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1. Introduction

We study the double Walsh series

(L.1) S S aupwi(x)w),
j=0 k=0

where {a;: J, k=0,1,...} is a null sequence of real numbers; that is,
(1.2) a;;—0 as max(j,k)—

and {w;(x):j=0,1,...} is the well-known Walsh orthonormal system de-
fined on the interval 7=[0, 1) and taken in the Paley enumeration (see, e.g.,
[2]). Thus, series (1.1) is considered on the unit square 72=1[0,1) X [0, 1).
The pointwise convergence of series (1.1) is usually meant in Pringsheim’s
sense. (See, e.g., [5, vol. 2, ch. 17].) In other words, we form the rectanguler

partial sums
m—1 n—1

Sun(X, )= 2 2 auwi(X)w(y) (m,n=1),
j=0 k=0

then let both m and » tend to oo, independently of one another, and assign
the limit f(x, y) (if it exists) to the series (1.1) as its sum.
Throughout this paper, we shall use the notations

A0 =aj—aj 41 ks Ao @i =aj—a; 415
A= Q=1 k= g1+ 1,041 (J, 6=0).

We say that {a;} is a monotone decreasing sequence if @ is monotone de-
creasing in both j (for each fixed k=0) and k (for each fixed j =0), or
equivalently

(13) AloaijO and AOlaijO (j,k_>_0)

We say that {a;.} is a sequence of bounded variation if

Received August 1, 1988. Revision received October 14, 1989.

*This research was completed while these authors were visiting professors at the University of
Tennessee, Knoxville, during the academic year 1987/88.

TThis research supported in part by the National Science Foundation (INT-8620153).

Michigan Math. J. 37 (1990).

191



192 F. MORICZ, F. SCHIPP, & W. R. WADE

(1.4) Y X |Apay| <.
j=0k=0

Observe that condition (1.2) and
(1.5) AllaijO (j,kZO)
clearly imply the fulfillment of (1.3) and (1.4), and that a;; = 0.

2. Results

Moricz [3] proved that if {a;;]} is a null sequence of bounded variation, then
series (1.1) converges to a finite limit f(x, y) for all 0 < x, y<1, and that
| f]? is Lebesgue integrable over 12 for any 0 < p < 1. In order to prove the
integrability of | f|, we have to assume somewhat more than (1.4).

THEOREM 1. If a double sequence {a;} is such that condition (1.2) is sat-
isfied and

@.1) S 3 |Aua] In(i+2) In(k+2) <o,
Jj=0k=0
then

(i) series (1.1) converges to a function f(x,y) forall 0<x,y<1,
(ii) fis Lebesgue integrable over I?,
(iii) §§§0lSma(x: ¥) =S (x, »)| dx dy— 0 as min(m, n) - co,
(iv) series (1.1) is the Walsh—Fourier series of f.

It is not hard to check that if conditions (1.2) and (1.5) are satisfied, then
condition (2.1) is equivalent to the condition

[o¢] o0 a.
2.2 Jk
(2.2) 2 2 G0

In fact, a double summation by parts gives

m}—)l nil . ajy =mE—I nf_}lh- A a-+m§_]lh- A
j=0 k=0 (J+1)(k+1) ;=0 k=0 J+17%k+1211%jk o i 11, D104y
+ nil Rohg 1A 01@pp+ @ By s
where =0

m
h,= Y — (m=1).
i=1J
Since the exact order of magnitude of 4, is In(m+1), the equivalence of
(2.1) and (2.2) follows easily.
In this special case Theorem 1 can be reformulated as follows.

COROLLARY. If conditions (1.2), (1.5), and (2.2) are satisfied, then the
conclusions (i)-(iv) of Theorem 1 hold.
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We note that this Corollary is an extension of a theorem by Balasov [1] from
one-dimensional to two-dimensional Walsh series.

If we drop condition (2.2), we cannot guarantee the Lebesgue integrability
of the sum f of series (1.1). Nevertheless, conditions (1.2) and (1.5) themselves
are sufficient to ensure the integrability of f in the sense of the improper
Riemann integral and even more, as the following theorem shows.

THEOREM 2. If conditions (1.2) and (1.5) are satisfied, then

(i) series (1.1) converges to a function f(x,y) for all 0< x, y <1,
(ii) fis integrable on I? in the sense of the improper Riemann integrali,
(iii) series (1.1) is the Walsh—Fourier series of f in the same sense:

@3 ag=lim | [ 70w wp) dxdy (G, k=0).
8,el0v0 Ve

We note that Theorem 2 is an extension of a theorem by Rubinstein [4] from
one-dimensional to two-dimensional Walsh series.

Next we study the asymptotic behavior of the measure of the level sets for
f. By |E| we denote the two-dimensional Lebesgue measure of a subset E
of I?.

THEOREM 3. [f conditions (1.2) and (1.5) are satisfied, then for the sum f
of series (1.1) we have

Q) an=|lx ) eI | f(x, »)| > N)| = j—(,"-(1+ln+ ﬁ),
€N

where ey — 0 as N — o,

As usual,

+ Int if t=e,
InT¢t= .
1 if 0=st<e,

We guess that the right-hand side in (2.4) is exact.

CONJECTURE. Given any monotone decreasing null sequence

fent N=0,1,...1,
there exists a double sequence {aj;;] such that conditions (1.2) and (1.5) are
satisfied and

: Npn
1 >
P v+ In* (N/en)

In particular, Nuy /4 0 as N — oo,

0.

If this conjecture turns out to be true, then the sum f of series (1.1) is not
(A)-integrable on 72 in general, under conditions (1.2) and (1.5). We note
that the corresponding one-dimensional statement is true and was proved by
Rubinstein [4]. (As to the notion of the (A)-integral, we also refer to [4].)
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3. Proofs

Proof of Theorem 1. (i) This part was proved in [3]. For the sake of later
references, we sketch the proof briefly.
By a double summation by parts,

m—1 n—1

Smn(x’ y) = .20 kEODj+1(x)Dk+1(y)Allajk
Jj= =

m—1
3.1 + 2 Dj(x)D,(»)Aa;,
j=0

n—1
+kEODm(x)Dk+l(.y)A01amk+aman(x)Dn(y),
where
m—1
Dp(x)= 2 wi(x) (m=1)
Jj=0

is the well-known Walsh-Dirichlet kernel. Since
3.2) D (x)|<2/x (m=1;0<x<1),

it follows from (1.4) that the series

Y 2 Dj(X)Dpy(P)Anap
j=0k=0

is absolutely convergent for all 0< x, y<1. By (1.2),

3.3) Aloajn=k2 Anajk,
=n
whence
m—1 m—1 oo
2lApa,l= Y X |Anay.
j=0 j=0 k=n

By (1.4) and (3.2), for all 0 < x, y <1 we have
m—1
2 D (x)D,(y)Apa;,—0 as n—oo
j=0

uniformly in m. Analogously, for all 0< x, y <1,

n—1
2 Dy(X)Dyy(¥)Ag1@p—0 as m— oo
k=0

uniformly in n. Finally, by (1.2), for all 0 < x, y <1 we have
anD(x)D,(y)—0 as max(m,n)— oo,

To sum up, under conditions (1.2) and (1.4), series (1.1) converges for all
0 < x, y<1 to the function
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(3.4) F59)= 3 3 Dyar) Dy (D Aude
20 i

(ii) We apply the well-known estimate
(3.5) S;le(x)l dx<in(m+1) (m=1).
By (3.4) and (3.5),

11 o0 ©
| {17 mlaxdy= 3 3 |Auaul n(j+2) Ink+2),
0J0 j=0 k=0
and this is finite due to (2.1).
(iii) By (3.1) and (3.4),

f(x,y)—Sm,,(x,y)= EE Dj+1(x)Dk+l(y)Allajk
(J, k) e Ry,

m—1
(3.6) — 2 Dj(x)Dy(y) A4,
j=0 \

n—1

- kEODm(X)Dk+1()’)AOIamk—aman(x)Dn(y) ’

where R,,,,= {(/, k): j and k are nonnegative integers such that either j = m
or k= n or both}.
By (2.1) and (3.5),
101
So So % Dj+1(x)Dk+l(y)A11ajk dxdy

(J, k)€ Ry

< Y |Apayi/In(j+2)In(k+2)—0 as min(m,n)— oo,
(/,K)eER,y,

By (2.1), (3.3), and (3.5),
fos
0J0

m—1
(3.8) = 3 |Aa,| In(j+2)In(n+1)
j=0

3.7

dxdy

m—1
2 D 1((x)D,(»)Ayay,
j=0

m—1 o
= Y Y |Apap|ln(j+2)In(k+1)->0 as n—oo
Jj=0k=n

uniformly in m. Analogously,

o0 [

uniformly in n. By (1.2),

(3.10) Qn= 2 2 Apdag.

J=mk=n

n—1
kEODm(x)Dk+l(y)A0]amk dxdy—0 as m—o
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Thus, by (2.1) and (3.5),

1l
[ amDux)Dy(»)] dxdy
3.11) L
= Y Y |Apag/In(j+1)In(k+1)—0 as max(m,n)— .

Jj=mk=n

Combining (3.6)-(3.11) yields the statement in (iii).
(iv) It is enough to take into account that norm convergence (so-called
strong convergence) implies weak convergence. ]

Proof of Theorem 2. Conditions (1.2) and (1.5) imply that a;; is monotone
decreasing in both j and k. Consequently, series (1.1) converges uniformly
on every rectangle [6,1) X [¢,1) where 0< 6, e <1. In order to prove (2.3) we
fix a pair (J, k) of nonnegative integers. By interchanging integration and
summation, we have

s; S:f(x, VIwi(x)wi(y) dx dy

== 3 5 ap [ wowaom)w () dxady,

m=0n=0 de
where Qs =1%~[8,1) X [¢,1). Thus, it suffices to show
G12) tm 3 S ([ ww @ w) W) dxdy=o.
5,el0 m=0 n=0 Ose

The integral here breaks into three pieces, two thin rectangles along the
axes and one small rectangle near the origin. According to this decomposi-
tion the sum in (3.12) can be written in the form

58 am{ [0 5 21 comome o dray

(313) m=0 n=0 0Jo 0J0 0J0

= 5,(8)+ Sy(e) + S5(5, ¢), say.
Clearly,

i) = 3 @i | Wi (x)W(x) dx
m=0 0

(3.14)

< P
= 3 ape | walx) dx
m=20 0

provided 6 < 1/2j, which we assume in the following. (We remind the reader
that j is fixed and 61 0.) Similarly, we can write

(3.15) Sx)= 3 @, | wi) dy
n=0 0

provided that ¢ <1/2k. Finally,
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(3.16) $36,0= 3 3 | | a0 wu(0) dxdy
m=0n=0 070

whenever both §<1/2j and e<1/2k.
Since 0 < 8, e <1, we can choose two nonnegative integers r and s in such
a way that

(3.17) 27" 1<§<277 and 2% l<e<27S,

To estimate S;(8), we begin with the observations that, for p>1and 0<
q < 2r+l’

2—r—1
(3.18) [ wargn dx=0,

and for =1, 0<g<2/,and 2 " l<x<27,

(3.19) Wosar4g{X) = —W2r41)2r44(X).
By (3.14) and (3.17)-(3.19),

o 2'—1 1

5
Si0)=% > X a(2t+e)2’+q,kS Wr+epr+q(X) dx
t=0 g=0 e=0 0

ar+l_y

8
= Y, aqks wo(x) dx
g=0 0

o 27—1 5
+ > X (@2127 4 g, k— A2t +1)27+4, k)S . 1w2t2’+q(x) dx,
t=1g=0
whence
ar+l_q o 27—1
|S1(®)|=27" ¥ ag+27" D (@274 g k= A2 1)27 4 ¢, k) -
q=0 t=1g=0

Using the monotone property of the coefficients a4, we conclude that

2r+lgor—y
ISI(6)| =277 E gk -
qg=0
In particular,
(3.20) S1(8) >0 as r—»o orequivalently 610.
A similar argument gives
(3.21) S,(e) >0 as s—»>o orequivalently e!0.

Now we turn to the estimation of S;(8, €). By (3.16),
o 27-—1 o 25—1 1

S3(6 6)— E E E E E E a(2t1+e1)2’+q1 (2!2+€2)25+Q2
(322) 11=04g1=0e=01=0gy=0e3=0

S e
X SO So Wt +en2r+q(XIWar, 1 ey)254 ¢,(V) dx dy.
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We split the sum in (3.22) into four pieces according to (i) #,=¢,=0; (ii) #,=
0, £,=1; (iii) #;=1, £,=0; and (iv) #;= 1, £, =1; denoting the corresponding
subsums by S4(8,¢€) for i=1,2,3,4. Making use of equalities (3.18) and
(3.19) and their counterparts for w(y), we obtain

ar+l_1 2s+1_4

(3.23) 183(6,0)|<27"7° ¥ X ag 4y

q1=0 q2=0

ar+l_g o 25—1

2
|S3(5,6)|5 E E E (aq1,21225+q2_aq1,(2t2+1)25+q2)
q1=0 f=1g,=0

N
(3.24) X|J L WO Wa25. 0,() dxdy

or+l1_q 2s+lpas

=277 ¥ % .49,

q1=0 q2=25+1
and similarly
2r+lypor_q 2s+1_

(3.25) 1838, ¢)| <25 3 S a4,

q1= ar+l ar= 0
Finally, we can write

0 2!‘ 1 o0 ZS 1

(5 =2 X X X E E( 1)er*e A2t +ey)27+qy, 2ty +€7)25+ g5

H1=1q1=0t=1g,=0¢e;=0 e3;=0

0 €
X gz—r—l SZ—S—I w(211+el)2r+q1(x) W(212+62)2S+q2(y) dxdy

whence, by (3.17),

o 2'—-1 o 25-1

4
1S58, )| <277 ¥ ¥ X X |@2rtq,202540,— A +1)27+a1, 2,25+ 4,
1n=1¢;=01=1g,=0
— A2 gy, 20+ 1)254 g

t a0 +1)27+ 9, (2t2+1)25+q2l .

Using properties (1.2) and (1.5) it follows that
2r+lyor—y 2s+1425

(3.26) 1845, )| <25 3 Y a4

q1=2r+1 q2=2s+1
Combining (3.22)-(3.26) gives
(3.27) S;3(6,¢) >0 as r,s - orequivalently 6,e!0.

Collecting (3.13), (3.20), (3.21), and (3.27) yields (3.12), and this proves (2.3).

In particular, putting j =k =01in (2.3), we find that f is integrable on 7>
in the sense of the improper Riemann integral. The proof of Theorem 2 is
complete. O

Proof of Theorem 3. Given N =1, let m=[~/N/4ay,] where [-] means the
integral part. Then
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m—1 m—1 m—1m-—1 5 N
Y Y apwi(xXIw(M|= Y Y aps=miayps T
j=0 k=0 j=0 k=0
Thus, we can estimate uy by
5 o m—1 N
IN= [(x,y)el XX a,-kwj(x)wk(y)|>—4—}'
Jj=m k=0
2 m—1 oo N
(3.28) + {(x,y)el 2 DYDY a,-kwj(x)wk(y)'>—}
j=0 k=m 4

) ) N
+ {(X,}’)EIZ: IEED ajij(x)Wk()’)|>z‘}|-

J=mk=m

Applying a single summation by parts gives

m—1 o
)) ( )) ajij(x)>Wk(y)

3.29) “7° ’=m”’_l
= 2 Dpi(3) X wi(x)Aqaj+D,y(y) X aj,,wi(x).
k=0 j=m j=m

Performing further single summations by parts, while using (1.2), yields

2 Wi(xX)Anaj=—D,(X)Ag @+ X Djy(X)Apay

j=m Jj=m
and
.2 AjWi(X) = =@y, D, (X) + _E D; . (x)Aaj,.
j=m j=m

Hence, by (3.2) and (1.5),

[+ o]
2 Wi(x)Agap
j=m

= }— A 019%mk
and

% 4
> @iy Wi(x) s;amm (0<x<1).

j=m

Combining these with (3.29) and again using (3.2) gives

8 m—1
< — A o1 @+
Xy (k§0 019mk amm)

m—1

§ ajwi(xX) wi(y)
j=mk=0

(3.30)

8
=Hamo (O<x,y<1).

Analogously, one can also verify

=}

m—1
2 2 apwi(x)wi(y)
J=0 k=m

8
(3.31) SEaOm (0<x,¥y<1).

Applying a double summation by parts and using (1.2) yields
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§ § AW (X)W (y) = § § D; ( ((X) D11 (Y)Apaj

j=mk=m j=mk=m

— 2 D i(X)Dp(¥)A1o8)m

Jj=m
2 Dm(x)Dk+1(y)A01”mk+ ammDm(x)Dm(J’)-

k=m

Hence, by (3.2) and (1.5),

i i apwi(x)wi(y)

J=mk=m
4 © ©0 0 o
(3.32) 5“—< Y X Apapt Y Apap,t X AOIamk+amn)
Xy \j=mk=m j=m k=m
16
=;y—amm (0<x,y<1).

Combining (3.28) and (3.30)-(3.32) results in the following:

<32a 1+In* N
BN = N mo 32a,,

32 N 64 N
22 a0 (1+In* > {1+t .
+ N“"m( +in 320:0,,,)Jr N“’"'"( +in 64amm>

We consider the auxiliary function
1

It is easy to see that A(¢) is monotone increasing for ¢ = 0. Moreover, (1.2)
and (1.5) imply a,,,, < a,,0, @p,,- Therefore, it follows from (3.33) that

& 4N
< —(1+In* —
o N<+n EN)

(3.33)

for €y =128 max(a,,9, ). Using once again the fact that 4(¢) is monotone,
we conclude that (2.4) holds for exy=(14+In4)ey. Since ex— 0 as m—> o
(equivalently, N — ), the proof of Theorem 3 is complete. ]
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