Regularity of Certain Rigid Isometric Immersions of n-dimensional Riemannian Manifolds into \mathbf{R}^{n+1}

CHONG-KYU HAN

1. Introduction and Statement of Results

Let M be a real analytic (C^{ω}) Riemannian manifold and let F be an isometry of differentiability class C^1 of M onto another C^{ω} Riemannian manifold \tilde{M} . Then F is C^{ω} and uniquely determined by F(P) and dF(P) at a point $P \in M$. The reason is that F is locally a linear mapping between the normal coordinates of M near P and the normal coordinates of \tilde{M} near F(P). This uniqueness and analyticity of the isometries do not hold for the isometric immersions, as the following example shows.

EXAMPLE 1.1. Let $\gamma(s) = (\gamma^1(s), \gamma^2(s))$ be a plane curve parameterized by arclength s. If γ is C^{∞} but not C^{ω} then the mapping $(s, t) \mapsto (\gamma^1(s), \gamma^2(s), t)$ is a C^{∞} isometric immersion of \mathbb{R}^2 into \mathbb{R}^3 , which is not C^{ω} . Furthermore, there is not uniqueness either; namely, an isometric immersion F of \mathbb{R}^2 into \mathbb{R}^3 cannot be determined by F(P) and dF(P) at a point $P \in \mathbb{R}^2$.

The author's question is whether an isometric immersion F is analytic if F is locally rigid. An isometric immersion $F: M \to \mathbb{R}^N$ is said to be locally rigid at $P \in M$ if, for any open neighborhood U of P, there exists an open set V such that $P \in V \subset U$ having the following property: If F' is any isometric immersion of V into \mathbb{R}^N then there exists an isometry of \mathbb{R}^N such that $F' = \tau \circ F$. Then the question is the following: Let M be a C^{ω} Riemannian manifold and let $F: M \to \mathbb{R}^N$ be an isometric immersion of class C^k , $k \gg 0$. Let $P \in M$. Then will F be C^{ω} at P if F is rigid at P? This paper is a partial answer to this question. Our main result is the following.

THEOREM 1.1. Suppose that M is a C^{ω} Riemannian manifold of dimension $n \geq 3$ and $F: M \to \mathbb{R}^{n+1}$ is an isometric immersion of class C^2 . Suppose that the immersed submanifold F(M) has at least three nonzero principal curvatures at F(P). Then F is C^{ω} at P.

Note that the existence of three nonzero principal curvatures (the definition is recalled in Section 2) is a sufficient condition for F(M) to be locally rigid,

Received July 19, 1988. Revision received December 2, 1988. Michigan Math. J. 36 (1989).

by the well-known rigidity theorem (cf. [6, p. 244]). In the case n = 2 the following is shown in [1].

THEOREM 1.2. Suppose that M is a 2-dimensional C^{ω} Riemannian manifold of positive curvature and $F: M \to \mathbb{R}^3$ is a C^2 isometric immersion. Then F is C^{ω} .

The method of our proof is showing that F satisfies a system of (nonlinear) elliptic partial differential equations of second order which are C^{ω} in their arguments. The proof is valid in the C^{∞} category as well, so that one can obtain a C^{∞} version of this paper by replacing every C^{ω} by C^{∞} .

2. Proof of Theorem 1.1

Showing analyticity of a mapping is a local problem, so let M be a "germ" of a C^{ω} manifold at a reference point $O \in M$. Let $(y^1, ..., y^{n+1})$ be the standard coordinates of \mathbb{R}^{n+1} and write $F = (f^1, ..., f^{n+1})$ coordinatewise. Let $\tilde{M} = F(M)$ and $\tilde{O} = F(O)$. We may assume that \tilde{O} is the origin of \mathbb{R}^{n+1} and \tilde{M} is tangent to the plane $y^{n+1} = 0$. Let N be a unit normal vector field of \tilde{M} and let \tilde{A} be the second fundamental form—namely, $\tilde{A}(X, Y) \equiv \langle \nabla'_X N, Y \rangle$ for any tangent vectors X, Y of \tilde{M} at \tilde{O} , where ∇' is the covariant differentiation of \mathbb{R}^{n+1} .

The eigenvalues $\lambda_1, ..., \lambda_n$ of the linear transformation $v \mapsto \nabla'_v N$ are called the principal curvatures at \tilde{O} . Let $v_1, ..., v_n$ be the orthonormal eigenvectors which correspond to the principal curvatures $\lambda_1, ..., \lambda_n$. Let $\{e_1, ..., e_n\}$ be a C^{ω} orthonormal frame over M such that $F_*e_i = v_i$ at \tilde{O} . We see that

$$\tilde{e}_j \equiv F_* e_j = \sum_{\nu=1}^{n+1} (e_j f^{\nu}) \circ F^{-1} \frac{\partial}{\partial y_{\nu}}.$$

We may assume further that

$$\tilde{e}_j = \frac{\partial}{\partial y_j}$$
 at \tilde{O} , $j = 1, ..., n$.

Then we have

(1)
$$e_j f^{\nu}(O) = \begin{cases} 0 & \text{if } j \neq \nu, \\ 1 & \text{if } j = \nu. \end{cases}$$

Now let $(\tilde{\eta}_1, ..., \tilde{\eta}_{n+1})$ be the components of N and let $\eta_j = \tilde{\eta}_j \circ F$. To express η_j in terms of partial derivatives of $(f^1, ..., f^{n+1})$, consider the matrix

$$M \equiv \begin{bmatrix} e_1 f^1 & \cdots & e_1 f^{n+1} \\ \vdots & & \vdots \\ e_n f^1 & \cdots & e_n f^{n+1} \\ \eta_1 & \cdots & \eta_{n+1} \end{bmatrix} \in O(n+1, \mathbf{R}).$$

We may assume that $\eta_{n+1}(O) = 1$ so that det M = 1.

Choose a local coordinate system $(x^1, ..., x^n)$ of M such that

$$e_j = \frac{\partial}{\partial x^j}$$
 at O for each $j = 1, ..., n$.

We denote by $C^{\omega}(x, D^{\alpha}f^k : |\alpha| \leq m)$ the class of C^{ω} functions in the local coordinates x and partial derivatives up to order m of f^1, \ldots, f^{n+1} . By $C_0^{\omega}(x, D^{\alpha}f^k : |\alpha| \leq m)$ we denote the subset of $C^{\omega}(x, D^{\alpha}f^k : |\alpha| \leq m)$ consisting of those which vanish at $(O, D^{\alpha}f^k(O))$. Since $M^{-1} = M^t$, each η_j is equal to its cofactor in M. Thus we have

(2)
$$\eta_j = (e_j f^{n+1}) B_j + \sum_{\lambda \neq j} (e_{\lambda} f^{n+1}) \zeta_j^{\lambda}, \quad j = 1, ..., n,$$

and

$$\eta_{n+1} = (e_1 f^1) \cdots (e_n f^n) + \zeta,$$

where each B_j is in $C^{\omega}(x, D^{\alpha} f^k : |\alpha| \le 1, k \ne n+1)$, $B_j = 1$ at $(O, D^{\alpha} f^k(0))$, and each ζ_j^{λ} , ζ are in $C_0^{\omega}(x, D^{\alpha} f^k : |\alpha| \le 1, k \ne n+1)$. Now, let $A(x) = [A_{ij}(x)]$ be the symmetric matrix defined by

$$A_{ij}(x) = \tilde{A}(\tilde{e}_i, \tilde{e}_j) \circ F = \langle \nabla'_{\tilde{e}_i} N, \tilde{e}_j \rangle \circ F.$$

We express $A_{ij}(x)$ in terms of $(f^1, ..., f^{n+1})$ and their partial derivatives:

$$\nabla_{\tilde{e}_{i}}' N = (\tilde{e}_{i} \tilde{\eta}_{1}, ..., \tilde{e}_{i} \tilde{\eta}_{n+1})$$

= $(e_{i} \eta_{1}, ..., e_{i} \eta_{n+1}) \circ F^{-1}$.

However, by (1) and (2) we have

$$e_i \eta_k = (e_i e_k f^{n+1}) B_k + \sum_{\lambda \neq k} (e_i e_{\lambda} f^{n+1}) \zeta_k^{\lambda} + C_{ik}, \quad k = 1, ..., n,$$

and

$$e_i\eta_{n+1}=C_{i,n+1},$$

where each C_{ik} and $C_{i,n+1}$ are in $C^{\omega}(x,D^{\alpha}f^k;|\alpha|\leq 2,\ k\neq n+1)$; thus we see that

(3)
$$A_{ij}(x) = (e_i e_j f^{n+1}) B_i(e_j f^j) + \sum_{i} (e_{\lambda} e_{\mu} f^{\nu}) \zeta_{\nu}^{\lambda \mu},$$

where each $\zeta_{\nu}^{\lambda\mu} \in C_0^{\omega}(x, D^{\alpha} f^k : |\alpha| \le 1)$. Since $\tilde{e}_j = v_j$ at $\tilde{O}(j = 1, ..., n)$, which is the eigenvector of the linear transformation $v \mapsto \nabla'_v N$, we have

(4)
$$A_{ij}(O) = \begin{cases} 0 & \text{if } i \neq j, \\ \lambda_j & \text{if } i = j. \end{cases}$$

Now let K_{ij} be the sectional curvature of the plane section $e_i \wedge e_j$. Then

$$K_{ii} = A_{ii}A_{ii} - A_{ii}^2$$

(cf. [4]). Consider the equation

$$A_{ii}A_{jj} - A_{ij}^2 - K_{ij} = 0.$$

Substituting (3) for the $A_{\alpha\beta}$'s in the above, we have

$$\{(e_{i}e_{i}f^{n+1})B_{i}(e_{i}f^{i}) + \sum (e_{\lambda}e_{\mu}f^{\nu})\zeta_{\nu}^{\lambda\mu}\}$$

$$\times \{(e_{j}e_{j}f^{n+1})B_{j}(e_{j}f^{j}) + \sum (e_{\lambda}e_{\mu}f^{\nu})\zeta_{\nu}^{\prime\lambda\mu}\}$$

$$-\{(e_{i}e_{j}f^{n+1})B_{i}(e_{j}f^{j}) + \sum (e_{\lambda}e_{\mu}f^{\nu})\zeta_{\nu}^{\prime\prime\lambda\mu}\}^{2} - K_{ij} = 0,$$

where each ζ is in $C_0^{\omega}(x, D^{\alpha} f^k : |\alpha| \le 1)$. Note that $K_{ij} \in C^{\omega}(x)$.

To derive other equations for $(f^1, ..., f^{n+1})$, we observe that the first n rows of M are orthonormal and that therefore, for each i, j = 1, ..., n,

$$(e_i f^1)(e_j f^1) + \dots + (e_i f^{n+1})(e_j f^{n+1}) = \delta_{ij}$$
 (Kronecker's delta).

Applying e_i to the above, we obtain

(6)
$$(e_i e_i f^1)(e_j f^1) + (e_i f^1)(e_i e_j f^1) + \cdots + (e_i e_i f^{n+1})(e_j f^{n+1}) + (e_i f^{n+1})(e_i e_j f^{n+1}) = 0.$$

We shall show that the system of equations (6) with i, j = 1, ..., n and (5) with i < j is elliptic at $(f^1, ..., f^{n+1})$. Express equations (6) and (5) in terms of coordinates $(x_1, ..., x_n)$:

(7)
$$\frac{\partial^{2} f^{1}}{\partial x_{i}^{2}} \frac{\partial f^{1}}{\partial x_{j}} + \frac{\partial f^{1}}{\partial x_{i}} \frac{\partial^{2} f^{1}}{\partial x_{i} \partial x_{j}} + \dots + \frac{\partial^{2} f^{n+1}}{\partial x_{i}^{2}} \frac{\partial f^{n+1}}{\partial x_{j}} + \frac{\partial f^{n+1}}{\partial x_{i}} \frac{\partial^{2} f^{n+1}}{\partial x_{i} \partial x_{j}} + \sum_{i,j} \frac{\partial^{2} f^{\nu}}{\partial x_{i} \partial x_{j}} \zeta_{\nu}^{\lambda \mu} + \zeta_{i,j} \equiv H_{i,j}(x, D^{\alpha} f^{k}) = 0$$

and

(8)
$$\left(\frac{\partial^{2} f^{n+1}}{\partial x_{i}^{2}} B_{i} \frac{\partial f^{i}}{\partial x_{i}} + \sum \frac{\partial^{2} f^{\nu}}{\partial x_{\lambda} \partial x_{\mu}} \zeta_{\nu}^{\lambda \mu} + \zeta_{i}\right) \times \left(\frac{\partial^{2} f^{n+1}}{\partial x_{j}^{2}} B_{j} \frac{\partial f^{j}}{\partial x_{j}} + \sum \frac{\partial^{2} f^{\nu}}{\partial x_{\lambda} \partial x_{\mu}} \zeta_{\nu}^{\prime \lambda \mu} + \zeta_{j}\right) - \left(\frac{\partial^{2} f^{n+1}}{\partial x_{i} \partial x_{j}} B_{j} \frac{\partial f^{j}}{\partial x_{j}} + \sum \frac{\partial^{2} f^{\nu}}{\partial x_{\lambda} \partial x_{\mu}} \zeta_{\nu}^{\prime \prime \lambda \mu} + \zeta_{ij}\right)^{2} - K_{ii}(x) \equiv G_{ii}(x, D^{\alpha} f^{k}) = 0,$$

where each ζ is in $C_0^{\omega}(x, D^{\alpha} f^k : |\alpha| \le 1)$. These ζ 's are different from the ζ 's that previously appeared. Consider the linear partial differential operators L_{ij} and M_{ij} given by

$$L_{ij}w = \sum_{\substack{|\alpha| \leq 2 \ k=1,...,n+1}} \frac{\partial H_{ij}}{\partial (D^{\alpha}f^k)} D^{\alpha}w^k, \quad i,j=1,...,n,$$
 $M_{ij}w = \sum_{\substack{|\alpha| \leq 2 \ k=1,....,n+1}} \frac{\partial G_{ij}}{\partial (D^{\alpha}f^k)} D^{\alpha}w^k, \quad i < j,$

where $w = (w^1, ..., w^{n+1})$. Then $L_{ij}w$ and $M_{ij}w$ are of the following form:

(9)
$$L_{ij}w = a_{ij}\frac{\partial^2 w^j}{\partial x_i^2} + b_{ij}\frac{\partial^2 w^i}{\partial x_i \partial x_j} + \sum \zeta_{\nu}^{\lambda\mu} \frac{\partial^2 w^{\nu}}{\partial x_{\lambda} \partial x_{\mu}} + \text{lower order terms,}$$

and

(10)
$$M_{ij}w = \left(\frac{\partial^{2} f^{n+1}}{\partial x_{j}^{2}} h_{j} + \zeta_{j}\right) \frac{\partial^{2} w^{n+1}}{\partial x_{i}^{2}} + \left(\frac{\partial^{2} f^{n+1}}{\partial x_{i}^{2}} h_{i} + \zeta_{i}\right) \frac{\partial^{2} w^{n+1}}{\partial x_{j}^{2}} + \sum_{i} \zeta_{i}^{\prime \lambda \mu} \frac{\partial^{2} w^{\nu}}{\partial x_{\lambda} \partial x_{\mu}} + \text{lower order terms,}$$

where a, b, h are in $C^{\omega}(x, D^{\alpha} f^k : |\alpha| \le 1)$ with values 1 at $(O, D^{\alpha} f^k(O))$, and all ζ 's are in $C_0^{\omega}(x, D^{\alpha} f^k : |\alpha| \le 2)$. Observe that

$$\frac{\partial^2 f^{n+1}}{\partial x_i \partial x_j}(O) = \begin{cases} \lambda_j & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$$

by (3) and (4).

Now consider the principal symbol $\sigma(x, \xi)$ of system (9) with i, j = 1, ..., n and of (10) with i < j. $\sigma(x, \xi)$ is a matrix of size $\{n^2 + \frac{1}{2}n(n-1)\} \times (n+1)$. We decompose $\sigma(x, \xi)$ into n+1 blocks as

$$\sigma(x,\xi) = \begin{bmatrix} \sigma_1(x,\xi) \\ \vdots \\ \sigma_n(x,\xi) \\ \sigma_{n+1}(x,\xi) \end{bmatrix},$$

where $\sigma_j(x, \xi)$, j = 1, ..., n, is the principal symbol matrix of system (9) with i = 1, ..., n and fixed j, and σ_{n+1} is that of (10). Then, for j = 1, ..., n,

$$\sigma_{j}(0,\xi) = \begin{bmatrix} \xi_{1}\xi_{j} & 0 & \cdots & 0 & \xi_{1}^{2} & 0 & \cdots & 0 \\ 0 & \xi_{2}\xi_{j} & \cdots & 0 & \xi_{2}^{2} & 0 & \cdots & 0 \\ & & \vdots & & & & \\ 0 & 0 & \cdots & 0 & \xi_{n}^{2} & 0 & \cdots & \xi_{n}\xi_{j} & 0 \end{bmatrix}_{n\times(n+1)}$$

$$jth \text{ column}$$

Thus we see that $\forall \xi \neq 0$ the first *n* columns of $\sigma(O, \xi)$ are linearly independent. Now let σ_{ij} be the principal symbol of M_{ij} (i < j). Then

$$\sigma_{ij}(O,\xi) = \left(0,...,0, \frac{\partial^2 f^{n+1}}{\partial x_j^2}(O)\xi_i^2 + \frac{\partial^2 f^{n+1}}{\partial x_i^2}(O)\xi_j^2\right)$$

= $(0,...,0,\lambda_j \xi_i^2 + \lambda_i \xi_j^2).$

Therefore, the last column of $\sigma_{n+1}(O, \xi)$ is

$$\begin{bmatrix} \lambda_2 \xi_1^2 + \lambda_1 \xi_2^2 \\ \lambda_3 \xi_1^2 + \lambda_1 \xi_3^2 \\ \vdots \\ \lambda_n \xi_{n-1}^2 + \lambda_{n-1} \xi_n^2 \end{bmatrix},$$

which can be written as

$$A\begin{bmatrix} \xi_1^2 \\ \vdots \\ \xi_n^2 \end{bmatrix},$$

where

$$A = \begin{bmatrix} \lambda_{2} & \lambda_{1} & 0 & \cdot & \cdot & \cdot & 0 \\ \lambda_{3} & 0 & \lambda_{1} & \cdot & \cdot & \cdot & 0 \\ \vdots & & & & \vdots \\ \frac{\lambda_{n}}{0} & 0 & 0 & \cdot & \cdot & \cdot & \lambda_{1} \\ \frac{\lambda_{n}}{0} & \lambda_{3} & \lambda_{2} & 0 & \cdot & \cdot & 0 \\ 0 & \lambda_{4} & 0 & \lambda_{2} & \cdot & \cdot & 0 \\ \vdots & & & & \vdots \\ 0 & \lambda_{n} & 0 & \cdot & \cdot & \cdot & \lambda_{2} \\ \hline \vdots & & & & & \vdots \\ \hline 0 & 0 & \cdot & \cdot & \cdot & \lambda_{n} & \lambda_{n-1} \end{bmatrix}.$$

Let us assume that λ_1 , λ_2 , and λ_3 are nonzero. Then we see that the last (n-1) columns of the first block of A are independent. Now consider the submatrix of A consisting of the first block and the first row of the second block. It is easy to see that the first column cannot be a linear combination of the other columns; thus A is of rank n. Therefore, the last column of $\sigma_{n+1}(O, \xi)$ is a nonzero vector for any $\xi \neq 0$. Now the analyticity of F follows from the regularity theorem of elliptic partial differential equations (cf. [5]).

References

- 1. C. K. Han, Regularity of isometric immersions of positively curved Riemannian manifolds and its analogy with CR geometry, J. Differential Geom. 28 (1988), 477-484.
- 2. ——, Rigidity of CR manifolds and analyticity of CR immersions, to appear.
- 3. N. J. Hicks, Notes on differential geometry, Van Nostrand, New York, 1974.
- 4. S. Kobayashi and K. Nomizu, *Foundations of differential geometry*, v. 2, Interscience, New York, 1969.
- 5. L. Nirenberg, *Lectures on linear partial differential equations*, CBMS Reg. Conf. 17, Amer. Math. Soc., Providence, R.I., 1972.
- 6. M. Spivak, A comprehensive introduction to differential geometry, v. 5, Publish or Perish, Boston, 1975.

Department of Mathematics Pohang Institute of Science and Technology Pohang 790-330 South Korea