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I. Introduction

Let Q be an open bounded region in R”. Let A be the Laplace operator,

on real-valued functions on Q. Let A be the Laplace operator applied to
components of R"”-valued functions on Q. Let dQ, d/dn, grad, and div be
(respectively) the boundary set of 2, the outward-pointing normal deriva-
tive on 49, the gradient, and the divergence. Let L?(©) be the Hilbert space
of square-integrable real-valued functions on Q and let L?(Q) be the Hilbert
space of R”-valued functions u on ©, so that the pointwise R” norm |u(x)|
is in L2(Q).
Consider the three eigenvalue problems:

(1.1 Au+agrad(divu)+A®u=0 in Q, u=0 on 49;
(1.2) Av+Av=0 in Q, v=0 on 09Q; and

5 : do
(1.3) A“p+vAp=0 in Q, ¢=—é;=0 on d9.

The number « is a nonnegative constant, and in this paper « always refers
to the constant in problem (1.1). We consider the collection of eigenvalue
problems in (1.1) for all nonnegative values of «. Problem (1.1) governs the
behavior of an elastic medium and thus appears often in the theory of elas-
ticity. The problems (1.2) and (1.3) are often referred to as the Dirichlet and
buckling eigenvalue problems, respectively.

In this paper we extend some inequalities obtained recently by Kawachl
and Sweers [3] for the smallest eigenvalue of problem (1.1) to all of its eigen-
values. We assume that the eigenvalues of (1.1), (1.2), and (1.3) are orderad

AY<AP<..., \y=\,=<---, and v, < v, =< ---, respectively.
We establish that the following inequalities hold:
(1.4) NMtk—1ym =AY forall «=0, all &, n,
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where [x] is the largest integer less than or equal to x;

! .
(1.5) A(k“)s(l+%))\1+l+a S A, forall =0, all &, n,
=1

=
where / =[k/n] and m =k (mod n); and
(1.6) A® <y, forall «=0, all kand all even n.

Inequalities (1.5) and (1.6) provide upper bounds for A{®). Since (1.5) de-
pends on « and (1.6) does not, for large «, (1.6) is a sharper upper bound
for Al than (1.5). For small o = 0 the right-hand side of (1.5) approaches
A+ and since (as is well known) N, ; <, for all /, inequality (1.5) pro-
vides the sharper upper bound for small «. Inequalities (1.4) and (1.5) can
be applied to earlier results of Hile and Protter [1] and Levine and Protter
[4] to establish:

ka 4 m
(1.7) AL < (1 + 7) (A&‘;‘,z_l,m + ,}::1 A((C;)_”nﬂ),
where m=[k/n];
Ar’n/ 1 \¥" k—17\%"

1.8 AP = —— ;
-9 ¢ >n+2(B,,V) <l+[ n D and

1 4m2n 1 2/n s nl m
1.9 — Al > 2y Z 1y,
42 k,-§, / n+2(B,,V> (k T D

where m =k (mod »n) and /={k/n]. In (1.8) and (1.9), B, is the volume of
the unit ball in R” and V is the volume of .

II. Relation to the Dirichlet Problem

It is well known (see, e.g., [3]) that the eigenvalues of equation (1.1) satisfy
2.1 A =min R, (u),
where u € L?(Q) with u =0 on 9Q is L?(Q)-orthogonal to the first £ — 1 eigen-
vectors of (1.1), and where
fo(—Au-u+ a(divu)?)

folul?

We will use (2.1) and (2.2) often below. We begin by establishing a relation-
ship between the eigenvalues of (1.2) and those of (1.1) when o =0.

(2.2) Ry (u) =

LEMMA 1. If Mi=\y<:--and A(IO)SA(ZO)S ... then >\[(n+k—l)/n]=A(/?)f0”
all k.

Proof. When o =0, equation (1.1) becomes

(2.3) Au+A@Pu=01in Q; u=0 on 9.
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Equation (2.3) is simply an uncoupled system of n copies of the Dirichlet
problem (1.2). Thus the eigenvalues of (2.3) are exactly the eigenvalues of
(1.2) with n-fold multiplicity (multiplied by the multiplicity of the corre-
sponding eigenvalue of (1.2)). Thus

>\2=A£10_2_1 =A(,10_l_2= cee =A(20n); cev s
_ _ . — AO).
>‘k—'A(((}<)~—l)n+l _A(((/)()—l)n+2— “A(krg’ e
In other words, if mn+1<k <(m+1)nthen )\, ;= Al". Evidently we must
have m=[(k—1)/n] or m+1=[(n+k—1)/n]. O

LEMMA 2. Ifa=<f then A < AW for all k.

Proof. For a <@, R,(u) <Rz(u). It is then easy to show, using (2.2), that
AP <AP forall k=1,2,.... O

We can summarize the above two lemmas in the following theorem.

THEOREM 1. If Q is an open bounded region in R" so that problems (1.1)
and (1.2) are self-adjoint with discrete spectra, then

(2.4) Mu+k—-1ym=AD =AP <AP if 0=a=8.

Now that we have established the lower bound for A{ in terms of the eigen-
values of the Dirichlet problem (1.2), we turn to the upper bound (1.5).

THEOREM 2. The eigenvalues of (1.1) and (1.2) are related by
/
2.5) AW < (1 + %)x,ﬂm RV
i=1

Jor n=2, where | =[k/n] and m=k (mod n). Moreover, if o> 0 then in-
equality (2.5) is strict. (Note: If | =0 then the sum in (2.5) should be inier-
preted to be zero.)

Proof. Letuy,u,, ..., u;, ... be L>(2)-unit eigenvectors of (1.2). Let / = (k/n]
and m = k (mod #n). Suppose that

(2.6) S(a“’“):S Ol 2<...<S i\’
’ e\ dx; / " Ja\ ax, /T e\ ox, /°

Define the vectors

('1\ (0\ (0-\
0 1 0
2.7 e;=|0f; e=|0;...5 e,=

L0 L0 1)
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in R”. We assume that the usual basis of R"is used. If (2.6) does not hold we
can arrange the integrals in ascending order and make appropriate modifica-
tions in the definitions of (2.7). So the assumption in (2.6) results in no loss
of generality. ]

Consider the collection of the & L?(f2)-unit vectors:

ue; for i=1,2,...,/1;j=12,...,n, and
(2.8)

ue; for j=1,2,...,m

There is a unit vector, v, in the span of the vectors in (2.8) which is L2(Q)-
orthogonal to the first £ —1 eigenvectors of (1.1). Write v as

(2.9) v="Y uyue;,

Lj

where the p;; are constants which must satisfy
(2.10) > ui=1
i,J

since v is an L2(2)-unit vector and the u;e; are mutually orthogonal in L*(2).
Since v is orthogonal to each of the first k —1 eigenvectors of (1.1), we have

A <R, (v) = Sﬂ(—Av~v+a(diV v)?)
2.11) 2

The right-hand equality in (2.11) follows from the definitions of v and A.
Continuing, we see that

2
e . 2 — . .
Ra(v)—%(uu) Sg( Au,)u,+a§ (2 Rij axJ)
(2.12) ou,
frsmed . 2 .
—g(p’y) }\1+O‘S (Eﬂu axj>

Equation (2.12) follows from the fact that —Au; = \;u;. Next we apply the
Schwarz inequality to the right-hand term of (2.12), and remember from
(2.10) that 3; ; p2 =1. That is,

S(Euu gu )2 S E(uu) E( J)z
133

Thus from (2.12) and (2.13) we see that

(2.13)
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ouy\?
R,(v)=X )\i(,”'ij)z'*‘az.s ( u)
i,Jj i,

jJa\ dx;
5 ! 5 m o4y 2
(2.14) =2 N(p)) +o Y g lgrad u;|“+ o ¥ S ( )
ij i=1 j=1 Q axj
! <L U g 2
=S N(pi))+a S N+a S ( ) )
iy A El ' j=1§9 0x;
Notice that if /=0theni=1and j=1,2,..., m<n, so
du;\> Mo /oup \
2 ag) =2 1)
and the sum $/_, folgrad ;|*> = 0 in this case.
The assumption of (2.6) implies that
m M \> m , m
2.15 < — d < —N41-
e 3 (FGe) = eraduaP = Ty

Placing the result (2.15) into (2.14) and (2.11) yields

AP <R, (v)_E Nipij)*+ o E Nt >\1+1
(2.16) s)\[+1+az )\i+_)\1+1

(l+——))\1+1+a > A
i=1

This establishes the weak inequality. If the inequality in (2.5) is an equality

with « > 0 then we must have all of the following:

(i) v is an eigenvector of (1.1);

(ii) there is a function ¢ on Q so that du;/dx; = o(X)p;j;
(ili) §o(du;4,/0x;)? is independent of j; and
(iv) p;j=O0unlessi=/+1.

For / = 1, conditions (ii) and (iv) are inconsistent since then du;/dx; =0in Q
for all j. Thus u; =0 in Q, which is not possible.

If /=0 and equality holds in (2.5), we must have v with components that
are constant multiples of u, the first eigenfunction of (1.2). Say v = au where
a has components a,, a,, ..., a,. Writing out the system (1.1) assuming equal-
ity in (2.5), we have

(2.17) a;

(l+ —n—?{—>)\1a;u =0 in Q

fori=1,2,...,n, and where

(2.18) Au+Nu=0 in Q.
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Application of condition (2.18) to (2.17) yields the simpler system

(2.19) - (divyy+ MM 0 in 0,
ax,-
An alternative form of (2.19) is
A
(2.20) grad(a-grad(u))+ " ’;ua =0,

using the fact that div(v) =a-grad(«) by definition of v.

The system in the form of (2.20) implies that a-grad(«) depends only on
its coordinate in the direction of a by taking dot products with vectors or-
thogonal to a. Since a-grad(u) depends only on one coordinate, so does its
gradient, and thus, upon dotting (2.20) with a, we see that ¥ depends only
on that one coordinate also. In this case we have ¥ =0 in Q, since « is con-
stant on all hyperplanes orthogonal to a and all such hyperplanes meet dQ
someplace where u = 0. As u, the first eigenfunction of (1.2), is never identi-
cally zero, inequality (2.5) must be strict in this case also.

III. Relation to the Buckling Problem

In this section we establish inequality (1.6) for even n. We begin with a few
preliminaries.

PROPOSITION 1. The eigenvalues of (1.3) are characterized by

Jo(A%¢)¢

falgrad ¢)2°
where ¢ is chosen among all functions in L*(Q) with ¢ =0d¢/dn=0 on 9Q
whose gradient is in L*(Q) and grad ¢ and grad ¢; are L*(Q)-orthogonal,
where i=1,2,...,k—1 and ¢; is an eigenfunction of (1.3) corresponding
to V.

3.1) ) =min

LEMMA 3. Let n be an even positive integer. Let U: R"— R” be given by
(3.2) W(Z15 225 +++5 Zn) = (225, =215 245 =235 +++5 Zns —Zn—1)
in standard coordinates. Extend U to L*(Q) pointwise. Then

(i) W is unitary in L*(Q);
(ii) for any v e L3(Q) for which Av exists, A(U(V)) = U(Av); and
(iii) for all ¢ € C*(Q), div(U(grad ¢))=0.

Proposition 1 is well known (see, e.g., [3]). Lemma 3 is easily shown from
the definitions.

THEOREM 3. The eigenvalues of (1.1) and (1.3) are related by
(3.3) AP =y, k=1,2,...,

Sor all =0 if n is even.
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Proof. Let ¢y, ¢, ..., ¢, be eigenvectors of (1.3) corresponding to vy, v,,
voes V. Let ug, u,, ..., ux_; be L2(Q)-unit eigenvectors of (1.1) for some fixed
a. Proposition 1 states that we may assume that ¢, ..., ¢, satisfy fggrad ¢;-
grad ¢; = §;;, where §;; is the Kronecker symbol. Lemma 3(i) implies that
o U(grad ¢;)- U(grad ¢;) = §;; also. Choose v in the span of U(grad ¢),
U(grad ¢,), ..., W(grad ¢;) so that v is an L2(Q)-unit vector and v is L?(Q)-
orthogonal to u;, uy, ..., ux_q.
Say v=3%_,8;U(grad ¢;). Then, using Lemma 3, we have

k k
G4 AP <R =] (<43 puceraden)-( 3 6uerade)).
1= J=

Using Proposition 1 and Lemma 3, it can be shown that the right-hand side
of (3.4) is equal to I¥_, 8%»;, which does not exceed »,. O

REMARK. It is not clear whether inequality (3.3) holds in R” for n odd
and n= 3. However in R! the eigenvalue problem (1.1) reduces to

(3.5) (A+aA)u+A®u=0inQ; u=0 on 9.

Equation (3.5) is equivalent to

Al
(3.6) Au+

u=0 in Q; u=0 on 9.

+a
Clearly (3.6) is the Dirichlet problem (1.2) with eigenvalues A{*)/(1+a) =
M. Thus in R! we have Al = (1+a)\;. Because 0 <\, <, for all £, in-
equality (3.3) cannot hold for all « since for a=2v;/N\;—1 we have AlY =
2Vk > Vi

IV. Upper and Lower Bounds for the Frequencies
of the Elastic Problem

We can now establish a lower bound for the eigenvalues A{* which is depzn-
dent on the volume of the domain 2, as well as an upper bound which isin-
dependent of the domain but dependent on some of the lower eigenvalues.
The lower bound follows from some work of Levine and Protter [4]. The
upper bound follows from a paper of Hile and Protter [1]. The result we use
from [4] is as follows.

PROPOSITION 2. The eigenvalues of (1.2) satisfy

1 & 4v2n/ k \¥"
4.1 A= — =
@ e en=a(57)

where B,, is the volume of the unit ball in R" and V is the volume enclosed
by Q.

We use Proposition 2 and Theorem 1 to establish the next theorem.
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THEOREM 4. The eigenvalues of (1.1) satisfy

1 X 4nm? 1 \¥" j
4.2 — $ A > 2/n P 1 1)2/m
(4.2) 2 n+2<B,,V) (kj +k(J+) ’

where m =k (mod n) and j =[k/n].

Proof. Using Theorem 1 we have

4.3) — E A(a)> - E N(n+i=1)/n]-

Using the fact that kK =nj+m and the deﬁmtlon of [-], we can rewrite the
right-hand side of (4.3) as

1 k
4.4) Eigl)‘[(n+i—l)/n]—_( 2X> - Nig1-

According to Proposition 2 we have

2 N _ni Ar’n / j \"
k k NeZE ST B,V
L 4r2n [ j+1\*/"
k n+2\B,V /)
Combining (4.3), (4.4), and (4.5) yields the result. [l

(4.5)

In [4] Levine and Protter established that

47r2n 1 2/n k 2/n
4.6 APz ¥ A= —) .
-( ) 2 n+2\ B,V n

In some cases inequahty (4.2) is sharper than (4.6) and in others inequality
(4.6) is sharper than (4.2). For example, if n =3 and k£ =1 then (4.2) yields a
larger lower bound for A(l"‘) than (4.6) does. In fact, this is generally the case
when k < n. On the other hand, if n=3 and k£ =4 then (4.6) yields a larger
lower bound than (4.2).

Applying the result of Theorem 1 to inequality (4.1) for A\, yields another
interesting result.

THEOREM 5. The eigenvalues of (1.1) satisfy

@) A(a)>47r2n 1 \"Tn+k—17%"
) = ne2\ BV n :

Proof. By Theorem 1 we have
(4.8) A = Ny k—1y/n1-
Application of inequality (4.1) to (4.8) yields (4.7). U

REMARK. The result of Theorem 5 is at least as sharp as the inequality in
(4.6) for all £ and n, since for k, n =1 we always have k/n<[(n+k—1)/n].
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The last application of our results is to a domain-independent upper bound
for A% in terms of some of the A for j < k. Results of this type have been
considered by several authors, the most recent by this author [2]. However,
we will use the earlier result of Hile and Protter [1].

PROPOSITION 3. The eigenvalues of (1.2) satisfy

m

4
(49) )‘m+l = )\m+ % i§1 )‘i
for Q< R".
Our next result follows from (4.9).

THEOREM 6. The eigenvalues of (1.1) satisfy

n+ak 4 m
(
Aka)s( . )(A(m el T T2 o Z; A((zx) l)n+l>

(4.10)
- (n+ak)(n+4)

A(a)
n2

(m-1)n+1°

where m=[k/n). Inequality (4.10) is strict for a> 0.

Proof. Choose k=14 (j—1)nin (2.4). Then (2.4) becomes
(4.11) >‘[(n+1+(j—l)n—1)/n] = )\j SA(((;)—l)n+l forall j=1,2,....

We also need a lower bound for \,,, in terms of some of the A®). We use
Theorem 2 for such a bound. Theorem 2 asserts that

aj n
(4.12) A(ka)5<1+ 7))\,,,.;.1""(1 E >\i’
i=1
where k =mn+j and 0 < j < n. The summation in (4.12) is bounded above
by mal,, .. Thus (4.12) can be weakened to

of ko
(4.13) AP < (1+ 71))\,,,+1+ma>\,,,+1 = (1+ -~ )x,,m.

Application of (4.11) and (4.13) to (4.9) yields

ak
A(ka) = (1 + _"1_) >‘m-H

ak N mn
5(1+7)(A(m 1)n+1+“m_nl§_: e 1)n+l)

Inequality (4.14) is the desired result, inequality (4.10). The second inequal-
ity of (4.10) is obtained from the fact that A?) |\ <Al®_| . foralli=

1,2,...,m. Finally, inequalities (4.12), (4. 13) and thus (4.14) are strict for
o> O by Theorem 2. O

(4.14)
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A stronger implicit bound for the A‘*) may be obtained from the implicit in-
equality of Hile and Protter [1], but the result is not particularly pleasing.
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