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1. Introduction

The uniformization theorem for hyperbolic Riemann surfaces states that,
given a Riemann surface R, there exist both a Fuchsian group I' acting on
the unit disk A and an analytic function ¢: A — R such that ¢ is an auto-
morphic function relative to the group I'; that is, ¢(7(z)) = ¢(z) for each
ze Aand each TeT (see, e.g., [4, Theorem, p. 209]). If we start with a Rie-
mann surface R which possesses a Green’s function and a function f analytic
on R, we say that fe BMOA(R) if

sup SS | (W) [2Gr(w, \) dA(W) < oo,
AeRVYR

where Gr(w, \) is the Green’s function on R with singularity at A and dA(w)
denotes the element of area on R. We may also define the analytic function
f«=f°¢ on A. Here, f, is an automorphic function on A. We say that f, e
BMOA(A/T) if

sup [ 1/:(2)*Gr(@(2), 6()) dA(2) <o,

weF
where

F={zeA:|z|<|T(z)|for each TeT}

is the so-called Ford fundamental region for the group I"' and where dA(z)
is the element of Euclidean area in A. The set F, also known as the Dirichlet
polygon, is a fundamental set for the group I', together with some additional
boundary points for this fundamental set. Although a wide variety of choices
for a fundamental region are possible, it will avoid a number of difficulties
to deal only with this normalized fundamental region.

For Ne R, let a be a point in A such that ¢(a) =\, and define Gp(z,a)=
Ggr(96(z), N). By a result of Myrberg,

1—T(a)z

Gr(z,a)= ) log Z—T@a)

Tel

for z,aeF
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(see [8, Thm. XI.13, p. 522]). Clearly f, € BMOA(A/T') whenever f e
BMOA(R). We can state the condition for f, e BMOA(A/T') without any
reference to the Riemann surface R by noting that f, e BMOA(A/T") if

sup SSF |£1(2)|2Gr(z, @) dA(z) < .

This removal of all reference to the Riemann surface enables us to remove
all notational distinction between the two functions fand f,, and hereafter
we will use the notation f when we mean f, as given in the context above.
In all cases, the domain of the function f should be clear from the context,
so that the ambiguity of our notation should cause no problem.

Another characterization for the class BMOA(A/T) is as follows. If f
is an automorphic function with respect to the Fuchsian group I', let ae A
and let h,(z) denote the least harmonic majorant for | f(z)—f (a)|2. Then
fe BMOA(A/T) if there exists a constant M such that 4,(a) <M for each
a € F. The equivalence of this characterization for BMOA(A/T") with the
integral condition given above is an easy consequence of Green’s integral
formula.

There is a special case where I = {identity}, so that A/I" is actually A. The
case f € BMOA(A) has been extensively studied with many characterizations
of various types given. For our purposes, f€ BMOA(A) means

1—az
z—a

sup HAIJ”(Z)I2 log dA(z) < .

ael

It is known that for each Fuchsian group I, the containment BMOA(A/T") C
BMOA(A) is valid (see [5, Prop. 2, p. 1257]).

There is also another class we will consider here. We say fe VMOA(A/T")
(or equivalently, using the conventions above, that fe VMOA(R) where R
is the appropriate Riemann surface) if

: ’ 2 —
lim “plf (2)[2Gr(z, a) dA(z) =0.
aeF

Here we have that VMOA(A/I') C BMOA(A/T") (we will give a new proof
of this containment below), but VMOA(A/T) is not a subset of VMOA(A)
(see [1]).

There is also a characterization for VMOA(A/T') in terms of least har-
monic majorant. As before, for f automorphic relative to the Fuchsian group
T, let a € A and let A,(z) be the least harmonic majorant for | f(z)—f(a)|*
Then fe VMOA(A/T) if h,(a) -0 as |a| — 1 from within F.

In a manner similar to the above, if we start with a function ¥ harmonic
on R then the corresponding u, = u-¢ is also harmonic on A, and we define
u € BMOH(R) to be equivalent to u, e BMOH(A/T") if and only if

2
31£ HF |Vu.(z)|*°Gr(z,a) dA(z) < 0.
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As before, we will suppress the distinction between the functions # and u,,
and will use u to denote each of these. The domain of the function u will be
clear from the context.

If u is harmonic and automorphic in A relative to the Fuchsian group T,
then u has the harmonic conjugate # on A, and the function f=u+i#i has
the property that f is additive automorphic relative to I'; that is, for each
T e I' there exists a constant A such that f(7(z)) = f(z) + Ay foreach z € A.
This follows immediately by noting that the real part of

gr(z)=f(T(z))— f(z)

is zero throughout A, and thus Ay is purely imaginary.
If u is harmonic in A and automorphic with respect to the Fuchsian group
I', we define u e VMOH(A/T) if

lim “ |Vu(z)|*Gr(z, a) dA(z) = 0.
a—dAvIF
aeF

As |Vu(z)|=|f’(z)|, the corresponding characterizations for BMOH(A/T")
and VMOH(A/T') in terms of 4,(z), which is the least harmonic majorant
of | f(z)—f(a)|* where f=u+iii, are identical with those of BMOA(A/T)
and VMOA(A/T"), respectively.

If f is automorphic in A relative to the Fuchsian group I', we say that fe
AD(A/T) if

SSF[f’(z)IZdA(z)<oo.

Similarly, if # is harmonic in A and automorphic relative to the Fuchsian
group I', we say that ue HD(A/T') if

SSFIV”(Z)PdA(z) < oo,

Throughout, we will consider only Riemann surfaces (or equivalently,
Fuchsian groups) which possess a Green’s function. We will say that such a
surface R is regular if the Green’s function Gg(z, @) has the property that
Gr(z,a) —» 0 as z — dR for each choice of a € R. We say that a Fuchsian
group I' is regular if, for each ae F, Gr(z,a) — 0 as |z| —» 1 from within the
fundamental region F.

Metzger [5, Thm. 1, p. 1256] has proved that AD(A/T") C BMOA(A/T).
Aulaskari [1, Thm. 1] proved that if IT" is a regular Fuchsian group then
AD(A/T) C VMOA(A/T'). Aulaskari proved further that if T" is not a reg-
ular Fuchsian group then VMOA(A/T") consists of the constant functions,
so that AD(A/T) is not a subset of VMOA(A/T') in that case. Gotoh [2,
Thm. 3, p. 335] has shown that, for a Riemann surface R of finite type, the
containment HD(R) C BMOH(R) is valid, but that this containment is not
valid for all Riemann surfaces.
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In Section 2 we will give some containments relating the classes of func-
tions mentioned above. In Section 3 we will give some examples showing
that HD(R) is not necessarily contained in BMOH(R), whether R is a regu-
lar surface or not.

We would like to thank the referee for many helpful suggestions.

2. Some Basic Containments

We begin by proving a result proved by Aulaskari in [1]. Aulaskari proved
that VMOA(A/T') CBMOA(A/T'), but the proof given was rather lengthy.
Here we give a shorter, more basic proof, and use the same proof to show
that VMOH(A/T") C BMOH(A/T).

THEOREM 1.
VMOA(A/T') CBMOA(A/T') and VMOH(A/T) C BMOH(A/T).

Proof. Let feVMOA(A/T), let a€ A, and let h,(z) denote the least har-
monic majorant of | f(z)—f(a)|?. Recall that fe VMOA(A/T") means that
h.(a) —0as |a|— 1 from within F. Hence, given e > 0, there exists a number
ro, 0 <ry<1, such that |h,(a)| <e whenever ae F and |a|>r,. Let aeF
with |a| > ry. Then A,(z) is bounded on F(ry) = FN{z € A: |z| < ry}, since
h,(z) is harmonic on the compact set F(r,). Hence, there exists a constant
M, such that |A,(z)| <M, for z € F(rg).

Let b be fixed in F(ry) and let h;(z) be the least harmonic majorant of
| f(z)—f(b)|*. Then we have

| f@)=f(B) > =|f(z)=f(@)|*+| f(@)|>=|f(D) > —2Re(f(2)(f(b) — f(a)))
<|f(z)—f(a)|*+Ci(a, b)+u,(z),

where Ci(a, b) = || f(a)|* — | f(b)|*| and u;(z) = —2Re(f(2)(f (D) — f(a)))
is a harmonic function (the real part of an analytic function). For b and z in
F(ry) we have that f(z) and f(b) are both bounded, say |f(z)| <=M, and
| f(b)| = M,, where M, = sup{|f(z)|: z € F(ro)}. It follows that |u,(z)| <
2MH(My+| f(a)|). Thus, we have

|y (2)| = M+ M3+ | f(a@)|>+2M, (M, +| f(a)|) = M.

It follows that 4,(b) <M, for b e F(ry), and this means that 4,(a) is uni-
formly bounded for a € F, which is equivalent to fe BMOA(A/T"). This
proves the first containment.

The second containment follows easily if we start with a harmonic func-
tion u € VMOH(A/T"), then define f=u +id, and then repeat the argument
above. ]

THEOREM 2. Ifue BMOH(A/T) then f=u+iii e BMOA(A).

Proof. Since [Vu(z)|=|f"(z)|, we see that ue BMOH(A) if and only if fe
BMOA(A). Using the same relationship between gradient and derivative
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to modify Metzger’s proof that BMOA(A/T') C BMOA(A), we have that
BMOH(A/T') C BMOH(A). Combining these two statements gives the re-
sult. ]

The space & of Bloch functions is the collection of all functions f analytic
in A such that sup{|f’(z)|(1—|z|*): z € A} <. The following result com-
bines Theorem 2 with the well-known result that BMOA (A) C ®&3.

COROLLARY 1. VMOH(A/T') CBMOH(A/T'), BMOA(A)C ®, and, if
ue BMOH(A/T) and f=u+ii, then fe BMOA(A).

The space ® has a subspace B, which is of interest in many connections.
We say that fe ®, if [f'(z)|(1—|z]|*)—0 as |z|—1. It is well known that
VMOA(A) C ®y. However, for fe VMOA(A/T') and f not identically con-
stant, it is not true that fe ®,, since for each z € F and each e > 0 there exists
T €T such that

IT(z)|>1—¢ and |f'(2)|(1=|z[") =]/ (TE)|1-|T@)[*).

However, if f is either an automorphic function or an additive automorphic
function relative to the Fuchsian group I', we can define fe ®o(A/T} if
| f(z)|(1—]z]*) = 0 whenever |z| -1 from within F. We then have the fol-
lowing result.

THEOREM 3. VMOA(A/T') C B(A/T'). Further, ifue VMOH(A/T") and
Sf=u+ii, then fe B,(A/T).

The first containment has been proved in [1, Thm. 2]. The second statement
follows from the same proof with the obvious modifications.

THEOREM 4. For a regular Riemann surface of finite type,
HD(R) C VMOH(R).

Proof. Gotoh [2, Thm. 3, p. 335] proved that, for a Riemann surface of fi-
nite type, HD(R) C BMOH(R). In his proof, Gotoh showed that for # e
HD(R), for each ¢ >0, and for each \ € R, the following inequality is valid:

SSR V(W) |2Gr(w, \) dA(w) <€ “R |Vu(w)[2dA(w)

+C§SQM |Vu(w)|2 dA(w),

where C is a positive constant depending on # and R and Q, . = {weR:
Gr(w,\) >€). Since R is a regular Riemann surface, for A sufficiently close
to dR and K a fixed compact subset of R we have that @, .NK =0. Since
|Vu|? is summable on R, it follows that ijIVu(w)IzGR(w, N)dA(w)—0 as
A — 0R, and this implies that € VMOH(R). U

We may restate Theorem 4 in terms of Fuchsian groups, as follows.
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THEOREM 4’. If T is the Fuchsian group associated with the Riemann sur-
face R, where R is regular and of finite type, then

HD(A/T') C VMOH(A/T).

THEOREM 5. [If the Fuchsian group T is not regular, then VMOH(A/T")
consists only of functions which are identically constant.

It was proved by Aulaskari [1, Thm. 1b] that, under the same circumstances,
VMOA(A/T') consists only of constant functions. The same proof, with the
obvious modifications, works for the class VMOH(A/T) also.

The following corollary is immediate.

COROLLARY 2. If T' is a Fuchsian group which is not regular, then the
inclusion HD(A/I') C VMOH(A/T') if and only if HD(A/T') consists only
of constant functions.

3. Some Examples

In this section, we deal with some examples of functions # such that u e
HD(R) but « is not in BMOH(R), where R is a Riemann surface. We have
mentioned that Gotoh [2, Example, pp. 337-339] has given an example of
a function # on a Riemann surface such that e HD(R) but # is not in
BMOH(R). In a sense, Gotoh’s example is too strong because, for the func-
tion u constructed, the analytic function f=wu +i# is not a Bloch function.
We note that the Riemann surface in Gotoh’s example is a regular surface.
Below, we give two examples of functions # and Riemann surfaces R such
that e HD(R), u is not in the class BMOH(R), but f=u+iii is a Bloch
function. In one of the examples, R is a regular Riemann surface, and in the
other R is a nonregular Riemann surface.

We will make use of a recent result of Stegenga and Stephenson [7, Thm.
A, p. 243] which we call Theorem S.

THEOREM S. Let f be analytic in A, let Ry be the Riemann surface cor-
responding to the image of f, let U be a disk with radius r >0 in the complex
plane, let p be a point on Ry lying over the center of the disk U and let Q(p)
be the component containing p in R, of the inverse projection of U, and let
w,(r)=w(p, IQ(p)N IR, U p)), the harmonic measure at p of 0Q(p) N 3R,
in the region Q(p). Then fe BMOA(A) if and only if for each 6, 0<é <1,
there exists a number r\ >0 such that w,(r\) > for each p € R;.

We note the following corollary to Theorem S.

COROLLARY 3. Iffisanalyticin A and if there exist arbitrarily large disks
U such that some component of the inverse projection of U in Ry has only a
countable number of boundary points which project into the interior of U,
then fis not in BMOA(A).
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Proof. Fix a disk U such that, if p is a point in R lying over the center of
U and if Q(p) denotes the component of the inverse projection, then the
boundary of Q(p) projects onto only a countable number of points interior
to U. Let f; denote the one-to-one mapping from A onto Ry and let IT denote
the natural projection mapping from R, into the complex plane such that
f=TI-f,. Then Q' = f;"(Q(p)) is a simply connected subset of A. Let 7 be a
conformal mapping from A onto §’. Then fo7 is a (bounded) analytic func-
tion sending A into (but not necessarily onto) U, and thus fe7 has angular
limits almost everywhere on dA. However, for any countable subset E in U,
the set of points in dA at which f-7 has an angular limit in E is of measure
zero; the set of points in dA at which fo7 fails to have an angular limit is
also a set of measure zero. It follows that the pre-image of E has harmonic
measure zero at every point of A. Let 3*Q(p) denote that part of the ideal
boundary of Q(p) which does not project onto aU. Then, by conformal
mapping, the harmonic measure of 3*Q(p) in Q(p) is zero at each point of
Q’. Now Theorem S implies that f is not in BMOA(A). td

THEOREM 6. There exists a nonregular Riemann surface R = A/T", where
I" is a Fuchsian group on A, and a function f=u+iii analytic on A, such
that f is a Bloch function and u e HD(R) but u is not in BMOH(R).

Proof. We will need to construct an image surface for the function f, and
we begin with a construction due to Pommerenke [6]. Let 7= U, - (0, 2") X
[—2737 273"]. Clearly, T has finite area. For each positive integer n we take
a copy of T to be the translate of 7 given by T+273"*!;, and we join T
to T+2 73"+ across the segment (277!, 2") x {273"} where this is the only
joining of T to T+273"*!j. We continue that process in a similar manner
until each copy of T is joined to exactly one other copy of T across a hori-
zontal segment of its boundary, and no horizontal boundary segments of
any copy of T are left free. Denote by S the resulting Riemann surface, and
let IT be the natural projection from S onto the complex plane. Then S is in-
variant under a group X of motions generated by those motions sending a
copy of T onto an adjacent copy of 7, and if ¢ is one of these motions then
ITo0 is a translation of the plane by 273"*1;. We will use the surface S both
in this proof and also in the proof of Theorem 7.

We now modify the surface S. Returning to the original planar region 7,
let 7’ be the result when T is punctured at each positive integer. Now let S’
be the surface resulting when we remove from S all the points congruent to
T'—T’ under the group X. Finally, let R, denote the universal covering sur-
face of §’. Let U be a disk totally contained in the strip W, ={z:2"<Rez <
27+1} let p be a point on S’ which projects onto the center of U, and let
Q(p) be the component of II"}(U) containing p. We note that p is on a
copy of 7’ and that each copy of 7’ meeting Q(p) is attached to another
copy of Q(p) across a segment contained in W, and so Q(p) is a covering
surface for the disk U minus a finite number of punctures.
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Let f, be a conformal mapping from A onto Ry, let I, be the projection
mapping from R, to §’, and let f=1II-II,cf,. Then f satisfies the hypotheses
of Corollary 3, so f is not in BMOA(A). However, f is a Bloch function,
since S’ contains no disks of radius larger than 1. Further, S’ is invariant
under the group X, and elements of £ correspond to “translations by imag-
inary numbers”; thus it follows that f is additive automorphic with respect
to a group I on A which corresponds under f, to ¥, and the periods of fare
all imaginary. Letting u be the real part of f, we have that u is automorphic
relative to the Fuchsian group I'; it follows from Theorem 2 that « is not in
BMOH(A/T"). However, if Fdenotes the Ford fundamental region of I then
we have that the planar area of f(F), counting multiplicity, is equal to the
planar area of 7”. (In fact, we can choose an appropriate “fundamental re-
gion” F’, where each point of F'is congruent under I'" to exactly one point of
F—except for a set of area measure zero—so that f maps F’ onto 7"’ in a
one-to-one manner.) Thus, f is an additive automorphic function for which
S(F) has finite planar area and u =Re(f)e HD(A/TY).

Finally, we note that the Riemann surface corresponding to A/I" is simply
the region 7', with each horizontal boundary segment identified with the
horizontal segment lying directly above or below it. It is easily seen that this
surface is not regular, since it has punctures. This completes the proof. [

THEOREM 7. There exists a regular Riemann surface R=A/T, where T’
is a Fuchsian group on A, and a function f = u+ iii analytic on A, such that
fis a Bloch function and ue HD(R) but u is not in BMOH(R).

Proof. Let S be the Riemann surface constructed in the proof of Theorem
6. We wish to delete some disks from the basic region 7" and then, if {U,} is
the collection of disks deleted from 7, we will delete U ;e U =1 0(U,) from
S. We will choose these disks according to the following scheme.

First, look at K = {z: r <|z| < 1}. The function 4,(z) =log|z|/logr is har-
monic in the region K, A,.(z) =1 on the circle |z|=r, and A4,(z) =0 on JA.
If k(z) is a conformal mapping of A onto itself, then the « takes the disk
{z:|z| =r} onto a closed disk D with hyperbolic radius tanh~!r. Further, the
function 4, ,(z) =log|x~'(z)|/log r is harmonic in A— D, h, ,(z)=10n D,
and A, (z)=0o0n dA. If 0<s<1and x(z) =(z+s)/(1+5sz), then

log s
logr’

k" 1(0)=—s and A, (0)=

If r<1and s— 1, then 4, (0)—O0.

Now suppose D, D,,...,D,, ... are countably many mutually disjoint
closed disks, all contained in A and all having centers on the positive real
axis. If s, is the hyperbolic center of D, (where s,, is a positive real number),
if tanh~!(r,)) is the hyperbolic radius of D,,, and if k,(z) = (z—s,)/(1—5,2),
then the harmonic measure w(z) of U, dD, at z relative to A—U, D,, is not
greater than ¥, log|x,(z)|/logr,. In particular, »(0) < ¥ ,log s,/logr,.
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We wish to consider a situation where n is fixed and s, , = 6k/2", where
—2"<6k<2" k#0. Since logr - —« as r -0, we may choose numbers
I'n k>, 0<r, <1, such that

i 94n+1 log Sn, k <3
k=-—gq log In, k ’
k#0
where q is the greatest integer less than 2”/6. For each n and —2" <6k <2”,
k #0, let D, ; denote the disk in A with center s, , and hyperbolic radius
tanh~'r, , and let

Dy =3-2"42"D} y={w:w=3-2"4+2"z,2€ D; }.

Now, consider the surface S as constructed in the proof of Theorem 6 and
delete the closed disks D, , from 7, the basic region from which the sur-
face S was constructed. We note that we can rechoose the r,, ;, making them
smaller if necessary, so that each closed disk D,,  is a subset of T. Finally,
we delete from S all points on S which are congruent to points in D,, , under
elements of the group . Let S” denote the resulting surface, and let R, de-
note its universal covering surface.

Let f« denote a conformal mapping from A onto Ry, let IT, denote the nat-
ural projection mapping from R, to §”, and let IT denote the natural projec-
tion mapping from S” into the complex plane. Then f = IIoIl, f, is the func-
tion we desire. For if p is any point on R, such that IT-II,(p) =3-2" and if
}(p) is the component in R/ of the inverse projection of U={z:|z2—3-2"|<
2"}, then, for each appropriate value of k, at most 24"+ copies of D, ; are
missing from IT~/(U) on S”, and so the harmonic measure wy(p) of Q(p)N
II, '.II-}(U) at p relative to the region Q(p) is less than 273" It follows
from Theorem S that f is not in BMOA(A). Let I" be the Fuchsian group on
A which corresponds to the action of ¥ on §”. Then the function Il,<f, is
additive automorphic with respect to the group I' when the projection II is
applied, so f is additive automorphic with respect to I'. Letting u be the real
part of f, it follows from Theorem 2 that « is not in BMOH(A/T"). However,
S is a Bloch function, since no disk on R, may have radius greater than 7.

It remains to show that A/T", considered as a Riemann surface, is regular.
But A/T is equivalent to the surface 7—U D, 4, where each boundary seg-
ment is identified with the boundary segment either directly above it or di-
rectly below it. Clearly, every boundary point of this surface belongs to a
continuum of boundary points except for the point at c. Thus, the only
point which needs to be checked for regularity is the point at co. Applying
the mapping w(z) =1/z to T—U D, 4, the image is a region 7* for which
every boundary point belongs to a continuum except for the point at z=0.
We note that the boundary of 7* contains curves E,, joining the point z =
(2" —273") /(22" +27%") to the point (27—273"+1)jy /(2214 2=6(n+1)y for
each positive integer n. We wish to apply the Wiener criterion (see [3, p. 298]
and [9]). According to the Wiener criterion, the point z = 0is a regular point
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for T* (meaning that the Green’s function will converge to zero as that bound-
ary point is approached) if and only if the series X, — ; W{(F,)log 2" diverges,
where W(F,) is the Wiener capacity of the set F,={zedT*:27 " 1<|z|<
27"}, Here, W(F,) is related to the logarithmic capacity L(F,) by the rela-
tionship W(F,)=1/log(1/L(F,)). We note that the set E,, is a subset of F,
even when 7* is considered to be a Riemann surface with the identifications
of top and bottom edges. Further, E,, can be approximated as the line seg-
ment from 27"—27% to 27" —273"73}, a segment with length 27372773,
(This approximation is sufficiently accurate for our purposes, and it simpli-
fies the calculations greatly.) Since the logarithmic capacity of a line segment
is one-fourth of its length, we have that L(E,,) is approximately 2~>"~2 and
W(E,) is approximately ((5n+2)log2)~!; that is, W(E,) is of the order of
1/n. Clearly, Y- (log2")/n diverges. It follows that 7*, with appropriate
boundary identifications, is a regular Riemann surface, and hence so is R =
A/T'. This completes the proof. O
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