Entire Timelike Minimal Surfaces in E3!

TILLA KLOTZ MILNOR

1. Introduction

Calabi was the first to show that an entire spacelike minimal surface in Min-
kowski 3-space E*! must be a plane (see [1]). However, if w is the timelike
coordinate in u, v, w-space, the example

v=wtanhu

shows that an entire timelike minimal surface in £%! need not even be flat.
The best one can say in this direction is that the surface must be conformally
equivalent to the Minkowski 2-plane E*! (see [6]).

In this paper we generate examples that display considerable variety in the
shapes of entire timelike minimal surfaces in £*1. This is done, in part, by
describing an analog for the classical construction of associate minimal sur-
faces in Euclidean 3-space E>°.

Associate minimal surfaces in E>° are paired in an amusing manner. At
corresponding points, they share the same induced metric, Gauss curvature,
zero mean curvature, and unit normals. Still, associate minimal surfaces in
E*° can have markedly different shapes, as the helicoid and the catenoid
amply illustrate. (For pictures, see [2] or [8].)

To produce associate families of spacelike minimal surfaces from a given
spacelike minimal surface in E*, the original classical construction suf-
fices. But an entirely different construction must be used to generate associ-
ate families of timelike minimal surfaces from a given timelike minimal sur-
face in E*. In both cases, the associate pairing still preserves the Minkowski
induced metric, Gauss curvature, zero mean curvature, and unit normals.

While it is pleasing to have the counterpart for a construction based on
complex analytic techniques in a situation governed by the wave equation
rather than by Laplace’s equation, the construction of associate timelike
minimal surfaces in £ !is further justified by the fact that all surfaces asso-
ciate to an entire timelike minimal surface in E£! are entire over the same
fixed plane. Thus the construction can be used to produce infinite families
of isometric entire, timelike minimal surfaces in E*! no two of which are
congruent.
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In Section 4 we explore a connection between timelike minimal immer-
sions of a surface S in £ ! and immersions of S into £*° that are harmonic
with respect to an indefinite prescribed metric g on S. Given a harmonic im-
mersion Z: (S, g) - E*° with indefinite g which is a local graph over some
plane, we assign to Z over the domain D of g-null coordinates a timelike
minimal immersion Z: D —» E*! whose induced metric is conformally equiv-
alent to g, and which is a local graph over the spacelike coordinate plane @
in £>!. We prove that if Z is entire, then Z: S — E*! can be globally defined
and will be entire over ®. Moreover, the assignment procedure can be re-
versed, in the following sense.

Let I be the Minkowski induced metric for a timelike minimal immersion
Z: S — E>!which is a local graph over ®, and let D be the domain of /~null
coordinates on S. Given any smooth map » from D to the upper open hemi-
sphere of the Euclidean 2-sphere £, we obtain a harmonic immersion Z:
(D, I) - E>° with Gauss map v: D — X whose assigned timelike minimal
immersion over D is Z.

The assignment construction can be exploited to give a local Weierstrass
representation for harmonic immersions Z: (S, g) — E>° with indefinite g,
using the Weierstrass functions A(x) and B(y) for the assigned timelike
minimal immersion Z and the E*°® Gauss map »(x, y) for Z. (The local
Weierstrass representation for timelike minimal immersions in £>! is de-
scribed in §2 below.)

The material in Section 5 provides examples of entire timelike minimal
surfaces in E>! with particular properties. Included there is a method we
learned from Calabi for generating entire, doubly periodic, timelike mini-
mal surfaces in E> . Actually, we adapt Calabi’s procedure to produce non-
planar timelike minimal surfaces in E>! which are entire with respect to
all three coordinate planes simultaneously. We also give examples of entire
timelike minimal surfaces in £%! on which Gauss curvature is always posi-
tive, or always negative. This is done for surfaces entire over a timelike plane
and for surfaces entire over a spacelike plane. Of course, for each example
described, one has as well the family of associate surfaces.

2. Background

As in [7], we view E>/ as R3? with the scalar product
(V, Wy =v,wi+v,wy+ (1) v3w3,

where j =0 gives Euclidean 3-space and j =1 gives Minkowsi 3-space. Be-
cause this paper deals mainly with surfaces in E> !, we delete the index 1 at
most points, writing (V, W) for (V, W)!. A vector V in E>!is spacelike if
V,VY>0, timelike if (V, V) <0, and null if (V, V) =0.

The surface S is assumed to be C®, oriented and connected. Given any
immersion Z: S — R3, we also write Z:S— E*%and Z:S— E>! since the
same underlying map is involved. To study immersions Z: S —» E*/ for j =
0, 1, we use the fundamental forms
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['=(dZ,dzy, II'=(dZ,dv’y’
where the unit normal »” is given in terms of local coordinates x, y on S by
iJ (=K
ldet | v/ = Zx

Zy
Gauss curvature K/ and mean curvature H” are given by
K/=det II//det I/,  H/=tr;(Il7).

Again, we usually write I, », IT, K, and H for I', »!, IT!, K! and H'. How-
ever, definition of », I1, K, and H requires that det 7 0. Thus we restrict
our attention to immersions Z: S — E*! which are spacelike (meaning that
det 7 > 0) or timelike (meaning that det 7 <0).

We call an immersion Z: S — E*/ minimal if H/=0. Although a mini-
mal immersion is always extremal for the //-area integral, spacelike minimal
Z: S — E*! actually maximize I-area whereas timelike minimal Z: S — E>'
neither maximize nor minimize /-area, even locally.

There are always local coordinates x, y on S for a timelike Z: S— E>!in
terms of which 7=2F dx dy for some function F 0. These are called nuli
coordinates, since the tangential directions dx =0 and dy = 0 are null. When
null coordinates x, y are used on S, the Christoffel symbols I'}, =I'4 = 0 for
I, while H =0 forces the middle coefficient M of II to vanish as well. The
Gauss equation

Zuy=THhZx+THZ,+ My

thus shows that a timelike Z: S — E>' is minimal if and only if Zyy, =0, or
(equivalently) if and only if Z has the local expression

D) Z(x,y)=X(x)+Y(y)

for any null coordinates x, y on S.

To normalize null coordinates x,y on S for a timelike minimal Z: S —
E3!, reparametrize the curves X(x) and Y(y) if necessary so that x and y
measure Euclidean arc length along 9C(x) and Y(y) respectively. Then &’(x)
and Y’(y) are unit vectors in £3% and x, y are Tchebychev coordinates for
the metric 7% induced on S by Z: S — E3:°. Finally, change x to —x, or y to
—y as needed, and reverse the roles of x and y if this is required to respect
the orientation on S, so that

L'(x) = (a(x), b(x), /1—a(x)—b3(x)),
Y(») = (a(»), B, V1= aZ(y)—B2(y))

for smooth functions a(x), b(x), a(y), and B(y). This determines x, y up
to additive constants over their domain on S. Because X’(x) and Y’(y) are
null in E%1, (2) gives

a}(x)+bi(x)=?(y)+BX(¥)=1/2,

()

so that
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XL'(x)=(a(x), b(x),1/2), Y ()= (a(y),B(»),1/2).
Thus the values (a(x), b(x)) and (a(y), B(y)) vary along segments C, and
C, respectively on a circle C. Note that C, and C, must be disjoint, since
X’(x) and Y’(y) always span a plane. Either segment C, or C, may reduce
to a point, but since neither can be empty, neither can be all of C. It follows
that there are smooth functions A(x) and B(y) determined up to integral
multiples of 27 so that
3) A(x)#B(y)+2nj
for any integer j, while
V29'(x) = (cos A(x),sin A(x), 1),
V2Y'(y) = (cos B(»),sin B(y),1).

Straightforward computation then gives

@

A—B
I=2 sin2<—2—-> dx dy,

V2IT = —A'(x) dx*+ B'(y) dy?,

A-B
5 I°=dx2+2cos7‘(——2——)dxdy+dy2,

2+/det 19y % = (sin A —sin B, cos B—cos A, sin(B—A)),
2+/—det I'v = (sin A —sin B, cos B—cos A4, sin(A — B)).

Using Cartesian coordinates u, v, w in E>/, the immersion Z above yields a
local graph over the u, v-plane wherever sin(A4 — B) # 0, over the u, w-plane
wherever cos A # cos B, and over the v, w-plane wherever sin 4 # sin B. Thus
Z gives a local graph over the u, v-plane wherever

(6) A(x)#B(y)+jm,
over the u, w-plane wherever

(7 A(x)# —B(y)+2jm,
and over the v, w-plane wherever

(8) A(x)#=B(y)+2j—1)m,

for any integer j. To deal with one null plane, note that Z gives a local graph
over the plane v =w wherever

©)) cos B(1+sin A) # cos A(1+sin B).
REMARK 1. In the situation above, .
X X
V29X (x) ——-(S cos A(t) dt, S sin A(¢) dt,x-xo),
XO XO
(10)
y Yo
@ym:(& cos B(t)dt,s smB(t)dt,y——y0>
Yo Yo



Entire Timelike Minimal Surfaces in E*>! 167

for fixed values of xy and y,. Over the domain D of the null coordinates x, y
it is natural to think of (1) and (10) as a Weierstrass representation for Z:
D — E*'with A(x) and B(y) as Weierstrass functions. Conversely, any two
C® functions A: J,— R and B: Jg — R with A(x)# B(y) mod 2« determine
a timelike minimal immersion Z: J, X Jz — E*! given by (1) and (10) for any
xoin J4 and y, in Jz. Moreover, x, y are normalized null coordinates for this
Z, so that (4) and (5) are valid with

(11) sign K =sign A’(x)B’'(y)

giving control over the sign of Gauss curvature.

REMARK 2. If Z(S) is the graph of a smooth function over a whole plane,
then an immersion Z: S — E*/ for j =0, 1 is called entire. As explained in
Remark 1 of [7], the proof of the Hilbert-Holmgren theorem in [6] shows
that for any entire timelike minimal Z: S — E>! there exist global null co-
ordinates x, y on S defined for all real values which are Tchebychev for 7°.
These coordinates are easily normalized to give a global Weierstrass rep-
resentation for Z in terms of functions A(x) and B(y) defined for all real
values of x and y. In [5], Magid shows the existence of such a global repre-
sentation for timelike minimal immersions which are entire over spacelike
or timelike planes, using other methods.

3. Associative Minimal Surfaces in E3!

We begin by describing the family of associate immersions for a spacelike
minimal Z: S — E> . Local coordinates x, y on S are isothermal for a space-
like Z: S — E*1if and only if

I=X\(dx?*+dy?)

for some function A > 0. Mean curvature H =0 for a spacelike Z: S — E>!
if and only if
Zyx+Z,,=0

for all isothermal coordinates x, y on S. Thus a spacelike Z: S — E 3 !is min-
imal if and only if, in terms of isothermal coordinates x, y and z =x+1iy,

®E2Z = (o) =2,—iZ,, k=1,2,3
is holomorphic, so that Z has the local expression
Z
Z =Re S & dz+C,
20
for a constant vector C,, while
(12) (Zx’ Zx>= (Zy, Zy>=)\’ (sz zy>=0-

It is known (see, e.g., [3]) that a spacelike minimal Z:S — E>! is the
“twin” of a minimal immersion Z: D — E % defined by taking & = (&;) with
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PL=@1, P2=@2, P3=1P;3
and setting
Z=Re|’ &dz+C,
20
over the domain D of the coordinates x, y which are isothermal for both 7
and 7'°. Classically (see [4]) the associate minimal immersions Z,: D — E>0
are given for each real 6 by

~ . I o~
%9 =Re e"’S & dz+C,.
20
Note that Z is retrieved over D by using the first two coordinate functions
of Z, and the third coordinate function of Z,/,.
The identical construction applied to Z yields for each real # an associate
immersion Zy: D — E>! given by

(13) Zo=Re e"f’gz & dz+C,.
20
Here

14) (Zg)xy=c0s 0 Z,+sinb Z,,

(Zg),=sinf Z,+cos0Z,,

so (Zg), and (Zy), span the same oriented plane as Z, and Z,, giving vy =v.
By (12) and (14), we have

((Zﬂ)xs (Zﬁ)x> = ((Za)ys (Zﬂ)y> = )\’ <(Zﬂ)x9 (Zﬂ)y> = Os

so x, y are isothermal for I, =1, Zg is spacelike, and K, =K. Finally, Z,:
D — E*'is minimal since ®, =e?® is holomorphic for each 8, giving H, =
H=0.

If 2: S— E*!is an entire spacelike minimal immersion, then Z(S) must
be a plane (see [1]). Thus the associate family Z,: S — E*! can be globally
defined, with each Z4(S) a plane.

REMARK 3. Given a harmonic immersion Z: (S, g) — E*° with definite g,
the construction (13) yields a family of associate harmonic immersions Z:
(D, g) —» E*? over the domain D of g-isothermal coordinates x, y with z =
x+1iy, as described in [7]. The situation specializes to the case of a spacelike
minimal Z: S — E*! when g is proportional to the metric I induced on S by
Z from E>1,

Suppose now that Z: S — E>!is a timelike minimal immersion. Given any
constant ¢ >0, define the associate immersion Z.: D — E>! by setting

(15) Ze(x, ) =cX(x)+Y(»)/c

over the domain D of any null coordinates x, y on S. Since (Z.),=cZ, and
(Z.),=2,/c, both (Z,.), and (Z.), are null vectors, with

<(Zc)x’ (Zc)y> = (Zxa Zy)-
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Thus Z.: S — E>!is timelike, with I,=1 and ».=», so that by (5),
V2II.= —cA'(x) dx2+(B'(y)/c) dy?,

with K,=K and H.= H =0. However, II.= Il ifandonly if A’(x)=B’(y) =
0, so the associate pairing is normally not a congruence.

REMARK 4. The choice of different null coordinates x, y on S will leave the
family of immersions Z. unchanged, but may reindex the maps, exchanging
Zc with Zl /ce

REMARK 5. If a timelike minimal Z: S — E*! is entire, use of the global
null coordinates x, y on S described in Remark 2 allows global definition of
the timelike minimal immersions Z.: S — E*1. Theorem 1 below states that
each such Z,. must also be entire.

REMARK 6. Given a harmonic immersion Z: (S, g) —» E*° with indefinite
g, the construction (15) yields a family of associate harmonic immersions
Ze: (D, g) = E*% over the domain D of g-null coordinates x, y on S, as de-
scribed in [7]. The situation specializes to the case of a timelike minimal %:
S — E*'when g is proportional to the metric 7 induced on S by Z from E>!.

Given an entire timelike minimal Z: S — E>!, the following theorem pro-
vides an infinite family of entire timelike minimal Z.: S — E>!. Normally,
no two of the immersions 2, are congruent.

THEOREM 1. If the timelike minimal immersion Z: S — E>! is entire over
a plane, then for any constant ¢ >0, the timelike minimal immersion Z.:
S — E31js entire over the same plane.

Proof. Since a minimal immersion Z: S — E>!yields a harmonic immersion
Z:(S,IY) > E>Y, the result is an immediate corollary of Remark 5 above
and the Theorem in [7]. O

4. Assigned Timelike Minimal Immersions

It is easier to find entire harmonic immersions Z: (S, g) — E>? with indefi-
nite prescribed metric g than it is to find entire timelike minimal immer-
sions Z:S— E>!, Put another way, it is easier to find smooth functions
X:R—-E*»%and Y: R - E*%so that Z: Rx R —» E*? given by

Z(x,y)=X(x)+Y()

is an entire immersion than it is to accomplish the same task with the addi-
tional requirement that 9’(x) and Y’(y) must be null vectors. (See [7] for a
detailed study of harmonic maps Z: (S, g) » E>? with indefinite g.)
Suppose now that the harmonic immersion Z: (S, g) —» E>° with indefi-
nite g is a local graph over some plane Q, and let x, y be g-null coordinates
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over the domain D on S. The construction that follows assigns to Z a time-
like minimal immersion Z: D — E*! which is a local graph over the space-
like coordinate plane ® in E*!. If Z is entire over Q then Z can be globally
defined over S, and Theorem 2 states that Z: S — E>! must be entire over @.

As explained below in Remark 7, there is no loss of generality in working
with g-null coordinates x, y which are 7% Tchebychev for Z, so that Z(x, y) =
L(x)+ Y(y) with x and y Euclidean arc length parameters for 9(x) and
Y(y) respectively. Because Z is a local graph over Q, the normals »°(x, »)
over D are never parallel to Q. Thus we can rotate the «, v, w Cartesian co-
ordinate axes in E>°so Q is parallel to the horizontal u, v coordinate plane
®, with the normals »°(x, y) over D all pointing upward. Then Z, = X'(x),
Z,= Y (»), and the planes they determine are never vertical.

On the 2-sphere X given by u?+v2+w?=1, let y be the circle along which
w=v2/2. Draw great semicircular arcs o, and o, joining the poles on L
through the endpoints of %’(x) and Y’(y) respectively. Define X’(x) and
Y’(») as the vectors pointing to the intersection of v with ¢, and o, respec-
tively.

The E%° unit vectors X’(x) and Y’(y) are null in E>!. Moreover, 9’(x)
is never parallel to Y’(y). Otherwise the vertical plane containing %’(x) and
’(x) would also contain Y’(y), putting Y’(y) in the same vertical plane
as X’(x), a contradiction. The timelike minimal immersion Z: D — E>! as-
signed to Z is given by

Z(x,y)=X(x)+ YD),
(16) ) . ) )
=" Twax,  In=| Fua
. X0 Yo
for a fixed choice of xg, yo in D.

The plane spanned by X’(x) and Y’(y) is never vertical. Otherwise ’(x)
and Y’(y) would lie on the same great circle through the poles on X, put-
ting X’(x) and Y’(y) in the same vertical plane, a contradiction. Thus Z is
a local graph over @.

Since the £%° unit normals for Z point upward, the £*° unit normals
for Z also point upward. To see this, note that %’(x) and Y’(») can be
moved continuously along ¢, and o, to coincide with X’(x) and Y’(p) re-
spectively, and in the process, the E3:0 vector product X’(x) X Y’(y) always
points upward.

REMARK 7. Given g-null coordinates X,  over a domain D in S, the time-
like minimal immersion Z: D — E*! for a harmonic immersion Z: (S, g) —
E?9 with indefinite g is determined once a point p, is fixed in D. Indeed,
since Z(£, ) = C(£)+ Y(p) over D, one need only use Euclidean arc length
parameters x and y for 9C(xX) and Y () respectively (with x’(£) >0, y’(¥) >
0, and x =x, and y =y, at p) to obtain Z: D - E*! from (16). A different
choice of p, changes Z by translation.
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REMARK 8. ¢ can vary with the choice of g-null coordinates in S. For
example, use of X = =y and y = = —X in place of x and yin (16) produces an as-
51gned immersion Z(x y)= SI(x)+‘y(y), with Er(x) describing Y(y) and
<y (») describing the reflection of 9C(x) in the w-axis. Thus any discussion of
Z presumes some fixed choice of g-null coordinates on S (or the switch to
the g-null 7%Tchebychev coordinates for Z which they determine).

REMARK 9. For fixed g-null x, y on S, Z and its translations or rotations
in £%9 all determine the same Z. But harmonic immersions whose images
have vastly different shapes can be assigned to the same Z as well. To see
this, let D be the domain of normalized null coordinates x, y for a timelike
minimal immersion Z: S— E>!. Let » be any smooth map from D to the
open upper hemisphere of X. For each x, y in D, let o be the great circle on
Y cut out by the plane through (0, 0, 0) perpendicular to »(x,y). Since »
avoids the equator, ¢ is never vertical. Draw great semicircular arcs ¢, and
o, joining the poles on X through the endpoints of X’(x) and Y’(y) respec-
tively. Take 9’(x) and Y’(y) to be the vectors pointing to the intersections
of o with ¢, and o, respectively. Then, for any fixed x, yo in D, Z(x,y)=
L (x)+ Y(y) with

T =| Wwde, Y= Y0)dy
X0 0

is a harmonic immersion Z: (D, I) — E>°, where T is the induced metric for
Z. By construction, »=»(x, y) is the £*° Gauss map for Z, making Z a
local graph over ® and Z the timelike minimal immersion assigned to Z over
D. If A(x) and B(y) are the Weierstrass functions for Z as described in Re-
mark 1, A(x), B(y) and v(x, y) can be thought of as the Weierstrass func-
tions for Z.

REMARK 10. It might seem that Z is the same for all associate immersions
Z. as it is for Z, since at any point of S one uses the same E>° unit vectors
X’(x) and ‘y (¥) to construct 9¢(x) and Y(y) as to construct X’(x) and
Y’(y). But I%Tchebychev g-null coordinates x, y for Z determine 7-Tcheb-
ychev g-null coordinates X =cx and y =y/c for Z. so that one integrates
X.(%) and YL(P) with respect to £ and p in (16). Thus (2). is the timelike
minimal immersion assigned to Z., and assignment commutes with the asso-
ciate construction.

In case the harmonic immersion Z: (S, g) —» E>° with indefinite g is entire
over a plane Q, use of global g-null 7%Tchebychev coordinates provided by
the Hilbert -Holmgren theorem (see Remark 1 in [7]) gives global definition
of Z:S— E*!. The next result states that £ is entire over ®. The proof is a
variant of the argument establishing the Theorem in [7] for the case of in-
definite g. Since considerable reference’is made to that argument in the rest
of this paper, we denote it by the symbol ().
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THEOREM 2. If a harmonic immersion Z: (S, g) — E>° with indefinite g
is entire, then any timelike minimal Z:S — E>! globally assigned to Z is
entire over the spacelike coordinate plane ® in E> .

Proof. We assume that Z is entire over @ with its Euclidean normals point-
ing upward, since Euclidean motions of Z do not change Z. Let x, y be
the global g-null 7%Tchebychev coordinates on S used to define Z: S — E> L.
With no loss of generality, we assume that

Z(0,0) = X(0) = Y(0)= (0,0, 0)
and take x,=y,=0in (16), so that
Z(0,0) = X(0) = Y(0) = (0,0, 0).

Let T: E*/ - ® denote orthogonal projection onto ®, so that all claims for
Z in (%) apply here to Z = T+ Z which is given by Z(x, y) = X(x) + Y(»),
where X =7T-X and Y=T-Y.

To prove that  is entire over @, we must show that Z = T-%Z is a diffeo-
morphism onto @. We argue much as in (*), establishing in appropriate or-
der various of the properties {1} through {8} from (*), substituting Z for
Z. throughout. Of course, Z(x, y) = X(x)+Y(»), where X=T-X and Y=
T-.

By the construction of 2: S —» E*!, we know that

X'(x)=NX'(x), 0<\=<V2,
Y'(y)=pY'(y), 0<p=V2.

Thus {1} holds, and the argument showing {2} in (*) applies so long as X(x)
and Y(y) are simple curves. But with the u, v axes rotated in @ if necessary,
as in (%), Y’(y) points into the half-plane v > 0 and X’(x) into the half-plane
u>0. By (17), X(x) and Y(y) are regularly parametrized simple curves. In
fact, since (4) applies to Z, x and y are constant speed parametrizations of
X(x) and Y(y) respectively.

Suppose now that #(x) < @ on X(x) = (f#(x), 0(x)), so that & > 0 since
#(0)=0. For x<0, u(x)<0<i on X(x)=(u(x), v(x)) since u(0)=0and
u’'(x)>0. For x>0, (17) gives 0 <u’(x) <V2ii’(x), so that

a7

u(x)= S; u'(x)dx < \/ES;C i'(x)dx <V2a,

which contradicts (4) from (*). Assuming #(x) > @ yields the same contra-
diction. Thus X(x) crosses every vertical line in ®; similarly, Y(») crosses
every horizontal line in ®. Thus [5] and [6] from (*) hold for X(x) and
Y(y), from which {3} and (4} follow.

In case Y’(y) is constant, it is always vertical. Then Y(y) describes the
whole v-axis, and Z(x, y) covers all points in @ reached by moving the v-
axis parallel to itself, with X(0) = (0, 0) going to X(x), for all x. By {5}, Z
is onto ®. If X’(x) is always horizontal, {6} shows that Z is onto ®.
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Suppose then that Y’(y) is not constant and that X’(x) is not always hor-
izontal. Let M > 0 be the constant provided by {5} and {6}. Fori=1,2,3,4
define R’, RL, @, and C(p) for X(x) and Y(») as they were for (cX)(x)
and (Y/c)(») in (*). One easily checks that {8} is valid. To prove that Z is
onto ®, we do not need the full force of {7}. It is enough to show that X (x)
and Y(y) cannot both lie to the same (open) side of a line of slope M or —M
in @.

Assume first that X(x) lies to the left of the line v=—Mu+b. Then

I(x)+Mi(x)<b

for all x, with b > 0 since #(0) = §(0) =0. For x <0, X(x) lies to the left of
v=—Mu+ b since, by (4), the ray of X(x) over (—o0, 0] lies in the closed
sector bounded by the rays v=+Mu with u<0. If x>0, {5} gives ¥'(x)+
Mii’'(x) =0, so by (17) we have

v(x)+Mu(x)= SZ(U’(x) +Mu'(x)) dx

<V2 S:<ﬁ'(x)+Ma'(x)> dx =V2(5(x) +Mii(x)) <V2b.

Thus X (x) lies to the left of v = —Mu+v2b for all x. The analogous argu-
ment shows that X (x) lies to the left of v =Mu+V2b if X(x) lies to the left
of v=Mu+ b. Similarly, {6} shows that Y(y) lies to the left of v =—Mu+
V2b (resp. v=Mu+V2b) if Y(p) lies to the left of v=—Mu+b (resp. v =
Mu+b). Clearly, then, X(x) and Y(y) cannot both lie to the left of a line
of the form v = + Mu+ b unless X(x) and Y(») both lie to one side of a line
of the form v = + Mu+V2b, contradicting {7}. One argues in the same way
that X(x) and ¥(») cannot both be to the right of a line of the form v =
+Mu+b.

The portion of the proof (*) starting with the paragraph before {8} now
applies with X(x) and Y(») in place of (cX)(x) and (Y/c)(y) to show that
Z is onto ®. O

REMARK 11. The converse of Theorem 2 fails. To see this, take any time-
like minimal Z: S —» E3 ! which is entire over ®. Use global normalized null
coordinates x, y for Z and assume that Z(0, 0) = %(0) = Y(0) = (0, 0, 0) so
that Z(0, 0) = X(0) = Y(0) = (0, 0) for Z =T-Z. Let X’(x) point to the closed
upper hemisphere of T, with 7-9’(x) =e ~**X’(x). Let Y’(y) point to X,
with ToY'(y) =e—7>Y"(y) and the E>°vector product C’(x) X Y’(y) point-
ing upward. If g is the induced metric 7 for Z: § — E>1, then the immersion
Z: (S, g) —» E>%defined by Z(x, y) = X(x)+ Y(y), with

w0 =| awdx and Y =| Yo ay,

is harmonic. Moreover, 2: S — E*! is the timelike minimal immersion as-
signed to Z using x, ¥y on S. With x and y constant speed parameters on (x)
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and Y (») respectively, the construction forces X (x) and Y (») to have finite
length, so that Z cannot be entire over @.

THEOREM 3. If the timelike minimal immersion Z: S — E>! assigned to
a harmonic immersion Z: (S, g) — E>% is entire over ®, and if the E*° unit
normals for Z avoid a neighborhood of the equator on ®, then Z is also
entire over ®.

Proof. Let x, y be the global g-null 7%-Tchebychev coordinates on S used to
construct 2. Assume that Z(0, 0) = % (0) = Y(0) = (0, 0, 0) with xg=y,=0
in (16), so that Z(0, 0) = (0) = Y(0) = (0, 0, 0). Then the claims ¢1) through
(5) in (#) for Z apply here to Z=T-Z, since Z is entire over ®.

To show that Z is entire over @, adapt the argument in (*) with Z_ re-
placed by Z =T-Z. The new reasoning needed is the same as that above in
the proof of Theorem 2. The one difference is that here,

X'(x)=AX'(x), V2/2=<\=C,
Y'(y)=pY'(y), V2/2=p=C,
where the constant C depends upon the positive infimum of the distance of

»%(x, y) from the equator on . Thus C plays the role in this argument that
V2 played in the proof of Theorem 2.

5. Examples

Calabi noted that suitable periodic Weierstrass functions A(x) and B(y) pro-
duce an entire “doubly periodic” timelike minimal immersion Z: x, y-plane —
E*! To see this, let A(x) and B(y) be smooth functions with periods « and
B respectively such that

T 27
— <A< — .
12 < 6 12 <B<

0<sm<—§> <sin A4 <sin<£

)
0<c0( <cosA<c0( >
5 ()

0 <sin ><sinB<sm

0>cos< 12>>cosB>cos( 3 ),

we know by (6), (7), (8), and (9) that the Z defined by A(x) and B(y) in Re-
mark 1 is a local graph over the three coordinate planes and the null plane
v =w. Suppose we write Z=T-Z, where here T represents the Euclidean
orthogonal projection of E*/ onto the particular plane under discussion.
Since Z(x, y) = X(x)+Y(»), projection to the u, v-plane gives

Since
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V2X'(x)=(cos 4,sinAd),  V2Y’(y)=(cos B, sin B);
projection to the u, w-plane gives
V2X'(x)=(cos 4,1),  V2Y'(y)=(cos B, 1);
projection to the v, w-plane gives
V2X'(x)=(sin4,1), V2Y'(y)=(sinB,1);

and projection to the v =w plane with Cartesian coordinates u, V2v gives

1+sin A 1+sin B
S — 2Y’ =(cosB, ————)
= ) V2Y'() =

In all cases, the coordinate functions for X(x) and Y(y) are strictly mono-
tonic, so X(x) and Y () are simple curves. Since X’(x) is never parallel to
Y’(y), the argument showing {2} in (*) applies here to Z in place of Z, to
show that Z is one-to-one. To see that Z is onto the plane in question, note
that the fundamental forms I and 77 for Z depend only on A(x) and B(y)
and are thus periodic in x and y. Since the fundamental theorem for time-
like surfaces in E3!is just like the classical version in E*° (see [8]), it fol-
lows that Z over any period rectangle [jo, (j+1)a] X [kB, (kK +1)3] for inte-
gers j and k is congruent to Z over [0, ] X [0, 3]. Thus Z is entire over
any of the planes considered. More generally, Z is entire over any plane for
which Z is a local graph, so long as Z is one-to-one over [0, «] X [0, B].

V2X'(x)= (cos A,

REMARK 12. Suppose Z: S — E*!is a timelike minimal immersion, entire
over the u, w-plane. Assume that Z(S) contains (0,0, 0) and take global
normalized null coordinates x, y on S with 9 (0) = Y (0) = (0, 0, 0). Because
cos A(x) # cos B(y), we have —A(x) # B(y) mod 2«. Hence the timelike
minimal immersion Z: S — E*1, given by the Weierstrass functions A(x)=
—A(x) and B(») = B(») with x, = yo, is well defined. The projections of Z
and Z to the u, w-plane are identical, making Z entire over the «, w-plane.
But the Gauss curvatures K and K for Z and Z are related by

(18) sign K(x, y) = —sign K(x,.y).

The example
v=wtanhu

of a timelike minimal surface in £*! on which K > 0 thereby shows the exis-
tence of a convex (K < 0) timelike minimal immersion Z: S — E>! that is
entire over the u, w-plane. The role of the u, w-plane is not special here to
the ez}(tlent that any timelike plane can be taken to the u, w-plane by a motion
of E>°,

The simple “flip trick” in Remark 11 can fail if applied to a timelike minimal
immersion Z: S — E>! entire over the u, v-plane. To see why, suppose the
u, v-plane is rotated as necessary in (*) for Z=T-Z. Using the notation in
(*), trouble can arise if the disjoint arcs C, and C, share a common end-
point. If C, contains its left endpoint, and C,NC,#0, then Z:S— E>!
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(defined by using A(x) = —A(x) and B(y) = B(»)) is not a local graph over
the u, v-plane, because somewhere X’(x) = —Y’(y). Even when C, and C,
avoid their common endpoint, X’(x)=—Y'(y) might lie to one side of a
line parallel to the diameter through the left endpoint of C‘y = Cy, so that g
would not be entire over the u, v-plane. We show in Remark 13 that the flip
trick works if C,, C,, and —C, have no common endpoint. The role of the
u, v-plane is not special here, to the extent that any spacelike plane can be
taken to the u, v-plane by a motion of E>!,

REMARK 13. Given a timelike minimal Z:S — E>! entire over the u, v-
plane @, reorient S if necessary so the Euclidean normals for Z point up-
ward. Take global normalized null coordinates x, y on S for Z, and assume
with no loss of generality that Z(0, 0) = 9(0) = Y(0) = (0, 0, 0). Rotate the
u, v-axes in @ as specified in (*). Then Z=T-Z given by Z(x, y)=X(x)+
Y(y) is a diffeomorphism onto @, with the properties (1) through {(5) in (*).
If C, ﬂC =@and C,N— C =@, one can take M = M, in (4)andM M, in
(5) with O<M1 <M,, so both (4) and (5) hold for any M = M with Ml
M<M,. If Z:x, y-plane » E*! is now defined by the flip trick, then Z =
T-Z has the form Z(x, y) = X(x)+Y(»), with X(x) the reflection of X(x)
in the u-axis and Y(y) = Y(»). Thinking of Z in place of Z. in (%), {1} is ob-
vious, and {2} can be argued as in (*) since X(x) and Y () are simple curves.
Properties {3} and {4} are clear. Moreover, one can take M =M, in {5} and
M =M, in {6} with 0 <M, < M,, so both {5} and {6} hold for any M =M
with M, < M < M,. Form the rays R!(x), R*(»), R3(x), and R*(y) for
X(x) and Y(») just as they were for (cX)(x) and (Y/c)(y) in (). Fix M
with M, < M <M,. Any line ¢ of slope +M which crosses the positive u-axis
crosses R'(x). Otherwise, R'(x) would lie in the closed triangular region
bounded by ¢ and the lines v = + Mu, contradicting {4}. Similarly, any line
of slope +M that crosses the positive v-axis crosses R%(»), any line of slope
+ M that crosses the negative u-axis crosses R*(x), and any line of slope
+ M that crosses the negative v-axis crosses R*(y). The final argument in (*)
can now be adapted to show that Z is onto ®. One uses M = M, to define C'
and @3 and M =M, to define @2 and C* Any line of slope —M through
p e Q! crosses both the positive u-axis and the positive v-axis, and thus hits
both R!(x) and R?(y). Analogous remarks apply if p lies in @, @3, or Q.
Of course, (18) holds for Z and Z.

The flip trick can prov1de an example of a timelike minimal immersion Z:
x, y-plane — E>! with K(x, y) <0 which is entire over the u, v-plane. Since
Z: x, y-plane — E*%is complete with Euclidean Gauss curvature K°(x, y) >
0, the image of Z lies to one side of its tangent plane at every point. Magid
gives an explicit example of such an immersion in [5]. We obtain Z in Re-
mark 14 by giving an example of a timelike minimal Z: x, y-plane —» E>!
with K (x, y) > 0 which is entire over the u, v-plane, and which has the prop-
erties shown in Remark 13 to produce a Z of the sort just described.

REMARK 14. Use the Weierstrass functions A(x) and B(y) given by
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4A(x)=arc tan x, 4B(y)=2w+arctany,
so that

—T T 3T S7

—<A < —, —<B < —.
(19) g < (x) g g ) 2
Define the timelike minimal immersion Z: x, y-plane —» E>! with xy =y, =0
in (10) so that Z=T-Z is given by Z(x, y) = X(x)+Y(y) with

(20) V2X'(x)=(cos 4,sinA4),  V2Y’(y)=(cos B, sin B).

Since C,NC, =0 and C,N—C, =0, Remark 13 will apply if we show that
Z is a diffeomorphism onto @. We think of Z in place of Z_. in (*). By (19)
and (20), X’(x) is never parallel to Y’(y), so that Z is a local diffeomor-
phism giving the relevant fact in {1}. Moreover, cos A > 0and sin B > 0 force
X(x) and Y(y) to be simple curves, so the argument in (*) gives {2}. Indeed,
(19) and (20) show that there are constants M| and M, with 0 < M; <1< M,,
so that X (x) is the graph of a function v = F(u) with |F’(u)| <M, and Y(p)
is the graph of a function u = G(v) with |G’(v)|<1/M,. Since x and y are
constant speed parameters for X(x) and Y(y) (respectively) defined for all
real values, F(¢) and G(v) are defined for all real values, giving {5} and {6}
from which {3} and {4] easily follow. We can now adapt () as we did in Re-
mark 13, using M =1 in place of M. Hence Z is entire, and since

sign K(x, y)=sign A'(x)B’(y) >0,

the flip trick provides a timelike minimal Z: x, y-plane — E3 ! entire over the
u, v-plane which is convex.
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