Positive Entropy Homeomorphisms
on the Pseudoarc

JUDY KENNEDY

Answering another of Marcy Barge’s questions, we show that there is a pseu-
doarc homeomorphism with positive topological entropy. Since iterating a
homeomorphism of positive entropy yields one of arbitrarily large entropy,
it follows that the pseudoarc admits homeomorphisms of arbitrarily large
entropy. Whether or not given a positive number r there is a pseudoarc ho-
meomorphism of that entropy 7 is not known, and is not answered here, but
is another of Marcy Barge’s questions. As is often the case, in order to obtain
this result we developed a tool which itself yields more information about
the pseudoarc.

A continuum is a compact connected metric space. A continuum X is
homogeneous if for x, y € X there is a space homeomorphism # such that
h(x)=y. A continuum is chainable or arclike or snakelike if for each ¢>0
there is a chain C={C,,..., C,} of open sets of diameter less than e that
covers X. C is a chain if C;NC;#@ if and only if |i—j|<1. A pseudoarc,
which is a nonseparating plane continuum, can be characterized as a homo-
geneous chainable continuum. Pseudoarcs, although arclike, contain no con-
tinuous nontrivial images of arcs, and in fact every nondegenerate subcon-
tinuum of a pseudoarc is itself a pseudoarc. Another extraordinary fact about
this continuum is that most continua [in the sense that they form a dense G;-
set in the space of all continua (Vietoris topology)] in the plane are pseudo-
arcs.

A compact metric space is a compactum. A compactum X is indecompos-
able if every proper subcontinuum of X is nowhere dense in X. It is heredi-
tarily indecomposable if every subcontinuum of X is itself indecomposable.
The pseudoarc is a hereditarily indecomposable continuum.

For us, P will denote a pseudoarc, 7 =[0, 1], Z is the integers, and N is
the positive integers. If X is a compact metric space, H(X) denotes its group
of self homeomorphisms.

A chain C = {Cy, ..., C,} is taut whenever C; N C; # @ if and only if
C;NC; #@. A chain covers a set A essentially if there is a continuum Q
contained in A such that each link contains a point of Q not in the closure
of any other link. An open set o in a space X is regular if Int 6 =o. In the
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discussion that follows, we will assume that our open chain covers are regu-
lar, taut, and essential.

If B is a collection of sets, then B* denotes the union of the sets in B. If C
is a collection of sets, then C is an amalgamation of B if B*= C* and each
set in C is the union of some sets in B. If the closure of each set in B is a sub-
set of a set in C, then B is said to closure refine C. The chain C properly cov-
ers the chain D if D closure refines C and if, for every c in C, there is some d
in D such that d<ec.

If C={C,,...,C,} is an open chain in a space X (which doesn’t neces-
sarily cover X) then, for ce C,

i(c,C)={yec|yec’ forc’'e C—{c}}.

Ifmne Nwithm<n,let [m,n]={m,m+1,...,n}. Afunction f: [m’,n'] -
[m, n] is called a (light) pattern provided | f(i+1)—f(i)| <1 (respectively,
|f+1)—f(@i)|=1) for i=m’,...,n"—1. (The symbol — indicates that f is
an onto function.) If V={V,,,, V.11, ...,V and U= (U,,, U, 115 ..., U}
are chain covers of the compactum X, and f: [{m’, n’] - [m, n] is a pattern,
we will say that V follows the pattern f in U provided V; € Uy;, for each i e
[m’,n’]. We call f a pattern on U.

The chain C = CJ[0, a] is crooked in the chain D = D][0, b] if C refines D
and if —whenever k, m e [0, a] (k <m), c(k)<=d(p), c(m)<=d(q), and
|p—q|=3—there are s, ¢ €[0,a] such that k <s <t <m, c(s) is contained
in a link adjacent to d(p), and c(¢) is contained in a link adjacent to d(q).

We will use the following well-known fact.

FACT. Suppose that A, 4,,... is a sequence of open chains in the plane
such that

(1) lim; mesh A; =0,

(2) A, closure refines A4;, and

(3) A;4is crooked in A4;.
Then MN; A; =P is a pseudoarc.
We will make the following notational conventions: chains will be denoted
with upper-case letters (and possibly additional symbols), and links of chains

with the associated lower-case letters, associated symbols, and link num-
bers. So, for example,

Ci={c(1,0),...,c(l,m)}=C,[0, m];
D,={d(2,k),...,d(2,)}=D,[k,1];
F"__"{f(l)’ "-,f(n)}E{fls “':fn]EF[lan]-

If A and B are collections of sets, then ANB={aNb|ac A, beB}.
Suppose that d is a metric on the pseudoarc P that is compatible with its
topology. Forxe Pand e >0, D, (x)={ye P|d(x,y) <e}. Also, if Hand K
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are closed subsets of the pseudoarc, d(H, K)=min{d(x,y)|xe€ H, y e K}.
If H={x} then we will write d(x, K) for d({x}, K).

We need the following background theorem, which is due to Oversteegen
and Tymchatyn [5].

THEOREM OT. Let X be a hereditarily indecomposable compactum and
let U={U,,..., U,} be an open taut chain cover of X such that there exists a
continuum Z < X with ZNi(U;, U) #08# ZNi(U,,U). Let f:[1,m] - [1,n]
be a pattern on U. Then there exists an open taut chain cover V={Vy, ..., V,,}
of X such that V follows the pattern f in U.

There are several different equivalent definitions of topological entropy. The
one we give is due to Bowen and can be found in [6, p. 168]. Suppose (X, d)
is a compactum and f: X — X is a continuous map. If e >0 and ne N then
the set K € X is (n, €)-separated (under f) provided that, for each x, y in K
(x #y), there is a k € [0, n—1] such that d(f*(x), f*(»)) =e. Let

S(n, e, f) = max{cardinality(K) | K is (n, €)-separated].

(Intuitively, S(n, €, f) represents the greatest number of orbit segments
{x, f(x),..., f"~1(x)} of length n that can be distinguished from each oth-
er if we can only distinguish between points that are e or more apart.) Let
h(f,e)=Ilim,_ ,supln S(n,e¢, f)/n and let A(f) =lim,_ o A(f, €). The num-
ber h(f) is called the topological entropy of f. It is independent of the (com-
patible) metric involved and it is an invariant of topological conjugacy. (A
map f: X - Xandamap g: Y — Y are fopologically conjugate if there exists
a homeomorphism 6: X — Y such that g =6f. If the maps f and g are topo-
logically conjugate then they share the same dynamics.)

We will not directly use the definition of topological entropy, but rather
make use of the following facts (more detail can be found in [6]):

(1) If C is a Cantor set and r is a nonnegative number, then there is
o€ H(C) such that A(a) =r.

(2) If X is a compactum, fe H(X), and A is a closed subset of X
such that f(A)=A, then h(f|A)<h(f).

Define D=(—-1,1) x(—1,1).

THEOREM 1. If Cis a Cantor set and h is a homeomorphism from C on-
to itself, then C can be embedded in a pseudoarc P in such a way that the
homeomorphism on the image of C in P induced by h can be extended to
a homeomorphism f on P. |

Proof. Let us (without loss of generality) consider C to be a subset of R2.
Our strategy is to build a pseudoarc P in R? so that C € P, building at the
same time the homeomorphism f on P which will extend A.

There exists a finite collection U;={u(1,0),...,u(l,a,;)} of open sets in
R? such that:



184 JUDY KENNEDY

(1) UiL,u(l,i)=2C;
(2) meshU;<1; and
3) u(@,DNu, j)=0if i #j.

Let 4(1,i{)=u(1,i)NC for i e[0,a,]. There exist an open taut chain D=
{d(1,0),...,d(1, ny)} and a finite subsequence {0 = «;(0), a;(1), ..., oy (a;) =
n,} of {0,1, ..., n;} such that:

4 i(d(1, a1(i)),Dy)2a(,i) fori [0, a;;

(5) d(1, j)Na(l,i)=0 for j # oy(i);

(6) mesh D, < ; and Df = D; and

(7) forief0,a;) and j €[0,a,], some link d of D;[ca;(i), o (i +1)] is
contained in u(1, j).

Now choose an open taut chain E,=E|[0, n;] in the plane with the fol-
lowing properties:

(8) Erc Dy and Ef=D;

(9) forie[0,qa;) and j €[0, a,], some link e of E[a;(i), a; (i +1)]
intersects u(1, j);

(10) i(e(1, ay(i)), E)2h(i(1,1i)) for i [0, a;]; and

(1) e, j)Nh(@d,i))=0 for j # a;(i).

(Note that no mesh control is possible here.)
There exists a finite collection U, ={u(2,0), ..., u(2,a,)} of open sets in
R? such that:

(12) Uiz, u(2,i)=2C;

(13) mesh U, < §;

(14) forie[0,a5], 4(2,i)=u2,iyNC<a, j)Nh{, k))
for some j, k;

A5 u2,i)Nu2,j)=0if i#j; and

(16) if u € U, then there is e in E| such that #<Si(e, E,).

Choose an open taut chain £, = E,[0, n,] and a finite subsequence {0 =
05(0), ..., a5(ay) =n,} of [0, n,] as follows:

(17) E, is crooked in E;, E, closure refines E;, and E3 S E};

(18) E, has mesh less than } and E3=D;

(19) for ie[0,a,) and j €[0, a,], some link e of E5[a, (i), a5(i +1)] is
contained in u(2, j), some link e’ of E;[a, (i), a5 (i +1)] is contained
in i(e(1,0), E,), and some link & of E,[a; (i), ap(i +1)] is contained
in l(e(ly nl)a El);

(20) i(e(2, ay(i)), E,)21(2,i) for i € [0, a,]; and

21 e(2,j)Na(2,i)=0 for j # ay(i).

Now E, follows some pattern £, in £,. Choose the open taut chain D, with
the following properties:

(22) D, follows &, in Dy, and D, closure refines Dy;
(23) D3<E3% and D3=D;




Positive Entropy Homeomorphisms on the Pseudoarc 185

(24) for i €[0, a,) and j € [0, a,], some link d of D[, (i), ay(i+1)]
intersects u(2, j), some link d’ of D,[a, (i), ay(i+1)] is contained
in i(d(1,0), D,), and some link d of D, [, (i), a5 (i +1)] is contained
in l(d(I’ nl)aDl);

(25) i(d(2, 02(i)), D,) 2R~ (4(2, i) for i € [0, a,]; and

(26) d(2, ))Nh~Y(1(2,i)) =0 for j # ay(i).

Continue this process, obtaining sequences of chains D, D,, ... and E|,

E,, ... and a sequence U, U,, ... of collections of pairwise disjoint open sets
. with the following properties:

(27) Ui={u(i, j)|Jje€l0,q;1} and, for je€[0,q;], a(i, j)=u(i, j))NC;

(28) D;,; follows &; in D; and E; ., follows &; in E};

(29) D, ((E;,;) is crooked in and closure refines D;(E;);

(30) D} 2E{2E;t2E32E32D3%--+;

(31) lim; mesh E; =lim; mesh D; =0;

(32) D; =Di[0, n,-] and E,' =E,'[O, ni]; and

(33) there is a subsequence {0 = «;(0), ..., o;(a;) =n;} of [0, n;] such that

(a) for jel0,q;) and k €[0, q;], some link d(e) of
Dila;i(j), ai(j +DI(E;[;(j), ;i (j +1)]) intersects u(i, k);

(b) i(d(i,;(j)),D;)21(i, j) for je[0,a;], i odd;

(©) i(d(,o;(j)),D;) 2k, j)) for je[0,a;], i even;

(d) i(e(i, 0;(j)), E;) 2A(i(i, j)) for j€[0,q], i odd;

(e) i(e(i,a;(J)), E;)=24a(i, j) for je[0,a;], i even;

) d(,j)yna,k)=0and e(i, j)Nh(i(i, k)) =0 for i odd and
J#Za;(k);

(&) di, HNh~ Yl k))=0and e(i, j)Nu(i, k) =0 for i even and
J#a;i(k); and

(h) for j€[0,4;) and i >1, some link d’(e’) of D;[«a;(j), a;(j +1)]
(E;la;j(J), o; (j+1)]) is contained in i(d(i —1,0),D;_;)
(i(e(i—1,0), E;_,)), and some link d(é) of D;[a;(j), o; (j+1)]
(Eila; (), o;(j+1)]) is contained in i(d(i—1,n;_;), D;_;)
(i(e(i—ls ni—l)sEi-l)-

Then N D} =N E}f= P (a pseudoarc), and a homeomorphism f has been
induced on P where f is defined as follows: If x € P then there is an infinite
sequence j(x,1), j(x,2),... of integers such that, for each i,

(34) xed(i, j(x,i)) and
Let f(x)=MNiZe(i, j(x,i)). (For more details on why f is a homeomorph-
ism, see [3].) Further, if x € C then j(x,i) is unique and there is k£(x, i) e
[0, a;] such that j(x,i) =«a;(k(x,i)) and h(x) €e(i, a;(k(x,i))); thus f(x) =
h(x). O

REMARK 2. In Theorem 1, C does not separate P; in fact, no composant
of P contains more than one point of C.
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Proof. Suppose that the composant G contains no more than one point ¢
of C. If x and y are in G and if D is the subcontinuum of G irreducible be-
tween x and y, then D —{c} is connected. Thus, we will be done if we can
prove that no composant of P contains more than one point of C. Suppose
that F'is a composant of P that contains two points, p and g, of C. There is
a proper subcontinuum K of P which contains p and ¢ and is irreducible be-
tween them. Also, there is / odd, i > 1, such that p and g are not contained
in the same member of U; and K does not intersect one of the end links of
D;_,. Let us say that peu(i, j) and geu(i, k). Then

pei(d(,u;(j)),D;) and qei(d(i,a;(k)),D;),

and K must intersect every link of some D;[«;(/), o;(/+1)]; thus K intersects
every link of D;_,. This is a contradiction, and so it must be the case that no
composant of P contains more than one point of C. L]

COROLLARY 3. If Pis a pseudoarc then there is a homeomorphism f on
P such that h(f)>0.

Proof. There is a homeomorphism « on C such that A(a)=r. Applying
Theorem 1, we can embed C in P in such a way that the homeomorphism in-
duced by « on the embedded copy of C can be extended to a homeomorph-
ism f on P. Let us (without loss of generality) think of C as a subset of P
and f as an actual extension of «. Then A(f) = h(«) [6, pp. 167, 178]. [

COROLLARY 4. Suppose that ny, n,, ... is a sequence of positive integers.
Then there is a homeomorphism f on a pseudoarc P such that there is a se-
quence py, p, ... of points of P with:

(1) |O(pi)|=n; for each i, O(p;)={f"(p;)|neZ};

(2) O(P)NO(pj)=9 fori#j;and

(3) no two points of O ={O(p;)|i =1}* are on the same composant of P.

Proof. There is a Cantor set C, a homeomorphism « on C, and a sequence
D1, D3, ... of points of C such that:

() |O(p;)|=n; for each i, O(p;) ={a"(p;)|neZ}; and

(2) O(P)NO(p;)=0fori#j.
We can think of C as being a subset of a pseudoarc to which the homeo-
morphism « on C can be extended to the homeomorphism f. Furthermore,

this can be done so that no two points of C are on the same composant of
P. ]

Corollary 4 gives us another way of seeing that a pseudoarc homeomorph-
ism can have many different periodic points without actually being a peri-
odic homeomorphism. (The author found such homeomorphisms in [2], but
these all had the property that each composant of the pseudoarc was mapped
to itself.) But we can go still further in this direction and construct a homeo-
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morphism on the pseudoarc with the property that, for each positive integer
n, |{peP||O(p)|=n}|=c, as Corollary 5 demonstrates.

COROLLARY 5. Suppose that ny, n,, ... is a sequence of positive integers.
Then there is a homeomorphism f on a pseudoarc P such that there is a se-
quence Cy, C,, ... of mutually disjoint Cantor sets in P such that:

(1) f(C;)=C; and f|C; is periodic of period n; for each i; and

(2) no two points of \JU;2| C; are on the same composant of P.

Proof. There is a Cantor set C in-R? such that C = {p} U Cl Uc,uU---,
where

(1) CiNCj=@ unless i =j;

(2) for each i, C; is itself a Cantor set; and

(3) lim;, . d(p,C;)=0 but p ¢ C; for any i.
For each i, there is a homeomorphism «; € H(C;) such that «; has period »;.

Define o € H(C) by
(x) = X if x=p,
“ B Ol,'(X) if xe C,'.

Now use Theorem 1 to construct both a pseudoarc P containing C and a
homeomorphism f on P extending «. -

Theorem 1 and the remark that follows it lead one rather naturally to the fol-
lowing question: If a Cantor set C is embedded in a pseudoarc P such that
no composant of P contains more than one point of C, and if « € H(C), can
o be extended to all of P? The answer is yes, as the next lemma, theorem,
and corollary show us.

LEMMA 6. Suppose that C, is a Cantor set in the pseudoarc P, such that
no composant of P, contains more than one point of Cy, and such that C, is
a Cantor set in the pseudoarc P, with no composant of P, containing mare
than one point of C,. Suppose further that D\[0, n] (resp., E;[0,n)) is an
open taut chain cover of P, (resp., P,), and that {a(0) =0, a(1),...,a(a)=
n} is an increasing subsequence of [0, n] such that

Cl—c— U l(d(lya(l))yDl)s CZQ'L_.JOi(e(I’O[(i))’El)a

i=1
and, foriel0,al],
CiNd(, a(i)) # 0, CyNe(l,a(i)) #0.

Then, if E,[0, m] is an open taut chain cover of P, such that E, closure re-
Jines E, E, follows the pattern ¢ in E,, {3(0)=0, 8(1),...,8(b)=m]} isan
increasing subsequence of [0, m] such that C,cU f’= 1i(e(2, B(i)), E,), and
E>[B(i),B(i+1)] is properly covered by E| for ie[0,b—1], then there is
an open taut chain cover D, [0, m] of P, such that D, closure refines D,, D,
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follows £ in Dy, C; S UP_oi(d(2, B(i)), D,), and D,[B(i), B(i +1)] is prop-
erly covered by D, forie[0,b—1].

Proof. Foriel0,al, let n;=|{B(j)|je€l[0,b] and £(B())) = a(i)}|. (With-
out loss of generality, let us assume that e(2, 3(j))NC,#@ for je[0,b].)
Then divide d(1, a(i)) N C, into exactly #; nonempty mutually disjoint closed
sets, and list them: d(1, a(i)) N Cy = Uje; Kyiyj» where B; = {B(k) |k [0, b]
and £(B(k)) =a(i)}. Then C,=UJ; ; K;;, and we can list {K;;|i€[0,al, j€
B;} by the ordering on the j’s because each j occurs once and only once. We
list them: {KE,G(O),O’ KE;G(I),I: cesy KEﬁ(b),b}'

If v, is an open set such that K5y 1 S v S0, Si(d(1, £6(1)), D), Hy 1=
{L|L is a component of P;—v; and LNK{g) 0#0})* and Hy={L|L is a
component of Py—wv; and LN (U x¢,1 K¢y, ;) #0}*, then Hy ; and H, are
mutually exclusive closed sets, and there are open sets Gy and G, such that:

(1) HO,I c GO and Hl c G2;

2) GoUv,UG,=P;; and

(3) Go N G2 = ﬂ, GOOK&’B(I),I = ﬂ, and Gz ﬂKm(l),l =0.
Further, we may choose v; so that each component contained in H, ; not
only intersects each link in D, but also, for each link d in D,, contains a point
in i(d, D,); likewise we may choose v, so that, for eachie[2,b] and d € D;,
each component contained in A, contains a point of i(d, D;). Let v;=G;.
Then G = {Gy, G;, G,} is an open taut chain cover of P;, with K;g(0) 0 S
i(Go, G), KEB(I),I Ei(Gl, G), and U,‘>1 Kgﬁ(,'),,' gi(Gz, G)

Pick v, an open set so that

Kip(2),2 S V2 S U, Si(d(1, EB(2)), Dy) Ni(G,, G).

Let Hy ;={L|L is a component of P;—v, and LN (K¢g(0),0 UKes(),1) Z9}*
and H, ={L|L is a component of P;—v, and LN(U;j0,1,2 Kis()y, ;) Z90}*
Then Hy;UH, ; and H, are mutually exclusive closed sets, and there are
open sets G¢ and G2 such that:

(4) Hy,UH, <SG} and H, < G3;

(5) G§Uv, UG} =Py; and L

(6) GENG3=0=G3NK;p0),2=G2NK;p(2) 2
Again, we may choose v, so that:

(8) for each d in D,, each component in H ; contains a point in i(d, Dy);

and

(9) for each d in D;, each component in H, contains a point in i(d, Dy).
Then G?={G,N G}, G\NGE, G,NGE, v,, G3} is an open taut chain cover
of Pl-

Let GoN G§ = g(0), G\N G§ = g*(1), G,N G§ = g*(2), v, =g*(3), and
G3 = g?(4). Continue this process until finally we obtain an open taut chain
cover G? = G?[0, 2b] of P;, and the increasing subsequence {3’(0) =0,
B'(1),...,8’(b)}, such that: ‘
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(10) for i€ [0, b], Kesqy,: Si(g°(B'(0)), G?); and
(11) forie[0,b—1] and z € K;g;).;, there is a continuum Q. contained in
GP?[B'(i), B’(i+1)]* which is essentially covered by D, and which
contains z.
We are almost done, for now, using Theorem OT (plus a little) we can
conclude that there is an open taut chain cover D,[0, m] of P; such that:
(12) for ie[0,b], Kipiy,: Si(d(2,8(i)), D>);
(13) for ie[0,b—1], D,[B(i),B(i+1)] is properly covered by D,; and
(14) D, closure refines D; and follows ¢ in D;.
[By “plus a little” we mean the following: We wish to construct D,[0, 3(1)]
from G?[0, 1] (since 1 =B’(1)) so that D,[0, 8(1)] follows the appropriate re-
striction of £ in E. There are open sets w; and w, in P, such that C,Ne(2,0)<
wew ci(e(2,0),E;) and C,Ne(2,8(1)Sw,=w,Si(e(2,6(1)),E,). Let
wj; denote an open set in P, such that

e(2,8(1)+1)Ne(2,B(1)) S w; S w3 Se(2,B8(1)) —e(2,8(1)—1).
Let w, denote an open set P, such that

6(2,0)—'WIEW4 and W4ﬂ(C2('\e(2,0)):ﬂ,

and let ws denote an open set in P, such that e(2, 3(1)) — (w,Uw;) S ws and
wsN((CyNe(2,6(1))Ve(2,B8(1)+1))=0. Let

E={W1,W4,e(2, 1)9 ...,6(2, B(l)_1)3w5a W2UW3}.

Then F is an open taut chain cover of E,[3(0),8(1)]* and follows a pat-
tern ¢’ in Dy, and E — {w;, w,Uw;} follows a restriction of £’ in D;. In addi-
tion, E*—{w;, w,, w3}* is closed in P,. There is an open set «; in P, such that
KEﬁ(O)’O Cu Su < l(d(l, 0), Dl)ﬂl(gb(O), Gb) and iU N (Ui>l KEﬁ(i),i) =0.
There is an open set u, such that Kz, | © u, S i1, Si(d(1,£6(1)), D)) N
i(g%(B’(1)), G®) and ;N (U, Kepgiy,;) = 0. Also, there is an open set u;
such that g2(2) N gb(1) € u3 S v, € i(d(l, £8(1)), D;) and ii; N gb(0) = 0.
Consider G?[B'(0), B'(D]*—(u;Uu,Uus). This is a compactum essentially
covered by D,, and there is an open (in P,) taut chain cover D5[3(0), 5(1)]
of this compactum that follows the restriction of £’ in D; such that—if
d2, g0)=d’'(2, 8(0)) Uu,, d2,i)=d’'(2,i) for i e[1, B(1)—1], and
d(2,8(1)) =d’'(2,8(1)) Uuy Uus;—then D,[3(0), 8(1)] follows the required
restriction of £ in D;. Continue this process.] 1

THEOREM 7. Suppose that C, is a Cantor set in the pseudoarc P, such
that no composant of P, contains more than one point of C,, and suppose
that C, is a Cantor set in the pseudoarc P, such that no composant of P,
contains more than one point of C,. Then there is a homeomorphism «:
Pl —>P2 such that a(Cl) = Cz.

Proof. There are open taut chain covers D, = D,[0, 2] = {d(1, 0), d(1,1),
d(1,2)} of P, and E|=E,[0,2]={e(1,0),e(1,1),e(1,2)} of P, such that:
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(1) C;Ni(d(1,0),D;)=8 and C,Ni(e(l,0), E;) # &;
(2) C;Ni(d(1,2),D;) =8 and C,Ni(e(l,2), E) =0 and
(3) C;Nd(,1)=0and C,Ne(l, 1)=0.

Let A;=1{0,2}. Choose an open taut chain cover E, = E,[0, n,] of P, and
an increasing subsequence A, = {a;(0) =0, a3 (1), ..., ay(ay) = n,} of [0, n,y]
such that:

(4) mesh E,< 1;
(5) C,Ni(e(2,0),E,)Ni(e(1,0),E;)#0 and
C,Ni(e(2,ny), E>;)Ni(e(1,2), E)) #0;
(6) E, closure refines £, and follows some pattern £, in E|;
(7) some link e of E,[a,(i), a5(i+1)] is in i(e(1,0), E,) and some link
e’ of Ej[ay (i), an(i+1)] isin i(e(l,2), E;) for ie[0,a,—1]; and
8) C, U2, i(e(2, xy(i)), E,) and, for i e [0, a,],
C,Ni(e(2, ay(i)), E;) #0.
Applying Lemma 6, there is an open taut chain cover D, of P; such that:
(9 D,=D,[0,n,] closure refines D, and follows &, in D;;
10) C;cUf2,i(d(2, a(i)), D,) and, for i [0, a;],

CiNi(d2, a(i)),D,) #0; and
(11) for ie[0,a,—1], Dy[a,(i), as(i+1)] is properly covered by D;.

Now there exist an open taut cover D;[0, n;] of P; and an increasing sub-
sequence A3 = {c3(0) =0, a3(1), ..., ¢3(a3) = n3} of [0, n3] such that:

(12) mesh D3 < &;
(13) Dj; closure refines D, and follows some pattern &, in Ds;
(14) C,cU/Li(d(3, a3(i)),D;) and i(d(3, a3(i)), D;)NC; =@ for
i €[0,a;3]; and
(15) for ie[0,a3—1], D3[as3(i), a3(i+1)] is properly covered by D,.

We now choose E; using Lemma 6, and continue choosing sequences of
chains D[0, n;1, D,[0, n,], ... and E,[0, n;1, E»[0, n,], ..., as well as subse-
quences A, A,, ..., such that:

(16) lim; mesh E; =1im; mesh D; =0;

(17) E;is an open taut chain cover of P, and D; is an open taut chain
cover of Py;

(18) for jeN, C; UL, i(d(j,i),D;) and CZQUfLOi(e(j,i),Ej); and

(19) forie N, D, follows &; in D; and E; follows &; in E;.

In the standard way, then, we have induced a homeomorphism «: P; — P,,
where « is defined as follows: For x € P, there is an infinite sequence j(x, 1),
Jj(x,2),... of integers such that, for each i,

(20) xed(i, j(x,i)) and

21 &((x,i+1))=j(x,i).

Then a(x) =N, e(i, j(x,i)). Note that «(C;) = C,. ' dJ



Positive Entropy Homeomorphisms on the Pseudoarc 191

COROLLARY 8. If Cis a Cantor set embedded in a pseudoarc P such that
no composant of P contains more than one point of C, and if a € H(C),
then there is an extension fe H(P) of «.

Proof. Theorem 1 gives us a pseudoarc P’ containing C and f'e H(P’) such
that f’|C =«. By Theorem 7 and its proof, there is a homeomorphism g:
P’— P such that g(c)=c for ce C. Then f=gf’g ! is the desired homzo-
morphism. O

Mazurkiewicz [4] proved that each nondegenerate indecomposable contin-
uum X contains a Cantor set C such that no composant of X contains two
points of C. Cook [1] has shown that no such C can intersect every compos-
ant of X, and that C = {K | K is a composant of X and KN C  @}*, the com-
posant saturation of C, is an F,-set. Thus, we obtain the following.

COROLLARY 9. If C is the composant saturation of a Cantor set C in a
pseudoarc P such that no composant of P contains more than one point of
C, then for each o € H(C) there is an extension f, € H(P) of o with f,(C) =
C, and C is an F,-set, C # P.
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