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1. Introduction and Statement of Results

Let M be a real analytic (C¢) Riemannian manifold and let 7 be an isometry
of differentiability class C' of M onto another C* Riemannian manifold M.
Then F'is C“ and uniquely determined by F(P) and dF(P) at a point P e M.
The reason is that F is locally a linear mapping between the normal coordi-
nates of M near P and the normal coordinates of M near F(P). This unique-
ness and analyticity of the isometries do not hold for the isometric immer-
sions, as the following example shows.

EXAMPLE 1.1. Let v(s) = (v!(s), v2(s)) be a plane curve parameterized by
arclength s. If v is C™ but not C* then the mapping (s, #)~ (v'(s), v2(s), £)
is a C*™ isometric immersion of R? into R3, which is not C¢. Furthermore,
there is not uniqueness either; namely, an isometric immersion F of R? into
R3 cannot be determined by F(P) and dF(P) at a point P € R>

The author’s question is whether an isometric immersion F is analytic if F
is locally rigid. An isometric immersion F: M — R” is said to be locally rigid
at Pe M if, for any open neighborhood U of P, there exists an open set V'
such that P e V' C U having the following property: If F’ is any isometric im-
mersion of V into R” then there exists an isometry of R” such that F’ = 7F.
Then the question is the following: Let M be a C“ Riemannian manifold
and let F: M — R” be an isometric immersion of class C¥, k>> 0. Let P e M.
Then will F be C® at P if F is rigid at P? This paper is a partial answer to
this question. Our main result is the following.

THEOREM 1.1. Suppose that M is a C® Riemannian manifold of dimen-
sion n=3 and F: M - R"* is an isometric immersion of class C*. Suppose
that the immersed submanifold F(M) has at least three nonzero principal
curvatures at F(P). Then F is C® at P.

Note that the existence of three nonzero principal curvatures (the definition
is recalled in Section 2) is a sufficient condition for F (M) to be locally rigid,
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by the well-known rigidity theorem (cf. [6, p. 244]). In the case n = 2 the fol-
lowing is shown in [1].

THEOREM 1.2. Suppose that M is a 2-dimensional C* Riemannian mani-
fold of positive curvature and F: M — R3 is a C? isometric immersion. Then
Fis C°.

The method of our proof is showing that F satisfies a system of (nonlinear)
elliptic partial differential equations of second order which are C¥ in their
arguments. The proof is valid in the C* category as well, so that one can
obtain a C* version of this paper by replacing every C* by C*.

2. Proof of Theorem 1.1

Showing analyticity of a mapping is a local problem, so let M be a “germ”
of a C*® manifold at a reference point O € M. Let (¥, ..., y"*!) be the stan-
dard coordinates of R"*! and write F=(f, ..., f"*!) coordinatewise. Let
M =F(M) and O = F(O). We may assume that O is the origin of R"*!and
M is tangent to the plane y”*!=0. Let N be a unit normal vector field of M
and let A be the second fundamental form—namely, A(X, Y)=(ViN,Y)
for any tangent vectors X, Y of M at O, where V' is the covariant differentia-
tion of R"*1,

The eigenvalues A, ..., \,, of the linear transformation v+~ V; N are called
the principal curvatures at O. Let vy, ..., v, be the orthonormal eigenvectors
which correspond to the principal curvatures A\, ..., \,,. Let {e;,...,e,} bea
C* orthonormal frame over M such that F,e;=v; at O. We see that

. n+1 . b
ejEF*é’j: 21(ejfy)0F ay .

We may assume further that

9 - .
éi=— a0, j=1,...,n.
J ayj

Then we have
0 if j#v,
1 . f(0) =
M e;f*(0) {1 A
Now let (4, ..., f,+1) be the components of N and let y; =4;°F. To express
n; in terms of partial derivatives of (f L., f™, consider the matrix

_elfl elfn-i—l_
M=| : e O(n+1,R).
enfl enfn+1
L) R/ VR

We may assume that 7, ,1(O)=1so that det M =1.
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Choose a local coordinate system (x!, ..., x") of M such that

e = 5%— at O foreach j=1,...,n.
We denote by C(x, Def*: |a| = m) the class of C¢ functions in the lo-
cal coordinates x and partial derivatives up to order m of f1,..., f"*1. By
C§(x, D*f*: |a| = m) we denote the subset of C“(x, D*f*: |a|=< m) con-
sisting of those which vanish at (O, D*f*(0)). Since M ~' = M", each ; is
equal to its cofactor in M. Thus we have

(2) T’j=(ejfn+l)Bj+)\2.(e)\fn+1)§‘j)\s j=1s'°"ns
#J

Ms1=(er f1) (e, ")+ ¢,

where each B is in C¥(x,D%f*:|a|=1, k#n+1), B;=1at (O, D*f*(0)),
and each ¢}, ¢ are in C§(x, D*f*:|a| =1, k # n+1). Now, let A(x)=
[A;;(x)] be the symmetric matrix defined by

Ajj(x) = A(é;,8;)eF = (V4 N,é)eF.

and

We express 4;;(x) in terms of (f 1 ..., f**1) and their partial derivatives:
Vé,-N: (éiﬁla '":éiﬁn-i—l)
= (einl’ ceey einn+1)°F_l-
However, by (1) and (2) we have

e =(eier f"TB+ T (e S+ Cuy k=1,...,n,
Nk
and

€iMn+1 =Ci,n+1,

where each Cy and C; 4 are in Cex,Df*:|a|=<2, k#n+1); thus we
see that

3) A;i(x) = (e;e; f"T)Bi(e; f)+ X (exe, f1)EM,

where each {M e C§(x, D*f*:|a|<1). Since &;=v;at O (j =1,...., n), which
is the eigenvector of the linear transformation v~ V, N, we have

0 if i%J,
4 . =
@ 4;(0) {xj if i=j.

Now let K;; be the sectional curvature of the plane section e;Ae;. Then
Kjj=AuAj;— A}
(cf. [4]). Consider the equation
A”Ajj '—A‘IZJ —KU = 0.
Substituting (3) for the 4,4’s in the above, we have
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(eiei f"T)Bi(e 1)+ Z(ere, f1)EM)
(5) X [(eje; /") Bj(e; f7) + T (ere, f1) M)
—{(e;e; " )Bj(e; )+ D (eve, S5/ M — K =0,
where each { is in C§(x, D*f*:|a|=<1). Note that K;; € C(x).

To derive other equations for (f1,..., f"*1), we observe that the first n
rows of M are orthonormal and that therefore, foreachi, j=1,...,n,

(e f+ - +ef" Y (e; f"*!) =6 (Kronecker’s delta).
Applying e; to the above, we obtain
(eie; f1)(e; S+ (e ) (eiej [+ -+
+(eie ST (e 1) + (e S (eie; S =0

We shall show that the system of equations (6) with i, j =1, ..., n and (5) with
i< j is elliptic at (f, ..., f"*!). Express equations (6) and (5) in terms of
coordinates (xq,...,X,):

aZfl afl N afl aZfl N N aan+l afn-!-l N afn-l-l aan+l

©

) ox? dx;  dx; 0x;0x; ox}  dx; dx; 0x;0x;
62 v
+3 axéx &+ Gy =Hy(x, Df*) =0
and 52 ’
n+1 i 2 v
f
( ;2 B+ 3 f §3“+s'*,-)
Xi
2 n+l j 2 v
f f / a°f )
X B: Ak
®) ( ax? 7 ax; T2 oo 3x)0x,, ?,)

52 n+1 j 92 f" 2
i af’ A
B: 7N e
(ax,ax 7 ax; 2 dx\0x, & f”)

—K;j(x) =G;(x,D*f*) =0,
where each ¢ isin C§(x, D*f k. || =1). These ¢’s are different from the ¢’s

that previously appeared. Consider the linear partial differential operators
L;; and M;; given by

0H;;
Liw= S —2Zi_payk ji—1 .. n,
Y o=z 0(Df¥)
k=1,...,n+1
aG;;
M;;w= — Y payk , 1</,
Y |a|zs2 a(Dafk)
k=1,...,n+1

where w=(w!, ..., w"*1). Then L;;w and M;;w are of the following form:

62wJ azw 62w”
9) Lijjw=ay; W +bjj —— 5,0, +3 oM ox, + lower order terms,
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and FE 1 2 1 2 1 2 1
£ *w"* 3xf"* a2wh*
o =) S () o
62 v
+3 &M Y 4 lower order terms,

axxax“
where a, b, h are in C®(x, D*f*:|a|<1) with values 1 at (O, D*f¥(0)), and
all {’s are in C§(x, D*f*:|a|=<2). Observe that

I oy =N =g

ax,-axj 0 if 1#],

by (3) and (4).

Now consider the principal symbol o(x, £) of system (9) with i, j=1,...,n
and of (10) with i < j. a(x, £) is a matrix of size {n*+ %n(n —1)}x(n+1). We
decompose o(x, £) into n+1 blocks as

] Ul(xss) ]
o, B)=| (;C b |

_0n+l(xs S)_

where 0;(x, £), j =1, ..., n, is the principal symbol matrix of system (9) with
i=1,...,n and fixed j, and o, is that of (10). Then, for j=1,...,n,

”glgj 0 -0 & 0 - 0]

“s e 2 se
go,p=| 0 B0 80 0

0 0 -+ 0 £ 0 - £, Ojnx(n+1)

Jth column

Thus we see that v£ 0 the first # columns of ¢(O, £) are linearly indepen-
dent. Now let g;; be the principal symbol of M;; (i <j). Then
2 n+l1 2 en+1
d
a,-,-(o,z)=(o,...,o 7 A

Xj
=(0,...,0,\; £ + N £2).

Therefore, the last column of ¢, (O, £) is
[ NE + N8
NEE + NES

(O)E] +

(0)¢ )

_)‘ngtzz—l +>\n—1£1234

which can be written as
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&
Ab : o,
%
where _
(N, N O 0
ANz 0 N 0
N 00 N
4= 0 N N, O 0
0 N 0 N 0
0 N\, O A\,
0O 0 - - <« N, N

Let us assume that \;, A\,, and \; are nonzero. Then we see that the last
(n—1) columns of the first block of A are independent. Now consider the
submatrix of A consisting of the first block and the first row of the second
block. It is easy to see that the first column cannot be a linear combination
of the other columns; thus A4 is of rank n. Therefore, the last column of
0,+1(0, &) is a nonzero vector for any £ # 0. Now the analyticity of F follows
from the regularity theorem of elliptic partial differential equations (cf. [5]).
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