Entire Timelike Minimal Surfaces in $E^{3,1}$

TILLA KLOTZ MILNOR

1. Introduction

Calabi was the first to show that an entire *spacelike* minimal surface in Minkowski 3-space $E^{3,1}$ must be a plane (see [1]). However, if w is the timelike coordinate in u, v, w-space, the example

 $v = w \tanh u$

shows that an entire *timelike* minimal surface in $E^{3,1}$ need not even be flat. The best one can say in this direction is that the surface must be conformally equivalent to the Minkowski 2-plane $E^{2,1}$ (see [6]).

In this paper we generate examples that display considerable variety in the shapes of entire timelike minimal surfaces in $E^{3,1}$. This is done, in part, by describing an analog for the classical construction of associate minimal surfaces in Euclidean 3-space $E^{3,0}$.

Associate minimal surfaces in $E^{3,0}$ are paired in an amusing manner. At corresponding points, they share the same induced metric, Gauss curvature, zero mean curvature, and unit normals. Still, associate minimal surfaces in $E^{3,0}$ can have markedly different shapes, as the helicoid and the catenoid amply illustrate. (For pictures, see [2] or [8].)

To produce associate families of spacelike minimal surfaces from a given spacelike minimal surface in $E^{3,1}$, the original classical construction suffices. But an entirely different construction must be used to generate associate families of timelike minimal surfaces from a given timelike minimal surface in $E^{3,1}$. In both cases, the associate pairing still preserves the Minkowski induced metric, Gauss curvature, zero mean curvature, and unit normals.

While it is pleasing to have the counterpart for a construction based on complex analytic techniques in a situation governed by the wave equation rather than by Laplace's equation, the construction of associate timelike minimal surfaces in $E^{3,1}$ is further justified by the fact that all surfaces associate to an entire timelike minimal surface in $E^{3,1}$ are entire over the same fixed plane. Thus the construction can be used to produce infinite families of isometric entire, timelike minimal surfaces in $E^{3,1}$ no two of which are congruent.

Received February 8, 1989. Revision received October 6, 1989. Michigan Math. J. 37 (1990).

In Section 4 we explore a connection between timelike minimal immersions of a surface S in $E^{3,1}$ and immersions of S into $E^{3,0}$ that are harmonic with respect to an indefinite prescribed metric g on S. Given a harmonic immersion $\mathcal{Z}: (S,g) \to E^{3,0}$ with indefinite g which is a local graph over some plane, we assign to \mathcal{Z} over the domain D of g-null coordinates a timelike minimal immersion $\tilde{\mathcal{Z}}: D \to E^{3,1}$ whose induced metric is conformally equivalent to g, and which is a local graph over the spacelike coordinate plane \mathcal{O} in $E^{3,1}$. We prove that if \mathcal{Z} is entire, then $\tilde{\mathcal{Z}}: S \to E^{3,1}$ can be globally defined and will be entire over \mathcal{O} . Moreover, the assignment procedure can be reversed, in the following sense.

Let \tilde{I} be the Minkowski induced metric for a timelike minimal immersion $\tilde{\mathbb{Z}}: S \to E^{3,1}$ which is a local graph over \mathcal{O} , and let D be the domain of \tilde{I} -null coordinates on S. Given any smooth map ν from D to the upper open hemisphere of the Euclidean 2-sphere Σ , we obtain a harmonic immersion \mathbb{Z} : $(D, \tilde{I}) \to E^{3,0}$ with Gauss map $\nu: D \to \Sigma$ whose assigned timelike minimal immersion over D is $\tilde{\mathbb{Z}}$.

The assignment construction can be exploited to give a local Weierstrass representation for harmonic immersions $\mathbb{Z}: (S,g) \to E^{3,0}$ with indefinite g, using the Weierstrass functions $\tilde{A}(x)$ and $\tilde{B}(y)$ for the assigned timelike minimal immersion $\tilde{\mathbb{Z}}$ and the $E^{3,0}$ Gauss map $\nu(x,y)$ for \mathbb{Z} . (The local Weierstrass representation for timelike minimal immersions in $E^{3,1}$ is described in §2 below.)

The material in Section 5 provides examples of entire timelike minimal surfaces in $E^{3,1}$ with particular properties. Included there is a method we learned from Calabi for generating entire, doubly periodic, timelike minimal surfaces in $E^{3,1}$. Actually, we adapt Calabi's procedure to produce nonplanar timelike minimal surfaces in $E^{3,1}$ which are entire with respect to all three coordinate planes simultaneously. We also give examples of entire timelike minimal surfaces in $E^{3,1}$ on which Gauss curvature is always positive, or always negative. This is done for surfaces entire over a timelike plane and for surfaces entire over a spacelike plane. Of course, for each example described, one has as well the family of associate surfaces.

2. Background

As in [7], we view $E^{3,j}$ as R^3 with the scalar product

$$\langle V, W \rangle^j = v_1 w_1 + v_2 w_2 + (-1)^j v_3 w_3,$$

where j=0 gives Euclidean 3-space and j=1 gives Minkowsi 3-space. Because this paper deals mainly with surfaces in $E^{3,1}$, we delete the index 1 at most points, writing $\langle V, W \rangle$ for $\langle V, W \rangle^1$. A vector V in $E^{3,1}$ is spacelike if $\langle V, V \rangle > 0$, timelike if $\langle V, V \rangle < 0$, and null if $\langle V, V \rangle = 0$.

The surface S is assumed to be C^{∞} , oriented and connected. Given any immersion $Z: S \to R^3$, we also write $Z: S \to E^{3,0}$ and $Z: S \to E^{3,1}$ since the same underlying map is involved. To study immersions $Z: S \to E^{3,j}$ for j = 0, 1, we use the fundamental forms

$$I^{j} = \langle d\mathcal{Z}, d\mathcal{Z} \rangle^{j}, \qquad II^{j} = \langle d\mathcal{Z}, dv^{j} \rangle^{j}$$

where the unit normal v^{j} is given in terms of local coordinates x, y on S by

$$\sqrt{\left|\det I^{j}\right|} \, \nu^{j} = \left| \begin{array}{cc} \vec{i} & \vec{j} & (-1)^{j} \vec{k} \\ & \mathcal{Z}_{x} \\ & \mathcal{Z}_{y} \end{array} \right|.$$

Gauss curvature K^{j} and mean curvature H^{j} are given by

$$K^j = \det II^j/\det I^j$$
, $H^j = \operatorname{tr}_{I^j}(II^j)$.

Again, we usually write I, ν , II, K, and H for I^1 , ν^1 , II^1 , K^1 , and H^1 . However, definition of ν , II, K, and H requires that det $I \neq 0$. Thus we restrict our attention to immersions $\mathcal{Z}: S \rightarrow E^{3,1}$ which are spacelike (meaning that det I > 0) or timelike (meaning that det I < 0).

We call an immersion $\mathbb{Z}: S \to E^{3,j}$ minimal if $H^j \equiv 0$. Although a minimal immersion is always extremal for the I^j -area integral, spacelike minimal $\mathbb{Z}: S \to E^{3,1}$ actually maximize I-area whereas timelike minimal $\mathbb{Z}: S \to E^{3,1}$ neither maximize nor minimize I-area, even locally.

There are always local coordinates x, y on S for a timelike $\mathbb{Z} : S \to E^{3,1}$ in terms of which $I = 2F \, dx \, dy$ for some function $F \neq 0$. These are called *null coordinates*, since the tangential directions $dx \equiv 0$ and $dy \equiv 0$ are null. When null coordinates x, y are used on S, the Christoffel symbols $\Gamma_{12}^1 \equiv \Gamma_{12}^2 \equiv 0$ for I, while $H \equiv 0$ forces the middle coefficient M of II to vanish as well. The Gauss equation

$$\mathcal{Z}_{xy} = \Gamma_{12}^1 \mathcal{Z}_x + \Gamma_{12}^2 \mathcal{Z}_y + M\nu$$

thus shows that a timelike $\mathbb{Z}: S \to E^{3,1}$ is minimal if and only if $\mathbb{Z}_{xy} \equiv 0$, or (equivalently) if and only if \mathbb{Z} has the local expression

(1)
$$\mathcal{Z}(x,y) = \mathcal{X}(x) + \mathcal{Y}(y)$$

for any null coordinates x, y on S.

To *normalize* null coordinates x, y on S for a timelike minimal $\mathbb{Z}: S \to E^{3,1}$, reparametrize the curves $\mathfrak{X}(x)$ and $\mathfrak{Y}(y)$ if necessary so that x and y measure *Euclidean* arc length along $\mathfrak{X}(x)$ and $\mathfrak{Y}(y)$ respectively. Then $\mathfrak{X}'(x)$ and $\mathfrak{Y}'(y)$ are unit vectors in $E^{3,0}$ and x, y are *Tchebychev coordinates* for the metric I^0 induced on S by $\mathbb{Z}: S \to E^{3,0}$. Finally, change x to -x, or y to -y as needed, and reverse the roles of x and y if this is required to respect the orientation on S, so that

(2)
$$\mathfrak{X}'(x) = (a(x), b(x), \sqrt{1 - a^2(x) - b^2(x)}),$$
$$\mathfrak{Y}'(y) = (\alpha(y), \beta(y), \sqrt{1 - \alpha^2(y) - \beta^2(y)})$$

for smooth functions a(x), b(x), $\alpha(y)$, and $\beta(y)$. This determines x, y up to additive constants over their domain on S. Because $\mathfrak{X}'(x)$ and $\mathfrak{Y}'(y)$ are null in $E^{3,1}$, (2) gives

$$a^{2}(x) + b^{2}(x) \equiv \alpha^{2}(y) + \beta^{2}(y) \equiv 1/2,$$

so that

$$\mathfrak{X}'(x) = (a(x), b(x), 1/2), \qquad \mathfrak{Y}'(y) = (\alpha(y), \beta(y), 1/2).$$

Thus the values (a(x), b(x)) and $(\alpha(y), \beta(y))$ vary along segments C_x and C_y respectively on a circle C. Note that C_x and C_y must be disjoint, since $\mathfrak{X}'(x)$ and $\mathfrak{Y}'(y)$ always span a plane. Either segment C_x or C_y may reduce to a point, but since neither can be empty, neither can be all of C. It follows that there are smooth functions A(x) and B(y) determined up to integral multiples of 2π so that

$$(3) A(x) \neq B(y) + 2\pi j$$

for any integer j, while

(4)
$$\sqrt{2} \mathfrak{X}'(x) = (\cos A(x), \sin A(x), 1),$$

$$\sqrt{2} \mathfrak{Y}'(y) = (\cos B(y), \sin B(y), 1).$$

Straightforward computation then gives

$$I = 2\sin^{2}\left(\frac{A-B}{2}\right)dx \, dy,$$

$$\sqrt{2}II = -A'(x) \, dx^{2} + B'(y) \, dy^{2},$$
(5)
$$I^{0} = dx^{2} + 2\cos^{2}\left(\frac{A-B}{2}\right)dx \, dy + dy^{2},$$

$$2\sqrt{\det I^{0}}v^{0} = (\sin A - \sin B, \cos B - \cos A, \sin(B-A)),$$

$$2\sqrt{-\det I}v = (\sin A - \sin B, \cos B - \cos A, \sin(A-B)).$$

Using Cartesian coordinates u, v, w in $E^{3, j}$, the immersion \mathbb{Z} above yields a local graph over the u, v-plane wherever $\sin(A - B) \neq 0$, over the u, w-plane wherever $\cos A \neq \cos B$, and over the v, w-plane wherever $\sin A \neq \sin B$. Thus \mathbb{Z} gives a local graph over the u, v-plane wherever

(6)
$$A(x) \neq B(y) + j\pi,$$

over the u, w-plane wherever

$$A(x) \neq -B(y) + 2j\pi,$$

and over the v, w-plane wherever

(8)
$$A(x) \neq -B(y) + (2j-1)\pi$$
,

for any integer j. To deal with one null plane, note that Z gives a local graph over the plane v = w wherever

(9)
$$\cos B(1+\sin A) \neq \cos A(1+\sin B).$$

REMARK 1. In the situation above,

(10)
$$\sqrt{2}\mathfrak{A}(x) = \left(\int_{x_0}^x \cos A(t) \, dt, \int_{x_0}^x \sin A(t) \, dt, x - x_0\right),$$

$$\sqrt{2}\mathfrak{A}(y) = \left(\int_{y_0}^y \cos B(t) \, dt, \int_{y_0}^y \sin B(t) \, dt, y - y_0\right)$$

for fixed values of x_0 and y_0 . Over the domain D of the null coordinates x, y it is natural to think of (1) and (10) as a Weierstrass representation for \mathbb{Z} : $D \to E^{3,1}$ with A(x) and B(y) as Weierstrass functions. Conversely, any two C^{∞} functions $A: J_A \to R$ and $B: J_B \to R$ with $A(x) \neq B(y)$ mod 2π determine a timelike minimal immersion $\mathbb{Z}: J_A \times J_B \to E^{3,1}$ given by (1) and (10) for any x_0 in J_A and y_0 in J_B . Moreover, x, y are normalized null coordinates for this \mathbb{Z} , so that (4) and (5) are valid with

(11)
$$\operatorname{sign} K = \operatorname{sign} A'(x)B'(y)$$

giving control over the sign of Gauss curvature.

REMARK 2. If $\mathbb{Z}(S)$ is the graph of a smooth function over a whole plane, then an immersion $\mathbb{Z}: S \to E^{3,j}$ for j=0,1 is called *entire*. As explained in Remark 1 of [7], the proof of the Hilbert-Holmgren theorem in [6] shows that for any entire timelike minimal $\mathbb{Z}: S \to E^{3,1}$ there exist global null coordinates x, y on S defined for all real values which are Tchebychev for I^0 . These coordinates are easily normalized to give a *global* Weierstrass representation for \mathbb{Z} in terms of functions A(x) and B(y) defined for all real values of x and y. In [5], Magid shows the existence of such a global representation for timelike minimal immersions which are entire over spacelike or timelike planes, using other methods.

3. Associative Minimal Surfaces in $E^{3,1}$

We begin by describing the family of associate immersions for a spacelike minimal $\mathbb{Z}: S \to E^{3,1}$. Local coordinates x, y on S are isothermal for a spacelike $\mathbb{Z}: S \to E^{3,1}$ if and only if

$$I = \lambda (dx^2 + dy^2)$$

for some function $\lambda > 0$. Mean curvature $H \equiv 0$ for a spacelike $\mathbb{Z}: S \to E^{3,1}$ if and only if

$$Z_{xx} + Z_{yy} \equiv 0$$

for all isothermal coordinates x, y on S. Thus a spacelike $Z: S \to E^{3,1}$ is minimal if and only if, in terms of isothermal coordinates x, y and z = x + iy,

$$\Phi \stackrel{\text{def}}{=} 2\mathbb{Z}_z = (\varphi_k) = \mathbb{Z}_x - i\mathbb{Z}_y, \quad k = 1, 2, 3$$

is holomorphic, so that Z has the local expression

$$\mathcal{Z} = \operatorname{Re} \int_{z_0}^{z} \Phi \, dz + C_0$$

for a constant vector C_0 , while

(12)
$$\langle \mathcal{Z}_{x}, \mathcal{Z}_{x} \rangle = \langle \mathcal{Z}_{y}, \mathcal{Z}_{y} \rangle = \lambda, \qquad \langle \mathcal{Z}_{x}, \mathcal{Z}_{y} \rangle = 0.$$

It is known (see, e.g., [3]) that a spacelike minimal $\mathbb{Z}: S \to E^{3,1}$ is the "twin" of a minimal immersion $\tilde{\mathbb{Z}}: D \to E^{3,0}$ defined by taking $\tilde{\Phi} = (\tilde{\varphi}_k)$ with

$$\varphi_1 = \tilde{\varphi}_1, \quad \varphi_2 = \tilde{\varphi}_2, \quad \varphi_3 = i\,\tilde{\varphi}_3$$

and setting

$$\tilde{Z} = \operatorname{Re} \int_{z_0}^{z} \tilde{\Phi} \, dz + C_0$$

over the domain D of the coordinates x, y which are isothermal for both I and \tilde{I}^0 . Classically (see [4]) the associate minimal immersions $\tilde{\mathbb{Z}}_{\theta} : D \to E^{3,0}$ are given for each real θ by

$$\tilde{\mathcal{Z}}_{\theta} = \operatorname{Re} e^{i\theta} \int_{z_0}^{z} \tilde{\Phi} dz + C_0.$$

Note that \mathcal{Z} is retrieved over D by using the first two coordinate functions of $\tilde{\mathcal{Z}}_{\pi/2}$.

The identical construction applied to \mathcal{Z} yields for each real θ an associate immersion $\mathcal{Z}_{\theta}: D \to E^{3,1}$ given by

(13)
$$\mathcal{Z}_{\theta} = \operatorname{Re} e^{i\theta} \int_{z_0}^{z} \Phi \, dz + C_0.$$

Here

(14)
$$(\mathcal{Z}_{\theta})_{x} = \cos \theta \, \mathcal{Z}_{x} + \sin \theta \, \mathcal{Z}_{y},$$

$$(\mathcal{Z}_{\theta})_{y} = \sin \theta \, \mathcal{Z}_{x} + \cos \theta \, \mathcal{Z}_{y},$$

so $(\mathcal{Z}_{\theta})_x$ and $(\mathcal{Z}_{\theta})_y$ span the same oriented plane as \mathcal{Z}_x and \mathcal{Z}_y , giving $\nu_{\theta} = \nu$. By (12) and (14), we have

$$\langle (\mathcal{Z}_{\theta})_{x}, (\mathcal{Z}_{\theta})_{x} \rangle = \langle (\mathcal{Z}_{\theta})_{y}, (\mathcal{Z}_{\theta})_{y} \rangle = \lambda, \qquad \langle (\mathcal{Z}_{\theta})_{x}, (\mathcal{Z}_{\theta})_{y} \rangle = 0,$$

so x, y are isothermal for $I_{\theta} = I$, \mathcal{Z}_{θ} is spacelike, and $K_{\theta} = K$. Finally, \mathcal{Z}_{θ} : $D \to E^{3,1}$ is minimal since $\Phi_{\theta} = e^{i\theta} \Phi$ is holomorphic for each θ , giving $H_{\theta} \equiv H \equiv 0$.

If $\mathbb{Z}: S \to E^{3,1}$ is an entire spacelike minimal immersion, then $\mathbb{Z}(S)$ must be a plane (see [1]). Thus the associate family $\mathbb{Z}_{\theta}: S \to E^{3,1}$ can be globally defined, with each $\mathbb{Z}_{\theta}(S)$ a plane.

REMARK 3. Given a harmonic immersion $\mathbb{Z}: (S,g) \to E^{3,0}$ with definite g, the construction (13) yields a family of associate harmonic immersions \mathbb{Z}_{θ} : $(D,g) \to E^{3,0}$ over the domain D of g-isothermal coordinates x,y with z=x+iy, as described in [7]. The situation specializes to the case of a spacelike minimal $\mathbb{Z}: S \to E^{3,1}$ when g is proportional to the metric I induced on S by \mathbb{Z} from $E^{3,1}$.

Suppose now that $\mathbb{Z}: S \to E^{3,1}$ is a timelike minimal immersion. Given any constant c > 0, define the associate immersion $\mathbb{Z}_c: D \to E^{3,1}$ by setting

(15)
$$\mathcal{Z}_c(x,y) = c \mathfrak{X}(x) + \mathfrak{Y}(y)/c$$

over the domain D of any null coordinates x, y on S. Since $(\mathcal{Z}_c)_x = c\mathcal{Z}_x$ and $(\mathcal{Z}_c)_y = \mathcal{Z}_y/c$, both $(\mathcal{Z}_c)_x$ and $(\mathcal{Z}_c)_y$ are null vectors, with

$$\langle (\mathcal{Z}_c)_x, (\mathcal{Z}_c)_y \rangle = \langle \mathcal{Z}_x, \mathcal{Z}_y \rangle.$$

Thus $\mathbb{Z}_c: S \to E^{3,1}$ is timelike, with $I_c = I$ and $\nu_c = \nu$, so that by (5),

$$\sqrt{2}II_c = -cA'(x) dx^2 + (B'(y)/c) dy^2$$
,

with $K_c \equiv K$ and $H_c \equiv H \equiv 0$. However, $II_c \equiv II$ if and only if $A'(x) \equiv B'(y) \equiv 0$, so the associate pairing is normally not a congruence.

REMARK 4. The choice of different null coordinates x, y on S will leave the family of immersions \mathbb{Z}_c unchanged, but may reindex the maps, exchanging \mathbb{Z}_c with $\mathbb{Z}_{1/c}$.

REMARK 5. If a timelike minimal $\mathcal{Z}: S \to E^{3,1}$ is entire, use of the global null coordinates x, y on S described in Remark 2 allows global definition of the timelike minimal immersions $\mathcal{Z}_c: S \to E^{3,1}$. Theorem 1 below states that each such \mathcal{Z}_c must also be entire.

REMARK 6. Given a harmonic immersion \mathbb{Z} : $(S,g) \to E^{3,0}$ with indefinite g, the construction (15) yields a family of associate harmonic immersions \mathbb{Z}_c : $(D,g) \to E^{3,0}$ over the domain D of g-null coordinates x,y on S, as described in [7]. The situation specializes to the case of a timelike minimal \mathbb{Z} : $S \to E^{3,1}$ when g is proportional to the metric I induced on S by \mathbb{Z} from $E^{3,1}$.

Given an entire timelike minimal $\mathbb{Z}: S \to E^{3,1}$, the following theorem provides an infinite family of entire timelike minimal $\mathbb{Z}_c: S \to E^{3,1}$. Normally, no two of the immersions \mathbb{Z}_c are congruent.

THEOREM 1. If the timelike minimal immersion $\mathbb{Z}: S \to E^{3,1}$ is entire over a plane, then for any constant c > 0, the timelike minimal immersion \mathbb{Z}_c : $S \to E^{3,1}$ is entire over the same plane.

Proof. Since a minimal immersion $\mathbb{Z}: S \to E^{3,1}$ yields a harmonic immersion $\mathbb{Z}: (S, I^1) \to E^{3,0}$, the result is an immediate corollary of Remark 5 above and the Theorem in [7].

4. Assigned Timelike Minimal Immersions

It is easier to find entire harmonic immersions $\mathcal{Z}: (S,g) \to E^{3,0}$ with indefinite prescribed metric g than it is to find entire timelike minimal immersions $\mathcal{Z}: S \to E^{3,1}$. Put another way, it is easier to find smooth functions $\mathfrak{X}: R \to E^{3,0}$ and $\mathfrak{Y}: R \to E^{3,0}$ so that $\mathcal{Z}: R \times R \to E^{3,0}$ given by

$$Z(x, y) = \mathfrak{X}(x) + \mathfrak{Y}(y)$$

is an entire immersion than it is to accomplish the same task with the additional requirement that $\mathfrak{X}'(x)$ and $\mathfrak{Y}'(y)$ must be null vectors. (See [7] for a detailed study of harmonic maps $\mathfrak{Z}: (S,g) \to E^{3,0}$ with indefinite g.)

Suppose now that the harmonic immersion $\mathcal{Z}:(S,g)\to E^{3,0}$ with indefinite g is a local graph over some plane \mathbb{Q} , and let x, y be g-null coordinates

over the domain D on S. The construction that follows assigns to \mathbb{Z} a time-like minimal immersion $\tilde{\mathbb{Z}}: D \to E^{3,1}$ which is a local graph over the space-like coordinate plane \mathcal{O} in $E^{3,1}$. If \mathbb{Z} is entire over \mathbb{Q} then $\tilde{\mathbb{Z}}$ can be globally defined over S, and Theorem 2 states that $\tilde{\mathbb{Z}}: S \to E^{3,1}$ must be entire over \mathcal{O} .

As explained below in Remark 7, there is no loss of generality in working with g-null coordinates x, y which are I^0 -Tchebychev for \mathbb{Z} , so that $\mathbb{Z}(x,y) = \mathfrak{X}(x) + \mathfrak{Y}(y)$ with x and y Euclidean arc length parameters for $\mathfrak{X}(x)$ and $\mathfrak{Y}(y)$ respectively. Because \mathbb{Z} is a local graph over \mathbb{Q} , the normals $v^0(x,y)$ over D are never parallel to \mathbb{Q} . Thus we can rotate the u, v, w Cartesian coordinate axes in $E^{3,0}$ so \mathbb{Q} is parallel to the horizontal u, v coordinate plane \mathbb{C} , with the normals $v^0(x,y)$ over D all pointing upward. Then $\mathbb{Z}_x = \mathfrak{X}'(x)$, $\mathbb{Z}_y = \mathfrak{Y}'(y)$, and the planes they determine are never vertical.

On the 2-sphere Σ given by $u^2 + v^2 + w^2 = 1$, let γ be the circle along which $w = \sqrt{2}/2$. Draw great semicircular arcs σ_x and σ_y joining the poles on Σ through the endpoints of $\mathfrak{X}'(x)$ and $\mathfrak{Y}'(y)$ respectively. Define $\mathfrak{X}'(x)$ and $\mathfrak{Y}'(y)$ as the vectors pointing to the intersection of γ with σ_x and σ_y respectively.

The $E^{3,0}$ unit vectors $\tilde{\mathfrak{X}}'(x)$ and $\tilde{\mathfrak{Y}}'(y)$ are null in $E^{3,1}$. Moreover, $\tilde{\mathfrak{X}}'(x)$ is never parallel to $\tilde{\mathfrak{Y}}'(y)$. Otherwise the vertical plane containing $\mathfrak{X}'(x)$ and $\tilde{\mathfrak{X}}'(x)$ would also contain $\tilde{\mathfrak{Y}}'(y)$, putting $\mathfrak{Y}'(y)$ in the same vertical plane as $\mathfrak{X}'(x)$, a contradiction. The timelike minimal immersion $\tilde{\mathfrak{Z}}: D \to E^{3,1}$ assigned to \mathfrak{Z} is given by

(16)
$$\tilde{\mathfrak{Z}}(x,y) = \tilde{\mathfrak{X}}(x) + \tilde{\mathfrak{Y}}(y),$$

$$\tilde{\mathfrak{X}}(x) = \int_{x_0}^{x} \tilde{\mathfrak{X}}'(x) \, dx, \qquad \tilde{\mathfrak{Y}}(y) = \int_{y_0}^{y} \tilde{\mathfrak{Y}}'(y) \, dy$$

for a fixed choice of x_0, y_0 in D.

The plane spanned by $\tilde{\mathfrak{X}}'(x)$ and $\tilde{\mathfrak{Y}}'(y)$ is never vertical. Otherwise $\tilde{\mathfrak{X}}'(x)$ and $\tilde{\mathfrak{Y}}'(y)$ would lie on the same great circle through the poles on Σ , putting $\tilde{\mathfrak{X}}'(x)$ and $\tilde{\mathfrak{Y}}'(y)$ in the same vertical plane, a contradiction. Thus $\tilde{\mathfrak{Z}}$ is a local graph over \mathfrak{G} .

Since the $E^{3,0}$ unit normals for \mathcal{Z} point upward, the $E^{3,0}$ unit normals for $\tilde{\mathcal{Z}}$ also point upward. To see this, note that $\mathfrak{X}'(x)$ and $\mathfrak{Y}'(y)$ can be moved continuously along σ_x and σ_y to coincide with $\tilde{\mathfrak{X}}'(x)$ and $\tilde{\mathfrak{Y}}'(y)$ respectively, and in the process, the $E^{3,0}$ vector product $\mathfrak{X}'(x) \times \mathfrak{Y}'(y)$ always points upward.

REMARK 7. Given g-null coordinates \hat{x} , \hat{y} over a domain D in S, the time-like minimal immersion $\tilde{Z}: D \to E^{3,1}$ for a harmonic immersion $Z: (S,g) \to E^{3,0}$ with indefinite g is determined once a point p_0 is fixed in D. Indeed, since $Z(\hat{x},\hat{y}) = \tilde{X}(\hat{x}) + \tilde{Y}(\hat{y})$ over D, one need only use Euclidean arc length parameters x and y for $X(\hat{x})$ and $Y(\hat{y})$ respectively (with $X'(\hat{x}) > 0$, $Y'(\hat{y}) > 0$, and $X = x_0$ and $Y = y_0$ at $Y = y_0$ at Y =

REMARK 8. $\tilde{\mathbb{Z}}$ can vary with the choice of g-null coordinates in S. For example, use of $\dot{x} = y$ and $\dot{y} = -x$ in place of x and y in (16) produces an assigned immersion $\tilde{\mathbb{Z}}(\dot{x},\dot{y}) = \tilde{\mathbb{X}}(\dot{x}) + \tilde{\mathbb{Y}}(\dot{y})$, with $\tilde{\mathbb{X}}(\dot{x})$ describing $\tilde{\mathbb{Y}}(y)$ and $\tilde{\mathbb{Y}}(\dot{y})$ describing the reflection of $\tilde{\mathbb{X}}(x)$ in the w-axis. Thus any discussion of $\tilde{\mathbb{Z}}$ presumes some fixed choice of g-null coordinates on S (or the switch to the g-null I^0 -Tchebychev coordinates for \mathbb{Z} which they determine).

REMARK 9. For fixed g-null x, y on S, Z and its translations or rotations in $E^{3,0}$ all determine the same \tilde{Z} . But harmonic immersions whose images have vastly different shapes can be assigned to the same \tilde{Z} as well. To see this, let D be the domain of normalized null coordinates x, y for a timelike minimal immersion $\tilde{Z}: S \to E^{3,1}$. Let v be any smooth map from D to the open upper hemisphere of Σ . For each x, y in D, let σ be the great circle on Σ cut out by the plane through (0,0,0) perpendicular to v(x,y). Since v avoids the equator, σ is never vertical. Draw great semicircular arcs σ_x and σ_y joining the poles on Σ through the endpoints of $\tilde{X}'(x)$ and $\tilde{Y}'(y)$ respectively. Take X'(x) and Y'(y) to be the vectors pointing to the intersections of σ with σ_x and σ_y respectively. Then, for any fixed x_0, y_0 in x_0 , x_0 in x_0 , x_0 in x_0 , x_0 in x_0 , x_0 ,

$$\mathfrak{X}(x) = \int_{x_0}^x \mathfrak{X}'(x) \, dx, \qquad \mathfrak{Y}(y) = \int_{y_0}^y \mathfrak{Y}'(y) \, dy$$

is a harmonic immersion $\mathcal{Z}: (D, \tilde{I}) \to E^{3,0}$, where \tilde{I} is the induced metric for $\tilde{\mathcal{Z}}$. By construction, $\nu = \nu(x, y)$ is the $E^{3,0}$ Gauss map for \mathcal{Z} , making \mathcal{Z} a local graph over \mathcal{O} and $\tilde{\mathcal{Z}}$ the timelike minimal immersion assigned to \mathcal{Z} over D. If A(x) and B(y) are the Weierstrass functions for $\tilde{\mathcal{Z}}$ as described in Remark 1, A(x), B(y) and $\nu(x, y)$ can be thought of as the Weierstrass functions for \mathcal{Z} .

REMARK 10. It might seem that $\tilde{\mathbb{Z}}$ is the same for all associate immersions \mathbb{Z}_c as it is for \mathbb{Z} , since at any point of S one uses the same $E^{3,0}$ unit vectors $\mathfrak{X}'(x)$ and $\mathfrak{Y}'(y)$ to construct $\tilde{\mathfrak{X}}'_c(x)$ and $\tilde{\mathfrak{Y}}'_c(y)$ as to construct $\tilde{\mathfrak{X}}'(x)$ and $\tilde{\mathfrak{Y}}'(y)$. But I^0 -Tchebychev g-null coordinates x, y for \mathbb{Z} determine I_c^0 -Tchebychev g-null coordinates $\hat{x} = cx$ and $\hat{y} = y/c$ for \mathbb{Z}_c so that one integrates $\tilde{\mathfrak{X}}'_c(\hat{x})$ and $\tilde{\mathfrak{Y}}'_c(\hat{y})$ with respect to \hat{x} and \hat{y} in (16). Thus $(\tilde{\mathbb{Z}})_c$ is the timelike minimal immersion assigned to \mathbb{Z}_c , and assignment commutes with the associate construction.

In case the harmonic immersion $\tilde{\mathbb{Z}}:(S,g)\to E^{3,0}$ with indefinite g is entire over a plane \mathbb{Q} , use of global g-null I^0 -Tchebychev coordinates provided by the Hilbert –Holmgren theorem (see Remark 1 in [7]) gives global definition of $\tilde{\mathbb{Z}}:S\to E^{3,1}$. The next result states that $\tilde{\mathbb{Z}}$ is entire over \mathscr{O} . The proof is a variant of the argument establishing the Theorem in [7] for the case of indefinite g. Since considerable reference is made to that argument in the rest of this paper, we denote it by the symbol (*).

THEOREM 2. If a harmonic immersion $\mathbb{Z}: (S,g) \to E^{3,0}$ with indefinite g is entire, then any timelike minimal $\tilde{\mathbb{Z}}: S \to E^{3,1}$ globally assigned to \mathbb{Z} is entire over the spacelike coordinate plane \mathcal{O} in $E^{3,1}$.

Proof. We assume that \mathbb{Z} is entire over \mathcal{O} with its Euclidean normals pointing upward, since Euclidean motions of \mathbb{Z} do not change $\tilde{\mathbb{Z}}$. Let x, y be the global g-null I^0 -Tchebychev coordinates on S used to define $\tilde{\mathbb{Z}}: S \to E^{3,1}$. With no loss of generality, we assume that

$$\mathcal{Z}(0,0) = \mathfrak{X}(0) = \mathfrak{Y}(0) = (0,0,0)$$

and take $x_0 = y_0 = 0$ in (16), so that

$$\tilde{Z}(0,0) = \tilde{\mathfrak{X}}(0) = \tilde{\mathfrak{Y}}(0) = (0,0,0).$$

Let $T: E^{3,j} \to \emptyset$ denote orthogonal projection onto \emptyset , so that all claims for Z in (*) apply here to $Z = T \circ \mathbb{Z}$ which is given by Z(x, y) = X(x) + Y(y), where $X = T \circ \mathfrak{X}$ and $Y = T \circ \mathfrak{Y}$.

To prove that \tilde{Z} is entire over \mathcal{O} , we must show that $\tilde{Z} = T \circ \tilde{Z}$ is a diffeomorphism onto \mathcal{O} . We argue much as in (*), establishing in appropriate order various of the properties {1} through {8} from (*), substituting \tilde{Z} for Z_c throughout. Of course, $\tilde{Z}(x,y) = \tilde{X}(x) + \tilde{Y}(y)$, where $\tilde{X} = T \circ \tilde{X}$ and $\tilde{Y} = T \circ \tilde{Y}$.

By the construction of $\tilde{Z}: S \to E^{3,1}$, we know that

(17)
$$X'(x) = \lambda \tilde{X}'(x), \quad 0 < \lambda \le \sqrt{2},$$
$$Y'(y) = \mu \tilde{Y}'(y), \quad 0 < \mu \le \sqrt{2}.$$

Thus $\{1\}$ holds, and the argument showing $\{2\}$ in (*) applies so long as $\tilde{X}(x)$ and $\tilde{Y}(y)$ are simple curves. But with the u, v axes rotated in \mathcal{O} if necessary, as in (*), Y'(y) points into the half-plane v > 0 and X'(x) into the half-plane u > 0. By (17), $\tilde{X}(x)$ and $\tilde{Y}(y)$ are regularly parametrized simple curves. In fact, since (4) applies to \tilde{Z} , x and y are constant speed parametrizations of $\tilde{X}(x)$ and $\tilde{Y}(y)$ respectively.

Suppose now that $\tilde{u}(x) < \hat{u}$ on $\tilde{X}(x) = (\tilde{u}(x), \tilde{v}(x))$, so that $\hat{u} > 0$ since $\tilde{u}(0) = 0$. For $x \le 0$, $u(x) \le 0 < \hat{u}$ on X(x) = (u(x), v(x)) since u(0) = 0 and u'(x) > 0. For x > 0, (17) gives $0 < u'(x) \le \sqrt{2}\tilde{u}'(x)$, so that

$$u(x) = \int_0^x u'(x) \, dx \le \sqrt{2} \int_0^x \tilde{u}'(x) \, dx < \sqrt{2} \hat{u},$$

which contradicts $\langle 4 \rangle$ from (*). Assuming $\tilde{u}(x) > \hat{u}$ yields the same contradiction. Thus $\tilde{X}(x)$ crosses every vertical line in \mathcal{O} ; similarly, $\tilde{Y}(y)$ crosses every horizontal line in \mathcal{O} . Thus [5] and [6] from (*) hold for $\tilde{X}(x)$ and $\tilde{Y}(y)$, from which {3} and {4} follow.

In case $\tilde{Y}'(y)$ is constant, it is always vertical. Then $\tilde{Y}(y)$ describes the whole v-axis, and $\tilde{Z}(x,y)$ covers all points in \mathcal{O} reached by moving the v-axis parallel to itself, with $\tilde{X}(0) = (0,0)$ going to $\tilde{X}(x)$, for all x. By $\{5\}$, \tilde{Z} is onto \mathcal{O} . If $\tilde{X}'(x)$ is always horizontal, $\{6\}$ shows that \tilde{Z} is onto \mathcal{O} .

Suppose then that Y'(y) is not constant and that X'(x) is not always horizontal. Let M > 0 be the constant provided by $\{5\}$ and $\{6\}$. For i = 1, 2, 3, 4 define R^i , R^i_k , \mathbb{Q}^i , and $\mathbb{C}^i(p)$ for $\tilde{X}(x)$ and $\tilde{Y}(y)$ as they were for (cX)(x) and (Y/c)(y) in (*). One easily checks that $\{8\}$ is valid. To prove that \tilde{Z} is onto \mathcal{O} , we do not need the full force of $\{7\}$. It is enough to show that $\tilde{X}(x)$ and $\tilde{Y}(y)$ cannot both lie to the same (open) side of a line of slope M or -M in \mathcal{O} .

Assume first that $\tilde{X}(x)$ lies to the left of the line v = -Mu + b. Then

$$\tilde{v}(x) + M\tilde{u}(x) < b$$

for all x, with b > 0 since $\tilde{u}(0) = \tilde{v}(0) = 0$. For $x \le 0$, X(x) lies to the left of v = -Mu + b since, by $\langle 4 \rangle$, the ray of X(x) over $(-\infty, 0]$ lies in the closed sector bounded by the rays $v = \pm Mu$ with $u \le 0$. If x > 0, $\{5\}$ gives $\tilde{v}'(x) + M\tilde{u}'(x) \ge 0$, so by (17) we have

$$v(x) + Mu(x) = \int_0^x \langle v'(x) + Mu'(x) \rangle dx$$

$$\leq \sqrt{2} \int_0^x \langle \tilde{v}'(x) + M\tilde{u}'(x) \rangle dx = \sqrt{2} \langle \tilde{v}(x) + M\tilde{u}(x) \rangle < \sqrt{2}b.$$

Thus X(x) lies to the left of $v = -Mu + \sqrt{2}b$ for all x. The analogous argument shows that X(x) lies to the left of $v = Mu + \sqrt{2}b$ if $\tilde{\mathfrak{X}}(x)$ lies to the left of v = Mu + b. Similarly, $\{6\}$ shows that Y(y) lies to the left of $v = -Mu + \sqrt{2}b$ (resp. $v = Mu + \sqrt{2}b$) if $\tilde{\mathfrak{Y}}(y)$ lies to the left of v = -Mu + b (resp. v = Mu + b). Clearly, then, $\tilde{X}(x)$ and $\tilde{Y}(y)$ cannot both lie to the left of a line of the form $v = \pm Mu + b$ unless X(x) and Y(y) both lie to one side of a line of the form $v = \pm Mu + \sqrt{2}b$, contradicting $\{7\}$. One argues in the same way that $\tilde{X}(x)$ and $\tilde{Y}(y)$ cannot both be to the right of a line of the form $v = \pm Mu + b$.

The portion of the proof (*) starting with the paragraph before $\{8\}$ now applies with $\tilde{X}(x)$ and $\tilde{Y}(y)$ in place of (cX)(x) and (Y/c)(y) to show that \tilde{Z} is onto \mathcal{O} .

REMARK 11. The converse of Theorem 2 fails. To see this, take any time-like minimal $\tilde{Z}: S \to E^{3,1}$ which is entire over \mathcal{O} . Use global normalized null coordinates x, y for \tilde{Z} and assume that $\tilde{Z}(0,0) = \tilde{X}(0) = \tilde{Y}(0) = (0,0,0)$ so that $\tilde{Z}(0,0) = \tilde{X}(0) = \tilde{Y}(0) = (0,0)$ for $\tilde{Z} = T \circ \tilde{Z}$. Let $\mathfrak{X}'(x)$ point to the closed upper hemisphere of Σ , with $T \circ \mathfrak{X}'(x) = e^{-x^2} \tilde{X}'(x)$. Let $\mathfrak{Y}'(y)$ point to Σ , with $T \circ \mathfrak{Y}'(y) = e^{-y^2} \tilde{Y}'(y)$ and the $E^{3,0}$ vector product $\mathfrak{X}'(x) \times \mathfrak{Y}'(y)$ pointing upward. If g is the induced metric \tilde{I} for $\tilde{Z}: S \to E^{3,1}$, then the immersion $\tilde{Z}: (S,g) \to E^{3,0}$ defined by $Z(x,y) = \mathfrak{X}(x) + \mathfrak{Y}(y)$, with

$$\mathfrak{X}(x) = \int_0^x \mathfrak{X}'(x) \, dx \quad \text{and} \quad \mathfrak{Y}(y) = \int_0^y \mathfrak{Y}'(y) \, dy,$$

is harmonic. Moreover, $\tilde{\mathbb{Z}}: S \to E^{3,1}$ is the timelike minimal immersion assigned to \mathbb{Z} using x, y on S. With x and y constant speed parameters on $\tilde{\mathfrak{X}}(x)$

and $\tilde{\mathcal{Y}}(y)$ respectively, the construction forces $\mathfrak{X}(x)$ and $\mathcal{Y}(y)$ to have finite length, so that \mathcal{Z} cannot be entire over \mathcal{O} .

THEOREM 3. If the timelike minimal immersion $\tilde{\mathbb{Z}}: S \to E^{3,1}$ assigned to a harmonic immersion $\mathbb{Z}: (S,g) \to E^{3,0}$ is entire over \mathcal{O} , and if the $E^{3,0}$ unit normals for \mathbb{Z} avoid a neighborhood of the equator on \mathcal{O} , then \mathbb{Z} is also entire over \mathcal{O} .

Proof. Let x, y be the global g-null I^0 -Tchebychev coordinates on S used to construct $\tilde{\mathbb{Z}}$. Assume that $\mathbb{Z}(0,0)=\mathfrak{X}(0)=\mathfrak{Y}(0)=(0,0,0)$ with $x_0=y_0=0$ in (16), so that $\tilde{\mathbb{Z}}(0,0)=\tilde{\mathbb{X}}(0)=\tilde{\mathbb{Y}}(0)=(0,0,0)$. Then the claims $\langle 1 \rangle$ through $\langle 5 \rangle$ in (*) for \mathbb{Z} apply here to $\tilde{\mathbb{Z}}=T \circ \tilde{\mathbb{Z}}$, since $\tilde{\mathbb{Z}}$ is entire over \mathfrak{P} .

To show that \mathcal{Z} is entire over \mathcal{O} , adapt the argument in (*) with Z_c replaced by $Z = T \cdot \mathcal{Z}$. The new reasoning needed is the same as that above in the proof of Theorem 2. The one difference is that here,

$$\tilde{X}'(x) = \lambda X'(x), \quad \sqrt{2}/2 \le \lambda \le C,$$

 $\tilde{Y}'(y) = \mu Y'(y), \quad \sqrt{2}/2 \le \mu \le C,$

where the constant C depends upon the positive infimum of the distance of $v^0(x, y)$ from the equator on Σ . Thus C plays the role in this argument that $\sqrt{2}$ played in the proof of Theorem 2.

5. Examples

Calabi noted that suitable periodic Weierstrass functions A(x) and B(y) produce an entire "doubly periodic" timelike minimal immersion \mathbb{Z} : x, y-plane $\to E^{3,1}$. To see this, let A(x) and B(y) be smooth functions with periods α and β respectively such that

Since
$$\frac{\pi}{12} < A < \frac{\pi}{6}, \qquad \frac{7\pi}{12} < B < \frac{2\pi}{3}.$$

$$0 < \sin\left(\frac{\pi}{12}\right) < \sin A < \sin\left(\frac{\pi}{6}\right),$$

$$0 < \cos\left(\frac{\pi}{6}\right) < \cos A < \cos\left(\frac{\pi}{12}\right),$$

$$0 < \sin\left(\frac{2\pi}{3}\right) < \sin B < \sin\left(\frac{7\pi}{12}\right),$$

$$0 > \cos\left(\frac{7\pi}{12}\right) > \cos B > \cos\left(\frac{2\pi}{3}\right),$$

we know by (6), (7), (8), and (9) that the \mathbb{Z} defined by A(x) and B(y) in Remark 1 is a local graph over the three coordinate planes and the null plane v = w. Suppose we write $Z = T \circ \mathbb{Z}$, where here T represents the Euclidean orthogonal projection of $E^{3,j}$ onto the particular plane under discussion. Since Z(x, y) = X(x) + Y(y), projection to the u, v-plane gives

$$\sqrt{2}X'(x) = (\cos A, \sin A), \qquad \sqrt{2}Y'(y) = (\cos B, \sin B);$$

projection to the u, w-plane gives

$$\sqrt{2}X'(x) = (\cos A, 1), \qquad \sqrt{2}Y'(y) = (\cos B, 1);$$

projection to the v, w-plane gives

$$\sqrt{2}X'(x) = (\sin A, 1), \quad \sqrt{2}Y'(y) = (\sin B, 1);$$

and projection to the v = w plane with Cartesian coordinates $u, \sqrt{2}v$ gives

$$\sqrt{2}X'(x) = \left(\cos A, \frac{1+\sin A}{\sqrt{2}}\right), \qquad \sqrt{2}Y'(y) = \left(\cos B, \frac{1+\sin B}{\sqrt{2}}\right).$$

In all cases, the coordinate functions for X(x) and Y(y) are strictly monotonic, so X(x) and Y(y) are simple curves. Since X'(x) is never parallel to Y'(y), the argument showing $\{2\}$ in (*) applies here to Z in place of Z_c to show that Z is one-to-one. To see that Z is onto the plane in question, note that the fundamental forms I and II for Z depend only on A(x) and B(y) and are thus periodic in X and Y. Since the fundamental theorem for time-like surfaces in $E^{3,1}$ is just like the classical version in $E^{3,0}$ (see [8]), it follows that Z over any period rectangle $[j\alpha, (j+1)\alpha] \times [k\beta, (k+1)\beta]$ for integers j and k is congruent to Z over $[0, \alpha] \times [0, \beta]$. Thus Z is entire over any of the planes considered. More generally, Z is entire over any plane for which Z is a local graph, so long as Z is one-to-one over $[0, \alpha] \times [0, \beta]$.

REMARK 12. Suppose $\mathbb{Z}: S \to E^{3,1}$ is a timelike minimal immersion, entire over the u, w-plane. Assume that $\mathbb{Z}(S)$ contains (0,0,0) and take global normalized null coordinates x, y on S with $\mathfrak{X}(0) = \mathfrak{Y}(0) = (0,0,0)$. Because $\cos A(x) \neq \cos B(y)$, we have $-A(x) \neq B(y) \mod 2\pi$. Hence the timelike minimal immersion $\hat{\mathbb{Z}}: S \to E^{3,1}$, given by the Weierstrass functions $\hat{A}(x) = -A(x)$ and $\hat{B}(y) = B(y)$ with $x_0 = y_0$, is well defined. The projections of \mathbb{Z} and $\hat{\mathbb{Z}}$ to the u, w-plane are identical, making $\hat{\mathbb{Z}}$ entire over the u, w-plane. But the Gauss curvatures K and \hat{K} for \mathbb{Z} and $\hat{\mathbb{Z}}$ are related by

(18)
$$\operatorname{sign} \widehat{K}(x, y) = -\operatorname{sign} K(x, y).$$

The example

$$v = w \tanh u$$

of a timelike minimal surface in $E^{3,1}$ on which K > 0 thereby shows the existence of a convex $(\hat{K} < 0)$ timelike minimal immersion $\hat{Z}: S \to E^{3,1}$ that is entire over the u, w-plane. The role of the u, w-plane is not special here to the extent that any timelike plane can be taken to the u, w-plane by a motion of $E^{3,1}$.

The simple "flip trick" in Remark 11 can fail if applied to a timelike minimal immersion $\mathbb{Z}: S \to E^{3,1}$ entire over the u, v-plane. To see why, suppose the u, v-plane is rotated as necessary in (*) for $Z = T \circ \mathbb{Z}$. Using the notation in (*), trouble can arise if the disjoint arcs C_x and C_y share a common endpoint. If C_y contains its left endpoint, and $C_x \cap \overline{C}_y \neq \emptyset$, then $\hat{\mathbb{Z}}: S \to E^{3,1}$

(defined by using $\hat{A}(x) = -A(x)$ and $\hat{B}(y) = B(y)$) is not a local graph over the u, v-plane, because somewhere $\hat{X}'(x) = -\hat{Y}'(y)$. Even when C_x and C_y avoid their common endpoint, $\hat{X}'(x) = -\hat{Y}'(y)$ might lie to one side of a line parallel to the diameter through the left endpoint of $\hat{C}_y = C_y$, so that \hat{Z} would not be entire over the u, v-plane. We show in Remark 13 that the flip trick works if C_x , C_y , and $-C_y$ have no common endpoint. The role of the u, v-plane is not special here, to the extent that any spacelike plane can be taken to the u, v-plane by a motion of $E^{3,1}$.

REMARK 13. Given a timelike minimal $\mathbb{Z}: S \to E^{3,1}$ entire over the u, vplane \mathcal{O} , reorient S if necessary so the Euclidean normals for \mathcal{Z} point upward. Take global normalized null coordinates x, y on S for Z, and assume with no loss of generality that $\mathcal{Z}(0,0) = \mathfrak{Y}(0) = \mathfrak{Y}(0) = (0,0,0)$. Rotate the u, v-axes in $\mathfrak O$ as specified in (*). Then $Z = T \circ \mathfrak Z$ given by Z(x, y) = X(x) +Y(y) is a diffeomorphism onto \mathcal{O} , with the properties $\langle 1 \rangle$ through $\langle 5 \rangle$ in (*). If $\bar{C}_x \cap \bar{C}_y = \emptyset$ and $\bar{C}_x \cap -\bar{C}_y = \emptyset$, one can take $M = M_1$ in (4) and $M = M_2$ in (5) with $0 < M_1 < M_2$, so both (4) and (5) hold for any $M = \hat{M}$ with $M_1 < \hat{M} < M_2$. If $\hat{Z}: x, y$ -plane $\to E^{3,1}$ is now defined by the flip trick, then $\hat{Z} = \hat{M} < M_2$. $T \circ \hat{Z}$ has the form $\hat{Z}(x, y) = \hat{X}(x) + \hat{Y}(y)$, with $\hat{X}(x)$ the reflection of X(x)in the *u*-axis and $\hat{Y}(y) = Y(y)$. Thinking of \hat{Z} in place of Z_c in (*), {1} is obvious, and $\{2\}$ can be argued as in (*) since $\hat{X}(x)$ and $\hat{Y}(y)$ are simple curves. Properties $\{3\}$ and $\{4\}$ are clear. Moreover, one can take $M = M_1$ in $\{5\}$ and $M = M_2$ in {6} with $0 < M_1 < M_2$, so both {5} and {6} hold for any $M = \hat{M}$ with $M_1 < \hat{M} < M_2$. Form the rays $R^1(x)$, $R^2(y)$, $R^3(x)$, and $R^4(y)$ for $\hat{X}(x)$ and $\hat{Y}(y)$ just as they were for (cX)(x) and (Y/c)(y) in (*). Fix \hat{M} with $M_1 < \hat{M} < M_2$. Any line ℓ of slope $\pm \hat{M}$ which crosses the positive *u*-axis crosses $R^1(x)$. Otherwise, $R^1(x)$ would lie in the closed triangular region bounded by ℓ and the lines $v = \pm \hat{M}u$, contradicting $\{4\}$. Similarly, any line of slope $\pm M$ that crosses the positive v-axis crosses $R^2(y)$, any line of slope $\pm \hat{M}$ that crosses the negative u-axis crosses $R^3(x)$, and any line of slope $\pm \hat{M}$ that crosses the negative v-axis crosses $R^4(y)$. The final argument in (*) can now be adapted to show that \hat{Z} is onto \mathcal{O} . One uses $M = M_1$ to define \mathcal{O}^1 and \mathbb{C}^3 and $M = M_2$ to define \mathbb{C}^2 and \mathbb{C}^4 . Any line of slope $-\hat{M}$ through $p \in \mathbb{Q}^1$ crosses both the positive u-axis and the positive v-axis, and thus hits both $R^1(x)$ and $R^2(y)$. Analogous remarks apply if p lies in \mathbb{Q}^2 , \mathbb{Q}^3 , or \mathbb{Q}^4 . Of course, (18) holds for \mathbb{Z} and $\hat{\mathbb{Z}}$.

The flip trick can provide an example of a timelike minimal immersion $\hat{\mathbb{Z}}$: x, y-plane $\to E^{3,1}$ with $\hat{K}(x, y) < 0$ which is entire over the u, v-plane. Since $\hat{\mathbb{Z}}$: x, y-plane $\to E^{3,0}$ is complete with Euclidean Gauss curvature $\hat{K}^0(x, y) > 0$, the image of $\hat{\mathbb{Z}}$ lies to one side of its tangent plane at every point. Magid gives an explicit example of such an immersion in [5]. We obtain $\hat{\mathbb{Z}}$ in Remark 14 by giving an example of a timelike minimal \mathbb{Z} : x, y-plane $\to E^{3,1}$ with K(x, y) > 0 which is entire over the u, v-plane, and which has the properties shown in Remark 13 to produce a $\hat{\mathbb{Z}}$ of the sort just described.

REMARK 14. Use the Weierstrass functions A(x) and B(y) given by

$$4A(x) = \arctan x$$
, $4B(y) = 2\pi + \arctan y$,

so that

(19)
$$\frac{-\pi}{8} < A(x) < \frac{\pi}{8}, \qquad \frac{3\pi}{8} < B(y) < \frac{5\pi}{8}.$$

Define the timelike minimal immersion $\mathbb{Z}: x, y$ -plane $\to E^{3,1}$ with $x_0 = y_0 = 0$ in (10) so that $Z = T \circ \mathbb{Z}$ is given by Z(x, y) = X(x) + Y(y) with

(20)
$$\sqrt{2}X'(x) = (\cos A, \sin A), \quad \sqrt{2}Y'(y) = (\cos B, \sin B).$$

Since $\bar{C}_x \cap \bar{C}_y = \emptyset$ and $\bar{C}_x \cap -\bar{C}_y = \emptyset$, Remark 13 will apply if we show that Z is a diffeomorphism onto Θ . We think of Z in place of Z_c in (*). By (19) and (20), X'(x) is never parallel to Y'(y), so that Z is a local diffeomorphism giving the relevant fact in {1}. Moreover, $\cos A > 0$ and $\sin B > 0$ force X(x) and Y(y) to be simple curves, so the argument in (*) gives {2}. Indeed, (19) and (20) show that there are constants M_1 and M_2 with $0 < M_1 < 1 < M_2$, so that X(x) is the graph of a function v = F(u) with $|F'(u)| < M_1$ and Y(y) is the graph of a function u = G(v) with $|G'(v)| < 1/M_2$. Since x and y are constant speed parameters for X(x) and Y(y) (respectively) defined for all real values, F(u) and G(v) are defined for all real values, giving {5} and {6} from which {3} and {4} easily follow. We can now adapt (*) as we did in Remark 13, using M = 1 in place of \hat{M} . Hence Z is entire, and since

$$sign K(x, y) = sign A'(x)B'(y) > 0,$$

the flip trick provides a timelike minimal $\hat{Z}: x, y$ -plane $\to E^{3,1}$ entire over the u, v-plane which is convex.

References

- 1. E. Calabi, *Examples of Bernstein problems for some nonlinear equations*, Proc. Sympos. Pure Math. 15 (1968), 223–230.
- 2. M. do Carmo, *Differential Geometry of Curves and Surfaces*, Prentice-Hall, Englewood Cliffs, N.J., 1976.
- 3. C. H. Gu, *The extremal surfaces in the 3-dimensional Minkowski space*, Acta Math. Sinica (N.S.) 1 (1985), 173-180.
- 4. H. B. Lawson, Jr., *Lectures on Minimal Submanifolds, Vol. 1,* 2nd ed., Publish or Perish, Berkeley, Calif., 1980.
- 5. M. A. Magid, The indefinite Bernstein problem, preprint.
- 6. T. K. Milnor, A conformal analog of Bernstein's theorem for timelike surfaces in Minkowski 3-space, Contemp. Math. 64 (1987), 123–132.
- 7. ——, Associate harmonic immersions in 3-space, Michigan Math. J. 37 (1990), 179–190.
- 8. D. J. Struik, *Lectures on Classical Differential Geometry*, Addison-Wesley, Reading, Mass., 1950.

Department of Mathematics Rutgers University New Brunswick, New Jersey