p is a Helson-Szegd
measure. For a measure of this form, we can prove the following converse
to Proposition 2.2.

THEOREM 2.3. Let p=|h|*0 =|p|*p, where h is outer, p is a polynomial,
and p is a Helson-Szegd measure. Then a function.m is in T(p) if and only
if mis in the range of Ty intersected with L™.

Proof. Necessity follows from Proposition 2.2.

For sufficiency, let d be the degree of p. Because m is in H?(p)* so are
Sm, S%’m, ..., and S9m. Therefore there is a constant C; such that, for any
polynomial g,

K, m]+ - +Ka, S%m)] = €, J [l

Now, starting with a polynomial q, multiply it by /%: this increases the
norm (in L2(x)) by at most a factor of |m|.. Subtract off the termsin 1, z, ...
up to z%: the norm is now increased by at most a factor of |m|+ C;. Now
apply II. Il will annihilate the negative terms in the Fourier series of /mq;
whilst this in general will be an infinite series, and so not in ®_, it is the
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(complex) conjugate of a function in H® and so lies in the L?(x) closure
of ®_, (because H* is contained in H?(n)). Therefore, applying II can in-
crease the norm by at most a factor of twice the cosecant of the angle be-
tween ®_; and F,, a finite number, C, say. Now add back the termsin 1, z,
..., 2% The result is 75 g, and the norm of g has been increased by at most a
factor of (C,(|m|.+ C;)+ C;). Therefore 7 is bounded on polynomials,
as required. ]

It follows from the proof that if u is actually Helson-Szegd, then all of H*
is in T(x). The converse follows from the closed graph theorem.

COROLLARY 2.4. T(p)=H? if and only if p is Helson-Szegéo.

Proof. If pn is Helson-Szeg0, then 75 is just multiplication by the bounded
function /7 followed by the bounded projection I, so the composition is
bounded.

Conversely, if all of H* is in T(u) then it is easy to check, using the closed
graph theorem, that the inclusion map from H * into the bounded operators
on H?(u), that sends m to T, is continuous, so there is some constant Cj
such that | 7| < C;3|m| . In particular, | 7| < C; for all n.

But if x4 is not Helson-Szegd, then there exists some polynomial p of
norm less than 1/2C5 for which |T;»p|=1. Therefore p must be Helson-
Szego. O

A measure |h|%o satisfies the Helson-Szegd condition if and only if |4 |?
satisfies Muckenhoupt’s A, condition, namely, that the infimum over all in-

tervals 7 of
1 1 1
— V1 hlPdo M —1 —
(7)) (1 )

must be positive (see [9]). One can construct bounded functions / that sat-
isfy this condition for which the essential infimum of | 4| is zero, so the range
of the Toeplitz operator T} is not all of H?; however its range must contain
all of H*, by combining Corollary 2.4 and Proposition 2.2.

In [21] Sarason found necessary and sufficient conditions for H ® to bethe
multipliers of JC(b) in terms of the functions b and a, where a is the outer
function satisfying |a|*>+|b|?=1(so A =a/(1—b)). Combining his last con-
dition with Corollary 2.4, we have the following.

COROLLARY 2.5. Suppose a is outer, b is in H®, and |a|*+|b|*=1. Then
(i) @ and b form a Corona pair, and |a|? satisfies A,

is equivalent to
(ii) |a/(1—b)|? satisfies A,.

3. Adding a Singular Measure

In general, there are no inclusion relations between 7T(u;+ u;) and 7T(x,),
T(py), except for the obvious one T(p) NT(ny) S T(py+ 12). However, if p,
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is absolutely continuous and p, is singular, then T(u,;+p,) € 7T(x;) (unless
pq is zero, in which case 7'(u,) is just the constants; see 5.3).

PROPOSITION 3.1. If pis a measure on T with p, nonzero, and m is any
Sunction in T(u), then m is in T(u,).

Proof. Let x, be a measurable function that is 1 o-almost everywhere and 0
ps-almost everywhere. By Forelli’s lemma [8, p. 43], there exist polynomials
g, that tend to x, (o+p)-almost everywhere, and whose infinity-norms re-
main bounded. By hypothesis, there is some constant C such that

2 2
[ | Tmpldu=c] |pPdy

for all polynomials p. Therefore

G2 | Talanp) P o= | |Ta(@p)Pdu=C | |aupldluetny).

Since m is in T(n), T has a continuous extension, R say, to H?(u).
Claim: x,R(x.p) =Tz(p) n,almost everywhere.
Given the claim, (3.2) then yields, as n tends to infinity,

TP |* dpg < S 2du,,
|| TnpPdu=C] |pPdu,

which is the desired conclusion.
To prove the claim, we shall show that

d d
XaR(Xap) % and T7(Dp) il ,
do do

both functions in L?(¢), have the same Fourier coefficients and are there-
fore equal s-almost everywhere. To this end, note that

dp
lim jT [R(quP)— R(XaP)] /
Therefore

du du _,
[XaR(Xap) /d—] (l)—g XaR(XoD) /d—z do
dp _,
_,El_r,ll STxaR(qnp) /?z do
T7(q,p) / z'do
T

S
= lim ST(qu,,p)< \/gz’>da
ST qnp)( \/;Zz>do

a'oO

= lim

H— 00

=

= lim

n—c0
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as required. U]

Adding a point mass to a measure p also cannot increase 7(u), even if p is
not absolutely continuous.

PROPOSITION 3.3. Let pbe any measure on'T, and let 8, be the point mass
at \ forsome Non'T. If misin T(p+6y) then misin T(u).

Proof. Without loss of generality, we can assume u(\) = 0. By hypothesis,
there is a constant C such that

(3.4) | 1TaplPaw+sy=c| |pPdw+sy).
T T

Let g,(z) = [%(1 +Xz)]"; g, converges to 1 at \, and 0 everywhere else.
Claim: lim,,, [ T7((1 — g,) P)1($) = [T7(p)1($) for all ¢ # A on the circle.
Given the claim, (3.4), with (1—g,)p instead of p, yields, in the limit as n

tends to infinity,

2 2
[ | TapPdu=c] |pldn,

as desired.

By writing p as a sum of monomials and applying the backward shift to m,
the claim is equivalent to showing that, for all {# N\, lim,,_, [ 75¢,]1() =0.
Now

1 n _ [
(Tha (D) =57 3 M(’,’)  mR)
3.5) =0

n __ n—k
=37 3RS (10,
27 K=o j=o\J

First, observe that if 7 is a monomial, m(z) =z, then the absolute value
of (3.5) is less than or equal to (1/2"){|1+\|"+3Z%_o(7)], which tends to
zero as n tends to infinity. So we can add any polynomial to m and not
change the behaviour of (3.5) in the limit; let us therefore fix e > 0, and sub-
tract a finite number of terms from 1 so that §T|m|2da < (e/C(\§))?, where
C(\{) is the constant from Lemma 3.6.

Applying Lemma 3.6, (3.5) becomes

CI\) &,
(Tra.)($)|= Tizolm(k),
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So for large enough #, (3.5) can be made arbitrarily small, so [7;q,]({)
tends to zero as required. O

In the proof, we used the following computational lemma.

LEMMA 3.6. Suppose & is on the unit circle, but not equal to 1. Then there
is a constant C(§) such that

1 L /n j
EFE[,(j)E

Proof. The quantity on the left-hand side is a partial sum of a Fourier series,
and can be written using the Dirichlet kernel as

1 L/n\.. 1 pe/1+Ee7"\'Sin(/+1)¢
3.7 — ) = — 27 dt
3.7 2" j=0(./)£ 27 S‘O < 2 ) Sin %t
Let @ be the argument of £, and let « =min(8/2, (27 —6)/2, w/4). Choose n
so large that n(n+1)(x/(1+Cos «)/2))" < 1. The integral in (3.7) can be
written as the sum of the integral from 60—« to 6+, and the integral over
the rest of the circle. For the latter integral, [(1+£e~")/2| < \/ (1+Cosa)/2,

so the modulus of the integral is less than 2(/+ 1)[+/(1+ Cos ) /2) ]", which
is less than 2/n. In the former integral, we have control over the second term:

Se+a 1+£e™"\" Sin(/+ 1)1
( 2 ) Sin 1¢

1
SC(E)W’

Jorall | =n.

i 1 27 .
< {iterar
Sin(a/2) 2" Sol el

0—a

1 1 2«
__r 1 n/2
ST SO (242 Cos 1)"2 dt

_ 2
"~ Sin(a/2)
This last integral can be worked out explicitly; applying Stirling’s formula

to the result, one gets that it is bounded by a constant times 1/yn, as de-
sired. Ll

S;rICos”uldu.

Before stating our next theorem, we must say what we mean by I f/4 when
h and f are in H? and # is outer. In general, f/A will not be integrable on
the circle; however, 1/A(z) =X;-08,Z" is a harmonic function on the unit
disk, with a power series that converges almost uniformly. Suppose f(z) =

© _0a,2" Then f(2)/h(z2) =2 5—02m-0a,08,2"Z", where the series con-
verges almost uniformly on the disk. Truncate this by annihilating those
terms in z"zZ" where m is greater than n, which yields the function g(z) =
2::0 2?11:0 a,,B,,,z”Z’"; let g(z) = 2?:0 Efn=0 anﬁmzn—m (one could tt_l_ink of
this as the radial limit, in the sense of Abel, of g). We define Il f/A to be
this function g; this will agree with the usual definition when f/4 is sum-
mable, but will be defined (at least as an analytic function on the disk) for
all 4 and f.
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Note that defining truncations via passage to the disk means that ITAIT f=
I14f whenever # is analytic; so, in particular, I1(1/A)I1hf =I1f. Moreover,
an analytic function f is in the range of 7T (i.e., f can be written IThk for
some H? function k) if and only if I1f/% is in H>

We can now say what additional restrictions are imposed on the Toeplitz
operators by the addition of a finite number of atoms to a Szegd measure.
The special case of the measure o+ 26, (which corresponds to the function
b(z) =(1+2z)/2) has been studied in [21] and [16].

THEOREM 3.8. Let p=|h|*a+3ZN_,r, 0\ , where h is an outer function in
H? and each r, is positive. Then the following are equivalent:
(i) misin T(pn).
(ii) For each n, m is in T(|h|20+6)\n).
(iii) (@) misin T(|h|*0).
(b) Foreach n, the Fourier series of m at \,, converges to some num-
ber m(\,), say.
(c) Foreach n,
1 m(z)—m(\,) |

3-9) ST HE(z:) Z—N,

(iv) @) mis in T(|h|?0).
(b) For each n, the Fourier series of m at \,, converges to some num-
ber m(\,), say.
(c’) For each n, m lies in T\(\,—Z)hH?>.

do(z) < co.

Proof. We will show (i) & (ii), (ii)e(iii), and (c)<(c’).

(1)=(ii): This follows from Proposition 3.3.

(i1) = (i): Since there are only a finite number of atoms, there is some con-
stant C such that, for all polynomials p and for each n,

[\ TnplP(hPdo+ds, )<C | |pP(hPdo+dsy).

Therefore
N N
S 1| [ TupP(|hPdo+de, )<C 3 | r.lpl(|hlPdo+ds, ),
n=1 T g n=1 T "
and so

> _ max(l, SN i)

N
T.p*( |h|*do+d 6
[T (I Fdot+d 3 rdy, )= Tt

n=|
- N
xc| |p|2<|h|2do+d 3 16, )
T n=1 "

(ii) = (iii): (a) follows from Proposition 3.1. For (b), let x,, be the function
that is 1 at A\, and O elsewhere. In HZ(]hl20+6)\n), the functions N,z'—x,,
tend weakly to 0 as / tends to infinity, so, since 7, is continuous and there-
fore weakly continuous,
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(Tr(X,2h), Xm)H2(ho+55,) ™ (T Xns Xn) 2|20 +83,,)-
But the left-hand side is just N,[7;,z'1()\,;), which is
#1(0) + AN, + - - + ()N,

Therefore the Fourier series of m at \,, converges to (x,,, T Xn) 1 2(|ho+8y,)-
(c) There is some constant C such that, for all polynomials p,

|[Tmp]()\n)|SC\/XTIp|2(|h|2da+d6>\n).

Therefore there is some function g in H*(|h|*s +6, ) such that

[T;Tlp]()\n) =(p, g)Hz(]h|20+6)\n)'

g can be written as g’+ ayx,, for some g’ in H%(|h|?¢), and g’ in turn can be
written as k/h for some k in H?. Therefore we have

m - —
< ’1—X,,z>=<p’ k> +@p(N),

and so

m—o _
, = ={p, hk).
<p = )\”z> (D, hk)
Setting p(z) =2/, this says that the positive Fourier coefficients are the same,
that is,

Letting / tend to infinity, one also gets that o = m(\,,). Therefore

1 m(z)— m(>\) N\,
h(z) Z—N\, thhk

=_)‘nk’

and this is square-integrable, as required.
(iii) = (ii): It is sufficient to prove that there exists some constant C such

that
(3.10) [T-mop PIND| = C J | 1ol e

for all polynomials p, for then the norm of 7, on H?(|h|*a +8y,) is less than
or equal to (C+|m\,) |+ Tl 12 n20))-
The right-hand side of (3.10) is C|[{ ph, ph)|, and the left-hand side is

m—m\)\ | _ 1 m—m(\,)
<p’ 1—%,z )“Kph’ﬁ 1—%,z >

1 m—m(\,)
Kph N 1%z >‘
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The supremum of this over all polynomials with |{ ph, ph)|=1is just

_ 2
JSTH 1 m(z)—m(\,)

h—(%—j 1- an
which is finite as required.
(c)=(c’): As remarked earlier, condition (3.9) is equivalent to saying that

do,

m(z)—m(\,)
Z—N\,

=TTh(2)k(z)

for some function k in H2. Therefore
m(z)—m(\,) = (z—\)I1A(2)k(z)
= H(Z—-X,,)(—)\,IZ)HE(Z)IC(Z)

- 1
- H(z—xn)h(z)[(—xn)[zku)— L (ek(), h(z»] }
h(0)
Therefore m is in TI(X,,—Z)iH>.
(¢’)=(c): Suppose m =II(Z—\,)if for some f in H2. Then
(3.11) m(z) + N, [, b)Yy = (2= N,)ITA[—\,S*f].
Noting that —\,¢/Af, 1—X,z%*1)y is the kth partial sum of the Fourier series
of m at \,,, (3.11) implies that
m(z)—m(N\,)
Z—N\,
from which (3.9) follows. Ol

= ITA[—\, S*/],

REMARK. The problem in trying to generalise the theorem to an infinite
number of atoms is that one loses control of the norms when trying to local-
ise: a sufficient condition for 7}, to be bounded on H*(|h|*s +3 r,,63,) is that

"7;71"115’-“;,]204_5)\”)5 C for all n;
a necessary condition is that
” 7:?1"H2(|h|20+rn6)\n)5 C for all n.

One can construct examples showing that the former condition is not neces-
sary; we do not know any examples proving that the latter condition is in-
sufficient.

Nevertheless, this (strong) sufficient condition extends to all singular mea-
sures, and the following result enables us, in the next section, to characterise
universal multipliers.

THEOREM 3.12. Suppose that p = p,+ ps is a measure on T, and that there
is a set D, dense in the support of u,, and a constant C, such that

" 7;71";12([‘“_}_5)\) =<C for all N\ in D.
Then mis in T(p).
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Proof. Let v, be a sequence of atomic measures, with atoms lying in D,
that converge weak-star to u, (such a sequence exists because any continuous
function that vanishes on D must be annihilated by u,). By the argument in
the proof of (ii)=(i) in Theorem 3.8,

max (1, |v])

- cC=<(C
min(1, |v])

| Tl 240y =

for some C".
For any polynomial p,

| | Top ?du= tim | |75 pPd(uq+0)

k—o00

<C"? lim §T|p|2d(ﬂa+pk)

k—o0

=C'2ST|1?|20’#,

so misin T(u), as required. ]

4. Universal Multipliers

In Section 2, we defined the dual H?(u)* to be the set of analytic func-
tions whose formal (H?) inner product with a polynomial is bounded by
the H?(p)-norm of the polynomial, that is, the set of f for which

<C 2dp.
IKp, \/ﬁTlpl du
If u=|h|%c is Szegd, this means there is some g in H2(x) = H?/h such that

(p’f> =(p’ g)Hz(pL)
=S ph(hg)do,
T

so f is in ITAH? (which is the range of T}, where, if 4 is not in H%, Tj is
thought of as mapping H? into the set of functions analytic on D); con-
versely, any f in IIZH? is in H?(p)*

A multiplier of H?(g)* is a function m such that mf lies in H?(n)* when-
ever f does; from the preceding paragraph, it coincides in the |4]%0 case
with multipliers of ran 7;. The multipliers of H?(u)* are the same as the
co-analytic Toeplitz operators on H?(x) (though in general H?(u,)* is not
identical to JC(b)).

PROPOSITION 4.1. Let n be a measure on the circle. Then m is a multiplier
of H*(p)* if and only if m is in T(p).

Proof. If m is a multiplier of H?(pn)* then (by the closed graph theorem)
multiplication by m, M,,, is a bounded linear operator on H 2(n)*. The proof



Multipliers of de Branges Spaces 237

then consists of first observing that H?(u)* really is the dual of the Hilbert
space H?(p) (since any functional is determined by its action on polynomi-
als), and secondly that the adjoint of M,, is T, because if either 7; or M),
is bounded then

(M3p, /> =lim | p(re™)m(re™)f(re™) do(6)
rtl

= (ﬁﬁp’ f)
So if m is a multiplier of H?(p)* then T}, is bounded, and if T, is bounded
then mf is in H?(u)* whenever f is. O

In [18], it is proved that a function m is a multiplier of H?(p)* for every
Szegd measure p if and only if m is in every H?(p)* which in turn holds if
and only if there is some constant ¢ such that 71(n) = O(exp(—cvn)). These
functions are multipliers of every JC(b) when b is non-extreme: if u, is ab-
solutely continuous, this follows from Proposition 4.1; if it isn’t, we can use
the fact that ri1(n) decays so rapidly to apply Theorem 3.12.

THEOREM 4.2. The H® function m is a multiplier of every 3C(b) space,
when b is not an extreme point of the ball of H®, if and only if there is some
constant ¢ >0 such that m(n) = O(exp(—cvn)).

Proof. Necessity follows from the preceding paragraph.

Let us fix some m such that /#1(n) = O(exp(—cvn)); we must show that
m lies in T(u) for every measure p of the form |h|20+ ps- By Theorem 3.12,
it is sufficient to show that for every outer function 4 there is a constant C
such that | 7| 5226 +5,) < C; this in turn is equivalent to showing

m(z)—m(\)
Z—A\

A straightforward computation shows that there is some constant M inde-
pendent of A such that the nth Fourier coefficient of (m(z) —m(\))/(z—\)
is smaller in modulus than M(exp(—cvn/2)). Therefore the family of func-
tionals {(m(z)—m(\))/(z—\): \eT} is pointwise bounded on H?(|h|%)
and (by the Banach-Steinhaus theorem) is also equicontinuous, as desired.

]
REMARK. In [23], Sarason shows that for every non-extreme b, u,, is ab-
solutely continuous for almost every A on the unit circle; since JC(A\b)=
JC(b), this result, together with Proposition 4.1, also proves Theorem 4.2.

< 00,
H2(|h|20)t

5. The Extreme Point Case

The next theorem states that the multipliers of JC(b), when b is extreme,
cannot be noncyclic for S* (the adjoint of the unilateral shift). A function
J 1s noncyclic for S* if and only if there is an inner function 7 such that f
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lies in H*OIH? (this follows immediately from Beurling’s theorem). In par-
ticular, no function that is a polynomial of an inner function is cyclic. For
an analytic condition on whether a function is cyclic in terms of pseudo-
continuations, see [19]. We note that this theorem has also been proved in-
dependently by Lotto and Sarason [17].

THEOREM 5.1.  If b is an extreme point of the ball of H®, and m is a non-
constant multiplier of 3C(b), then m is a cyclic vector of S*.

Proof. Our hypotheses are that H?(u,) = L*(p,) and that 7}, extends to a
continuous operator on H?(u,). Let Z be the operator of multiplication
by the independent variable on L%(u,). The commutator of 7 with Z is
bounded, and on any polynomial p,

(T7HZ—-ZT5)p ={p, S*m)1.

By hypothesis, the norm of this latter (constant) function is bounded by
some constant C times the norm of p, so

Kp, S*m)| < CJSTlplzdub-

Letting n = S*m, this says that there is some function g in L?(g,) such that

ST pido = ST pgduy.

Since (7o —gm,) annihilates the polynomials, the F. and M. Riesz theorem
says there must be some function k in H{ so that (7o —gu,) = ko, that is,

(5.2) gup=(fi—k)o.

Because g is in L2(u,) and du,/do is not log-integrable (with respect to o),
neither is dg u;, /do. But if n were not cyclic for S* there would be some in-
ner function 7 such that I17n =0; 17 would then be in H®, and so I(fi—k)
would be also, and the modulus of this (which is the same as the modulus of
dg p,/do) would have to be log-integrable. Therefore n, and so m, is cyclic,
as desired. ]

As an immediate consequence, we get the result of Sarason (mentioned ear-
lier) that a polynomial is a multiplier of JC(b) if and only if b is not extreme.
From the proof we also get a new proof of a theorem of Lotto [16] that if b
is inner then 3C(/) has no nonconstant multipliers.

PORISM 5.3. If b is inner, 3C(b) has no nonconstant multipliers.

Proof. If b is inner then pu, is purely singular, so (5.2) can only hold if both
sides are zero. Thus # must be zero, and so m must be a constant. O
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6. Questions

Many questions remain open. For example: If p= |h|20 is absolutely con-
tinuous, when is 7(g) =ran T;NH ©? In [3], it is proved that if log|hy /A,
is in BMO, the space of functions of bounded mean oscillation on the cir-
cle, then T(Jhoh,|o) contains T(|hg|>a) N T(|hy)?a). It follows from this,
and Theorem 2.3, that a sufficient condition that m be in 7(|z—1|0) is that
m= Tz+])(l/2)+ef for any ¢ >0 and some f in H?2. Can the epsilon be re-
moved, to get agreement with the necessary condition from Proposition 2.2?

Suppose one adds an atomic measure with an infinite number of atoms,
S radx,, to |h|?a. Is the condition | T | er2((nf2o + 1, sx,) = C for all n a sufficient
condition for m to be in T(|h[*a+3 r,6),)? What if one adds a non-atomic
singular measure? What is even a reasonable con_]ecture for a necessary and
sufficient condition for 7}, to be bounded on H?(u,+ ps)?

The space 9N (a), defined to be the range of 7, is intimately connected to
JC(b) (see [21]). Does it equal the intersection over all inner functions J of
H(1p)*?

When is u), absolutely continuous for all X on the circle? (This question
is related to characterising exposed points in H'; see [23].)

We note that Lotto and Sarason have studied the multipliers of de Branges
spaces in [17], concentrating mainly on the extreme point case, and have
obtained some very interesting results.
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