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Introduction and Results

In this paper, we prove some results about the class A~ of analytic func-
tions on the unit disc D={zeC:|z|<1]} that satisfy |f(z)|=C(1—|z])™"
for some C >0 and n e N. This class was studied extensively by Korenblum
in [6], where some results about the moduli of the zeros of the functions in
the space A~ % are given. There ([6, p. 202], see also [8, Thm. 6]), a function
in A~ is constructed whose sequence of zeros (z,), satisfies ¥ ,(1—|z,|) =
+c0; s0, in general, the Blaschke product cannot be defined. We shall prove
that the function f e H(D), defined by f(z) = g;(r) where z =e*"", 7 >0
and g, is the well-known Eisenstein invariant (see [1, p. 12}), belongs to A=
and f also satisfies ¥, (1—|a,|) =+, where (a,), is its sequence of zeros
in D.
It is easy to prove (see [8, p. 224]) that the function

(1) f(z)=3 a,z" belongsto A~*if and only if (a,), €5,
n=0

where s’ is the space of tempered sequences in which (a,), €’ if there exist
C and o >0 such that |a,|< C(n+1)“. So the boundary values of the func-
tions of the space A~ are the distributions on the circle T={z e C: |z|=1]
with vanishing negative Fourier coefficients. Moreover, if f(2)=X,-0 2,2"
and u € D'(T) is its boundary value, then a,, = (u, e ~indy,

In the following theorem, we give an analogous identification for the func-
tions in the space A~ as some Fourier-Laplace type transforms of the tem-
pered distributions with support contained in [0, +c0).

THEOREM 1. A function [ belongs to the space A% if and only if there
exists a tempered distribution u, with supp(uy) C [0, +o0) such that f(z) =
(up(t), e'@HD/2=2y jf 17| < 1. Moreover, if f(z)/(1—z)=3,4a,z" then
a, = uy, L,(t)e /Dy, where the L,(t) are Laguerre polynomials.
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Using this result, we give a very easy proof of the following classical result
(see [10, (3.1), Thm. 1 and (4.3)], also {7, Thm. 1]).

THEOREM A. Let f be an analytic function on the upper half-plane. Then
there exists a tempered distribution u with supp(u) C [0, +) such that
S(w) =<(u(t), e™"y when Sw> 0 if and only if the function f satisfies:

C(+|w|H)™
(Sw)"

We finally apply the above results to prove the following proposition.

@) |f(w)|= for C>0, n,meN, and Sw>0.

PROPOSITION 2. There exists a tempered distribution u, with supp(u) C
[0, +0), such that if v is a tempered distribution with supp(v) C [0, +o0)
then uxvé LP([0, +)) when 1< p<2.

Notice that if u € &’ then there exists ve & such that uxve L? for all p=1.

Proof of the Results

Given two R-independent complex numbers w; and w, (i.e., their ratio is not
real), they define the lattice Q = Zw,+Zw,. The Eisenstein series of order 6
is defined by Gg =2 cq, w01 /wS. We consider the invariant g; defined by
&3 =140G¢ and the function g;(7) =140 ,, 1/(m+ n7)® where the sum is
extended to all pairs of integers except (0, 0), which we denote by X’. This
function is defined for 7> 0.

We now prove that this function provides an example of a functionin A~
whose zeros do not satisfy the Blaschke condition.

PROPOSITION 3. Let fe H(D) be the function defined by f(z)=g3(7),
where z =e*™". Then

(@) feA™™, and
(b) if (a,), are the zeros of f on D then ¥ ,(1—|a,|) = +.

Proof. Indeed, by [1, p. 20}, g3(7) = (87%/27) (1—504 %, 05(n)e*™"7) where
05(n) = Saiad>, 50 f(z) = (87%27)(1 - 5043, 05(n)z"). By [1, p. 135],
|ogs(n)| < C-n for some constant C. An application of (1) completes the
proof of (a).

Consider the unimodular group H = [(g 3): a,b,c,deZand ad—bc=1}.
For simplicity we write M(a, b, c, d) instead of (ﬁ Z). We prove (b) by using
three preliminary steps «, 8, and +.

(o) g3(7) =(c7+d) Cgs((ar + b)/(cT+d)) for all M(a,b,c,d)e H. To
show this we proceed as follows. Gg = Gg(w, w;) =X, 1/(nw; + mw,)°®.
Taking 7 = w;/w, we obtain Gg(w;, w,) = wi8Ge(1,7) = (Wi %/140) g5(7).
Since'G¢ depends only on €, by taking another basis w{, wj it follows that
Ge(wy, wp) = Gg(wi, w3).
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We consider the lattice (1, 7). Given M(a, b,c,d)€ H, it is clear that
ar+ b and c7+d are bases of Q(1, 7) and that §((ar+b)/(c7+d)) >0. Thus

ar+b
cr+d )’

Gﬁ(l, T) = GG(CT+d, a'r+b) = (CT+d)—GGG<1,

Then g;(7) = (ct+d)%gs((ar+b)/(cT+d)) and («) is established.

(B) For all M(a,b,c,d)e H, g;((ai+b)/(ci+d))=0. To prove this, let
M(0,1,—1,0) be in H. By (), g3(i) = (—i)"%g3(1/(—i)) = —g5(i); hence
g3(i)=0. As M(a,b,c,d)e H, by (a),

) ’ . b
O=g3(l)=(Cl+d)-6g3(al+b) and g3(al+ )::0.

ci+d ci+d
(v) If (i) are the zeros of g3(7) then Tyen S/ (1+|nk]?) = . By (B),
3 ai+b>
S ci+d
keN L+|mel® Mo bic et 1 ai+b |?
ci+d
/(@i +b)(~ci+d)
v c2+d?
= 2172
Mla,b,c,d)eH, a,b>0 a*+b
c?+4d?

1
M(a,b,c,deH, a,b>0 @2+ b*+c2+d?’

Let @ and b be relatively prime; that is, let (a,b) =1. Then there exist
X0, Yo € N satisfying ax, — by, = 1. Hence, the integer solutions of ax — by =1
will be x =xy+ bt and y =y, +at with ¢ € Z. So there exists a solution satis-
fying 0 < y <a—1. Since b e N, it follows that

O<x= I+by _1+b(a—1) =b+(1—%2)sb.

a a

Since ax—by =1, we have M(a, b, y,x) e H. Consequently, given the rela-
tively prime a, b € N, there exist d,ce N satisfyingd<b, c<a—1=<a, and
M(a,b,c,d) e H. Hence

1 1 1 1
> =—( —=—_1.
a’+b2+c2+d? ~ a’?+b2+a?+b? 2(a2+b2>
Then

Ik 1 1
= o=
ken 1+ [me|*> 2 (a,.bz)zl a?+b?

We shall prove that the last series diverges. Indeed,



342 J. ARIAS DE REYNA & ANTONIO J. DURAN

2 1 1 1
e 3 =2 ) 3, )

s 1 > 1 1 & 1
= —_— = —_—— =
m,n=§m;¢n m2+n2 m,§=1 m2+n2 2 m2=1 m2
o 1 7 >§oogw dxdy =2
mon=1 M2+n? 12 )1 J1 x24y2 12
— ___S __(l/i)__z_=5 arctan _y_ Ef_)_c__l
1 1 14+y%/x?2 12 N x/i x 12

b
(E —arctan(—l—)) @— — —W—?:
2 X X 12
) dx w2

arctan x — — — =oo,
1 X 12

i
L S )
= 8

This proves (vy).

We now use (vy) to establish part (b) of Proposition 3. If (a,), are the
zeros of f(z), it is clear (by the definition of f) that the zeros of g;(7) are
Mk, n=(1/(27i))log ay = n+arg(a;)/(2w) —i log|a,|/(27). Hence

2 3’7k,n =E E —‘(loglakl/z'n—)
ni=1 1+ | nl> % nez 1+ (n+arg(ay)/27)?+ (log|ay|/27)?

—(log|ay|/27)
= Ek; n§Z 14 (n+arg(ay)/27)?"

As —1<arg(a;)/(27) <1, we obtain

§; __337_’&£__<2_1°gla’<|(2 L 43 __L___+1)

nket 4 me a2~ % 20 \Zi1+(r+1)2 2 1+(n-1)2 " 2

<C % —log|ay]|

for some constant C. By (y), X7 k=138, »/(1+ ]nk,,,lz) diverges, hence
2« —log|ay| diverges too, and so X4 (1—|ay|) = . This establishes part (b)
of Proposition 3. Ll

We now prove Theorem 1. In [2], we write the set of all tempered distribu-
tions with support contained in [0, +o0) as the dual of the space

S*T={y:[0, +0) = C|y(t)=¢(¢) for t =0 and some ¢ in S}.

This space is a Fréchet space with the seminorms || ,=sup,=o ¢*|¢™ (2|,
where k,ne N. Since R((z+1)/(2z2—2)) <0 when |z| <1, it follows that
e!@tD/(22=2 e §+ Also L,(t)e~“PeS*;s0if ue(S*) (ie., if ue S’ and
supp(u) C [0, +o0)) then (u(t), e’ @E+V/R2=2y and (u, L,(t)e~“?y are well
defined.
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We will use the following result, which can be found in [2, Thm. 2.9] and
in [5, p. 550].

THEOREM B. The mapping £:(S*) — s’ defined by
L(u) = ((u, L,(t)e~“2y),
is an isomorphism from (S*) onto s'. So, if ue (S*Y, then

u=S<u,L,(t)e YN (t)e U2
n
in the weak topology of (S*).

Proof of Theorem 1. We first prove that the first condition implies the sec-
ond. It is clear that f(z)/(1—-2)eA " if feA™™. By (1), f(z)/(1-2) =
Y =0 @,2" with (a,), €s’. By Theorem B, there exists u € §' with supp(u) C
[0, +00) such that u =3, a,L,(t)e /. As the series converges in the weak
topology of (S*), it follows that

(u(t), et(z+1)/(22-—2)) — E a, S°°Ln(t)e—(t/Z)et(z+1)/(2z—2) dt
0

n=0
= 2 anzn(l—z)’

n=0
where the second equality follows from [3, p. 191, (3.2)]. Hence f(z) =
(u(t),et(2+1)/(22-'2)>.

We now prove that the second condition implies the first. Let u € S’ with
supp(u) C [0, +). Proceeding analogously we have
u(t), e @HDC=2y = (1—z) 3 (u, Ly(t)e/P)z",

n=0

From Theorem B and (1), it follows that (u(?), e!@+t1V/Q2=2y e 4==  []
Using Theorem 1, we give a very easy proof of Theorem A.

Proof of Theorem A. We consider the bilinear transformation defined by
Z(w)=(w—i)/(w+i), which transforms the upper half-plane on the unit
disc. It is clear that its inverse is W(z) = (iz+1i)/(1—z). Now, by using the
above transformation, given an analytic function f on the upper half-plane
we obtain an analytic function g; on the unit disc by the formula g,(z)=
Sf((iz+1i)/(1—2z)); reciprocally, if g is an analytic function on the unit disc
then the function f,(w)=g((w—i)/(w+1i)) is an analytic function on the
upper half-plane.
Since 1—|z|*>=(2%w)/(1+|w|>+23w), it follows that

1+|w]? 1 2(1+|w|?)
< =
23w T 1—|z| 23w

By (3), we deduce that if f is an analytic function on the upper half-plane,
then f satisfies (2) if and only if g, belongs to A™%. Applying Theorem 1,

3)
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we conclude that f satisfies (2) if and only if there exists a tempered distribu-
tion u with supp(u) C [0, +0) and f(w) = (u(¢), e"/2y if Yw > 0. O

To finish, we prove Proposition 2. We need the following lemma.

LEMMA 4. Let fe L?([0,+)) with 1< p<2. Then the analytic function
on the upper half-plane defined by f(w)=F(f(¢)e 3" )(Rw) belongs to
HY with 1/p+1/q=1, where F, is the Fourier transform on LY([0, +))
and HY is the Hardy space in the upper half-plane (see [4, II]).

Ifroof of Lemma 4. If fe L([0, +)), it is clear that f(w) is bounded, so
feH™, Letl<p=<2.If w=x+iy with y >0, then

f(t)e™" e L'([0, +0)) NLP([0, +0)).

Hence F,(f(t)e ") = ﬁp(f(t)e‘{’) a.e., where &, is the Fourier transform
on LP([0, +00)). By [9, (4.1.2)], f(x+iy)e L9(R) as a function of x, and

= 1/(1-p)
[ mpavse ([ lroerpa)” " scaspron:
that is, fe HY. .

Proof of Proposition 2. Let h be the analytic function on the upper half-
plane defined by A(w) = f((w—i)/(w+1i)), where f is a function of the space
A~% satisfying ¥ ,(1—|a,|)=+ and (a,), are the zeros of f on the unit
disc. As fe A™™, h satisfies (2) (see the proof of Theorem A). By Theorem
A, there exists u € S’ with supp(u) C [0, +0)) such that A(w) = (u(t), e’
if w>0.

By the definition of the function 4, its zeros are 8,=(—i—ia,)/(a,—1).
By the choice of f, 3,(1—|a,|) =+, so

3B
@ 2 T3[R~
We assume that there exist p € [1, 2] and v € S’ with supp(v) C [0, +0), such
that u*ve L?([0, +0)). From Lemma 4 it follows that the function ¢ de-
fined on the upper half-plane by o(w) = {(u* v) (), e’y belongs to the space
H1Y for q satisfying 1/p+1/qg=1.

It is clear that o(w)=/<{u(z), e Y v(t),e™"y =h(w){v(t),e™") and so
©(8,) =0. By (4), if (7,), are the zeros of ¢ then T, v,/ (1 +]vn]?) = +oo.
But ¢ belongs to H? with 2 < g <+, so by [4, p. 55] its zeros must satisfy
> $9n/ (1+]vn]?) < +o0. Thus, if ve S’ with supp(v) C [0, +), it follows
that u*x v ¢ LP([0, +)) (1 < p=<2), and Proposition 2 is proved. ]

+o00,
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